分散液液微萃取与胶束毛细管电动色谱在线推扫结合技术在农药残留分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛细管电泳(Capillary Electrophoresis, CE)以其分离效率高、分析时间短、样品需要量少、操作费用低等优点,日益成为一种高效的分离分析方法。但由于其进样体积小和检测光程短,对常用的紫外检测器而言,CE的一个主要缺陷是灵敏度较低,解决此问题的一个有效途径是采用离线或在线样品富集的方法。推扫是胶束毛细管电动色谱(Micellar electrokinetic chromatography, MEKC)操作模式下的一种在线富集技术,其基本原理是在MEKC中当假固定相穿越不含假固定相的样品区带时,由于两相分配作用或静电作用,分析物被萃取到胶束相,胶束相推扫富集分析物形成一个窄的样品区带。带电荷的或中性分析物均可被推扫富集,推扫富集技术具有广泛的应用前景。
     传统的样品前处理技术如液液萃取、固相萃取、沉淀和过滤等,存在操作繁琐耗时,需要使用大量的对人体和环境有毒或有害的有机溶剂等缺点。分散液相微萃取是2006年提出的一种新型样品前处理技术,一次萃取过程仅需十几微升有机溶剂,是一种对环境友好的样品前处理方法。该方法具有集采样、萃取和浓缩于一体,操作简单、快速、成本低且富集效率高等优点。
     本论文将分散液液微萃取(Dispersive liquid-liquid microextraction, DLLME)与胶束毛细管电动色谱在线推扫富集技术(On-line sweeping concentration technique in micellar electrokinetic chromatography, sweeping-MEKC)联用,并结合分散固相萃取(Dispersive solid-phase extraction,DSPE)净化技术,建立了水样、蔬果、土壤等环境样品中的三嗪类除草剂,氨基甲酸酯类农药,磺酰脲类除草剂等的高效、灵敏和选择性好的检测方法。在系统查阅有关文献资料的基础上,进行了以下研究工作:
     1.建立了胶束毛细管电动色谱在线推扫测定环境水样中的三嗪类除草剂残留的新方法。经过实验优化,最佳分离条件为:分离缓冲溶液(buffer)为pH= 2.5的50 mM H3PO4,100 mM SDS,20%甲醇(v/v)。在1.0 psi进样60 s,分离电压-20 kV,检测波长220 nm,25°C。与常规胶束毛细管电动色谱相比,富集倍率达到60~200倍。采用马钱子碱为内标,扑草净、西玛津和阿特拉津在0.005~5.0,0.05~5.0和0.05~5.0μg/mL范围内与内标物峰面积比呈良好线性关系,线性相关系数分别为0.998,0.997和0.997,其检出限分别为0.5 ng/mL,9.0 ng/mL和9.0 ng/mL(信噪比为3: 1),此方法用于环境水样中的三嗪类除草剂扑草净、西玛津、阿特拉津的测定,取得了满意的结果。
     2.建立了分散液液微萃取与胶束毛细管电动色谱在线推扫测定苹果中的氨基甲酸酯类农药(甲硫威、仲丁威、乙霉威、西维因、异丙威和速灭威)残留的快速、灵敏的新方法。并对影响萃取和推扫效果的因素,萃取剂和分散剂的种类及用量,萃取时间,盐浓度,样品基质和缓冲溶液浓度等进行了优化。在最优条件下,此方法的富集倍率达到469~1772倍(峰面积),检出限为2.0~3.0 ng/g,定量限(信噪比为10: 1)6.0~9.0 ng/g,线性范围是分析物的定量限到500 ng/g。日内和日间相对标准偏差范围分别是3.0% ~5.6%(n=5)和5.4%~8.3%(n=15)。在苹果中加标浓度为20 ng/g和100 ng/g的相对回收率85.4%~113.3%之间,相对标准偏差低于7.4%。该方法已成功地应用于分析目标苹果样品中的氨基甲酸酯残留。
     3.建立了分散液液微萃取与胶束毛细管电动色谱在线推扫测水样中的磺酰脲类除草剂残留的新方法。并对影响萃取和推扫效果的参数,例如萃取剂和分散剂的种类及用量,萃取时间和加盐量,缓冲溶液pH,缓冲溶液浓度等进行了优化。在最优条件下,五种除草剂(甲磺隆、氯磺隆、苄嘧磺隆、苯磺隆和氯嘧磺隆)的富集倍率高达3296~5086(峰面积)。线性范围在分析物的定量限(LOQs)~100.0μg/mL之间,检出限为0.2~0.5μg/mL。日内和日间相对标准偏差低于5.3%(n=5)和6.1%(n=15)。湖水、井水和自来水的加标回收率在5 ng/mL和20 ng/mL的两个浓度水平上为78.0%~108.0%之间,相对标准偏差低于7.2%。该方法已成功地应用于分析实际水样中的磺酰脲类除草剂残留。
     4.建立了分散固相萃取净化与分散液液微萃取联用萃取土壤样品中磺酰脲类除草剂,并利用胶束毛细管电动色谱在线推扫富集检测。苄嘧磺隆、苯磺隆和氯嘧磺隆在1.7~200 ng/g,甲磺隆、氯磺隆在3.3~200 ng/g范围内呈良好的线性关系。5类磺酰脲类除草剂的检出限在0.5~1.0 ng/g之间。土壤样品的3个不同浓度梯度(5.0,20.0和100.0 ng/g)的加标回收率在75.2%~93.5%之间,相对标准偏差RSDs低于7.6%。与其他土壤样品中的磺酰脲类除草剂前处理方法相比,DSPE-DLLME-Sweeping具有灵敏度高、分析时间短、环境友好和操作简便等优点,应用于测定实际土样中的分析取得了满意结果。
Capillary electrophoresis (CE) has been recognized as a highly attractive separation technique due to its high separation efficiency, short analysis time, small sample requirements and low operation cost. However, the main drawback of CE is the poor concentration sensitivity due to the small injection volumes and a short optical path length in the most commonly used UV detection. One solution to the problem is to apply off-line and/ or on-line sample concentration methods. Sweeping, an on-line sample concentration technique, is defined as a phenomenon where analytes are picked up and concentrated by the pseudostationary phase that penetrates the sample zone containing no pseudostationary phase in micellar electrokinetic chromatography (MEKC). In sweeping, both charged and neutral analytes can be preconcentrated, making it a versatile enrichment technique. Conventional sample preparation methods, such as liquid-liquid extarction and solid phase exrtaction, are time- and solvent- consuming and often involve several complicated procedures. In 2006, Assadi and co-workers developed a novel liquid-phase microextraction technique, named dispersive liquid-liquid microextraction (DLLME). The method is based on the use of a ternary component solvent system. The advantages of DLLME method are environmental friendliness, simplicity of operation, rapidity, low-cost, and high-recovery and high enrichment factor.
     In this work, on the basis of dispersive liquid–liquid microextraction (DLLME) and dispersive solid-phase extraction (DSPE) technique in combination with on-line sweeping concentration technique in micellar electrokinetic chromatography (sweeping-MEKC), several analytical methods were developed for the determination of some pesticide residues in water, soil and agricultural samples. This thesis is mainly concerned with the following aspects:
     1. The application of an on-line sweeping concentration technique in micellar electrokinetic chromatography was investigated for the determination of atrazine, simazine and prometryn in water samples. Various parameters affecting sample enrichment and separation efficiency were systematically studied. Compared with the conventional MEKC method, up to 60~200 fold improvement in concentration sensivity was achieved in terms of peak height by using this sweeping injection technique. The compound strychnine was used as the internal standard for the improvement of the experimental reproducibility, a good linear relationship existed in the range of 0.005~5.0, 0.05~5.0 and 0.05~5.0μg/mL of each herbcides in water samples with the correlation coefficients (r) of 0.998, 0.997 and 0.997, and the detection limits (S/N= 3:1) for atrazine, simazine and prometryn were 9, 9 and 0.5 ng/mL, respectively. This method has been successfully applied to the analysis of atrazine, simazine and prometryn in lake, steam and ground water.
     2. A novel method was developed by using dispersive liquid–liquid microextraction (DLLME) coupled with sweeping-MEKC for the multiresidue analysis of six commonly used carbamate pesticides (methiocarb, fenobcarb, diethofencarb, carbaryl, isoprocarb and tsumacide) in apples. Parameters that affect the extraction and sweeping efficiency, such as the kind and volume of the extraction and disperser solvent, extraction time and salt addition, sample matrix and organic modifiers concentration in separation buffer were investigated and optimized. Under the optimum conditions, the enrichment factors were achieved in the range of 469~1772. The linearity of the method was obtained in the range of the limits of quantification (LOQs, S/N=10)-500 ng/g, with the correlation coefficients (r) ranging from 0.995 to 0.999. The limits of detection (LODs, S/N= 3: 1) were 2.0~3.0 ng/g and LOQs 6.0~9.0 ng/g. The intraday relative standard deviations (RSDs) varied from 3.0% to 5.6% (n=5) and interday from 5.4% to 8.3% (n =10). The recoveries of the six carbamates in apples at spiking levels of 20 ng/g and 100 ng/g were ranging from 85.4% to 113.3% with the RSDs lower than 7.4%. The proposed method has been successfully applied to the analysis of target carbamate residues in apple samples with satisfactory results.
     3. A rapid and sensitive method for the multiresidue analysis of sulfonylurea herbicides (chlorimuron ethyl, bensulfuron methyl, tribenuron methyl, chlorsulfuron, and metsulfuron methyl) in environment waters was developed using DLLME coupled with sweeping-MEKC. Parameters that affect the extraction and sweeping efficiency, such as the kind and volume of the extraction and disperser solvent, extraction time and salt addition, and the pH and concentration of the separation buffer were investigated and optimized. Under the optimum conditions, the enrichment factors were achieved in the range of 3296~5086 (Peak Area). The linearity of the method was obtained in the range of LOQs~100.0μg/mL with the correlation coefficients (r) ranging from 0.997 to 0.999. The limits of detection were 0.2~0.5 ng/mL. The intraday relative standard deviations (RSDs) varied from 1.2 % to 5.3 % (n=5) and interday from 2.6% to 6.1% (n =15). The recoveries of the five herbicides in water samples at spiking levels of 5.0 ng/mL and 20.0 ng/mL were ranging from 78.0% to 108.0% with the RSDs below 7.2%. The proposed method has been successfully applied to the analysis of target herbicide residues in water samples.
     4. A novel approach, dispersive solid-phase extraction followed by dispersive liquid-liquid microextraction (DLLME), was established for extraction of five commonly used sulfonylurea herbicides in soils prior to determination by sweeping-MEKC. Parameters that affect the extraction and sweeping efficiency were investigated and optimized. The linearity of the method for chlorimuron ethyl, bensulfuron methyl was in the range of 3.3~200 ng/g, and tribenuron methyl, chlorsulfuron, and metsulfuron methyl in the range of 1.7~200 ng/g, with the correlation coefficients (r) ranging from 0.997 to 0.998. The limits of detection (LODs) ranged from 0.2 to 0.5 ng/g. The intraday relative standard deviations (RSDs, n= 5) were below 5.3 % and interday RSDs (n= 15) within 6.8%. The recoveries of the method for the five sulfonylureas from soil samples at spiking levels of 5.0, 20.0 and 100.0 ng/g were 75.2%~93.5%, respectively. The proposed method has been successfully applied to the analysis of the target sulfonylurea herbicide residues in soil samples.
引文
[1] Jorgenson J W,Lukas K D. Zone electrophoresis in open-tubular glass capillary[J]. Anal Chem,1981,53(8):1298~1302.
    [2] Jorgenson J W , Lukas K D. High-resolution separations based on electrophoresis and electroosmosis[J]. J. Chromatogr. A,1981,218:209~216.
    [3] Terabe S,Otsuka K,Ichikawa K,et al. Electrokinetic separations with micellar solution and open-tubular capillary [J]. Anal. Chem.,1984,56(1):111~113.
    [4] Hjerten S,Liao J,Yao K. Theoretical and experimental study of electrophoretic mobilization of isoelectric focused protein zones[J]. J. Chromatogr.,1987,387:127~ 136.
    [5] Cohen A,Karger B. High-performance sodium dodecyl sulfate polyacrylamide gel capillary electrophoresis of peptides and proteins[J]. J. Chromatogr.,1987,397:409~ 415.
    [6]毛细管电泳研究进展.第一届全国毛细管电泳学术报告会论文集[C].北京,1993:10~ 88.
    [7]陈义.毛细管电泳技术及应用(第二版)[M].北京:化学工业出版社,2006:15~ 20.
    [8] Tellez S,Forges N,Roussin A. Coupling of microdialysis with capillary electrophoresis: a new approach to study of drug transfer between two compartments to the body in feely rats[J]. J. Chromatogr. A,1992,581(2):257~266.
    [9] Zhao M G,Hao A Y,Lie J,et al. New cyclomaltoheptaose (β-cyclodextrin) derivative 2-O-(2-hydroxybutyl) cyclomaltoheptaose:Preparation and its application for the separation of enantiomers of drugs by capillary electrophoresis[J]. Carbohydr. Res.,2005,340(8):1563~1565.
    [10] Bishop S C,Mccord B R,Gratz S R,et al. Simultaneous separation of different types of amphetamine and piperazine designer drugs by capillary electrophoresis with a chiral selector[J]. Journal of Forensic Science,2005,50(2):326~335.
    [11] Schmitt U,Eran M,Holzgrabe U. Chiral capillary electrophoresis: Facts and fiction on the reproducibility of resolution with randomly substituted cyclodextrins[J]. Electrophoresis,2004,25(16):2801~2807.
    [12] Frías S,Sánchez M J,Rodríguez M A. Determination of triazine compounds in ground water samples by micellar electrokinetic capillary chromatography[J]. Anal. Chim. Acta,2004, 503:271~278.
    [13] Hinsmann P,Arce L,Píos A,et al. Determination of pesticides in waters by automatic on-line solid-phase extraction–capillary electrophoresis[J].J. Chromatogr. A,2000,866(1):137~ 146.
    [14] Smith J T,Nashabeh W,El Rassi Z. Micellar electrokinetic capillary chromatography with in situ charged micelles. 1. Evaluation of N-D-Gluco-N-methylalkanamide surfactants as anionic borate complexes[J]. Anal. Chem.,1994,66 (7) :1119~1133.
    [15] Schmitt P,Garrison A W,Freitag D,et al. Application of cyclodextrin-modified micellar electrokinetic chromatography to the separations of selected neutral pesticides and their enantiomers[J]. J. Chromatogr. A,1997,792(1~2):419~ 429.
    [16] Smith C J,Grainger J,Patterson Jr D G. Separation of Polyeyelic aolnatic hydroearbon metablites byγ-CD-modified micellar electrokinetic chromatography with laser-induced fluorescence detection[J]. J. Chromatogr. A,1998,803(1~2):241~247.
    [17] Kaneta T,Yamashita T,Imasaka T. Separation of polycyclic aromatic hydrocarbons by micellar electrokinetic chromatography with laser fluorescence detection[J]. Anal. Chim. Acta,1995,29(3):371~375.
    [18] Van Bruijnsvoort M,Sanghi S K,Poppe H,et al. Determination of chlorophenols by micellar electrokinetic chromatography with electrochemical detection[J]. J. Chromatogr. A,1997,75(1~2):203~213.
    [19] Olsson J C,Dyemark A,Karlberg B. Determination of heterocyclic aromatic amines by micellar electrokinetic chromatography with amperometric detection[J]. J. Chromatogr. A,1997,765(2):329~335.
    [20] Krattinger B,Bruno A E,Widmer H M,et al. Hologram-based thermooptical absorbance detection in capillary electrophoresis: separation of Nucleosides and Nucleotides[J]. Anal. Chem.,1995,67(1):124~130.
    [21] Quirino J P,Terabe S. Electrokinetic chromatography[J]. J. Chromatogr. A,1999,856(2):465~482.
    [22] Sepaniak M J,Vo-Dinh T,Troopina V,et al. Evaluation of a Separation-Based Fiber-Optic Sensor in a Micellar Electrokinetic Capillary Chromatography Mode of Operation[J]. Anal. Chem.,1997,69(16~18):3806~3811.
    [23] Otsuka K,Terabe S,Ando T. Electrokinetic chromatography with micellars solutions. Separation of phenylthiohydantion-amino acids[J]. J. Chromatogr.,1985,332 :219~226.
    [24] Erim F B,Xu X,Kraak J C. Application of micellar electrokinetic chromatography and indirect UV detection for the analysis of fatty acids[J]. J. Chromatogr. A,1995,694(2):471~479.
    [25] Kancta T,Komatsubara T,Shiba H,et al. Separation and detection of cynine-labeled amino acids by micellar electrokinetic chromatography combined with fluorescence detection using diode-based[J]. Anal. Sci.,1998,14(22):1017~1019.
    [26] Fuehigami T,Imasaka T. Capillary micellar electrokinetic chromatography based on indirect semiconductor laser fluorescence detection[J]. Anal Chim Acta,1994,291(1~2):183~188.
    [27] Amankwa L N , Kuhr W G. Indirect fluorescence detection in micellar electrokinetic chromatography[J]. Anal. Chem.,1991,63(17):1733~1737.
    [28] Moring S E,Reel R. Optical improvements of a Z-shaped cell for high-sensitivity UV absorbance detection in capillary electrophoresis[J]. Anal. Chem.,1993,65(23):3454~3459.
    [29] Djordjevic N M,WidderR,Kuhnn M. Signal enhancement in capillary electrophoresis by using a sleeve cell arrangement for optical detection[J]. J. High. Resolut. Chromatogr.,1997,20(4):189~192.
    [30] García-Ruiz C , Marina M L. Sensitive chiral analysis by capillary electrophoresis[J]. Electrophoresis,2006,27(1):195~212.
    [31] Lin C H,Kaneta T. On-line sample concentration techniques in capillary electrophoresis: Velocity gradient techniques and sample concentration techniques for biomolecules[J]. Electrophoresis,2004,25(23~24):4058~4073.
    [32] Palmer J F. High-salt stacking principles and sweeping:Comments and contrasts on mechanisms for high-sensitivity analysis in capillary electrophoresis[J]. J. Chromatogr. A,2004,1036(2):95~100.
    [33] Urbánek M,KrivánkováL,Bocek P. Stacking phenomena in electromigration: From basic principles to practical procedures [J]. Electrophoresis,2003,24(3):466~485.
    [34] Quirino J P,Kim J B,Terabe S. Sweeping: Concentration mechanism and applications to high-sensitivity analysis in capillary electrophoresis[J]. J. Chromatogr. A,2002,965(1~2):357~373.
    [35] Pyell U. Micellar electrokinetic chromatography-from theoretical concepts to real samples [J]. Anal .Bioanal. Chem.,2001,371(6):691~703.
    [36] Quirino J P,Terabe S. Sample stacking of cationic and anionic analytes in capillary electrophoresis [J]. J. Chromatogr. A,2000,902(1):119~135.
    [37] Mikkers F E P,Everaerts F M,Verheggen T P E M. High-performance zone electrophoresis [J]. J. Chromatogr.,1979,169:11~20.
    [38] Burgi D S,Chien R L. Optimization in sample stacking for high-performance capillary electrophoresis[J]. Anal. Chem.,1991,63(18):2042~2047.
    [39] Chien R L,Helmer J C. Electroosmotic properties and peak broadening in field-amplified capillary electrophoresis[J]. Anal. Chem.,1991,63(14):1354~1361.
    [40] Basheer C,Wang H,Jayaraman A,et al. Polymer-coated hollow fiber microextraction combined with on-column stacking in capillary electrophoresis[J]. J. Chromatogr. A,2006,1128(1~2):267~272.
    [41] Fang H,Zeng Z,Liu L. Centrifuge microextraction coupled with on-line back-extraction field-amplified sample injection method for the determination of trace ephedrine derivatives in the urine and serum[J]. Anal.Chem.,2006,78(17):6043~6049.
    [42] Shi Y,Huang Y,Duan J,et al. Field-amplified on-line sample stacking for separation and determination of cimaterol,clenbuterol and salbutamol using capillary electrophoresis [J]. J. Chromatogr. A,2006,1125(1):124~128.
    [43] Acedo-Valenzuela M I,Galeano-Díaz T,Mora-Díez N,et al. A response surface methodology in the development of a stacking-sensitive capillary electrophoresis method by field-amplified injection for the analysis of tricyclic antidepressants in the presence of salts[J]. J. Sep. Sci.,2006,29(13):2091~2097.
    [44] Yang Y,Boysen R I,Hearn M T W. Optimization of field-amplified sample injection for analysis of peptides by capillary electrophoresis-mass spectrometry[J]. Anal. Chem.,2006,78(14):4752~4758.
    [45] Gong M,Wehmeyer K R,Limbach P A,et al. On-line sample preconcentration using field-amplified stacking injection in microchip capillary electrophoresis[J]. Anal. Chem.,2006,78(11):3730~3737.
    [46] Chien R L , Burgi D S. Sample stacking of an extremely large injection volume in high-performance capillary electrophoresis[J]. Anal. Chem.,1992,64(9):1046~1050.
    [47] Kuo C Y,Chiou S S,Wu S M. Solid-phase extraction and large-volume sample stacking with an electroosmotic flow pump in capillary electrophoresis for determination of methotrexate and its metabolites in human plasma[J]. Electrophoresis,2006,27(14):2905~2909.
    [48] Xiong Y,Park S R,Swerdlow H. Base stacking: pH-mediated on-column sample concentration for capillary DNA sequencing[J]. Anal. Chem.,1998,70(17):3605~3611.
    [49] Gillogly J A,Lunte C E. pH-mediated acid stacking with reverse pressure for the analysis of cationic pharmaceuticals in capillary electrophoresis[J]. Electrophoresis,2005,26(3),633~639.
    [50] Arnett S D,Lunte C E. Investigation of the mechanism of pH-mediated stacking of anions for theanalysis of physiological samples by capillary electrophoresis[J]. Electrophoresis,2003,24(11):1754~ 1752.
    [51] Zhao Y P,Lunte C E. pH mediated field amplification on-column preconcen- tration of anions in physiological samples for capillary electrophoresis[J]. Anal. Chem.,1999,71(18):3985~3991.
    [52] Aebersold R , Morrison H D. Analysis of dilute peptide samples by capillary zone electrophoresis[J]. J. Chromatogr.,1990,516(1):79~88.
    [53] Quirino J P,Terabe S. Exceeding 5000-fold concentration of dilute analytes in micellar electrokinetic chromatography[J]. Science,1998,282(5388):465~468.
    [54] Simpson Jr S L, Quirino J P , Terabe S. On-line sample preconcentration in capillary electrophoresis: Fundamentals and applications[J]. J. Chromatogr. A,2008,1184(1~2):504~541.
    [55] Quirino J P,Iwai. Y,Otsuka K,et al. Determination of environmentally relevant aromatic amines in the ppt levels by cation selective exhaustive injection-sweeping-micellar electrokinetic chromatography[J]. Electrophoresis,2000,21(16):2899~2903.
    [56] Isoo K , Otsuka K , Terabe S. Application of sweeping to micellar electrokinetic chromatography-atmospheric pressure chemical ionization-mass spectrometric analysis of environmental pollutants[J]. Electrophoresis,2001,22(16):3426~3432.
    [57] Quirino J P,Terabe S,Otsuka K,et al. Sample concentration by sample stacking and sweeping using a microemulsion and a single-isomer sulfatedβ-cyclodextrin as pseudostationary phases in electrokinetic chromatography[J]. J. Chromatogr. A,1999,838(1~2):3~10.
    [58] Núňez O,Kim J B,Moyano E,et al. Analysis of the herbicides paraquat, diquat and difenzoquat in drinking water by micellar electrokinetic chromatography using sweeping and cation selective exhaustive injection[J]. J. Chromatogr. A ,2002,961(1):65~ 75.
    [59] Lin C E, Liu Y C,Yang T Y,et al. On-line concentration of s-triazine herbicides in micellar electrokinetic chromatography using a cationic surfactant[J]. J. Chromatogr. A,2001,916(1~2):239~245.
    [60] Da Silva C L,De Lima E C,Tavares M F M. Investigation of preconcentration strategies for the trace analysis of multi-residue pesticides in real samples by capillary electrophoresis[J]. J. Chromatogr. A,2003,1014(1~2):109~116.
    [61] Zhang S H,Yang Y Y,Han D D,et al. Determination of triazine herbicides residues in water samples by on-line sweeping concentration in micellar electrokinetic chromatography [J]. Chin. Chem. Lett.,2008,18(16):1487~1490.
    [62] Huang H Y,Lien W C,Huang I Y. Anion-selective exhaustive injection-sweeping microemulsion electrokinetic chromatography[J]. Electrophoresis,2006,27(16):3202~3209.
    [63] Monton M R N,Quirino J P,Otsuka K,et al. Separation and on-line preconcentration by sweeping of charged analytes in electrokinetic chromatography with nonionic micelles[J]. J. Chromatogr. A,2001,939(1~2):99~108.
    [64] Zhang S H,Li C,Song S J,et al. Application of dispersive liquid–liquid microextraction combined with sweeping micellar electrokinetic chromatography for trace analysis of six carbamate pesticides in apples[J].Anal. Methods,2010,2:54~62.
    [65] Juan-Garíca A,Font G,PicóY. On-line preconcentration strategies for analyzing pesticides in fruits and vegetables by micellar electrokinetic chromatography[J]. J. Chromatogr. A,2007,1153(1~2):104~113.
    [66] Yu L , Li F Y. Dynamic pH junction-sweeping capillary electrophoresis for on-line preconcentration of toxic pyrrolizidine alkaloids in Chinese herbal medicine[J]. Electrophoresis,2005,26(22):4360~4367.
    [67] Britz-McKibbin P,Markuszewski M J,Iyanagi T,et al. Picomolar analysis of flavins in biological samples by dynamic pH junction-sweeping capillary electrophoresis with laser-induced fluorescence detection[J]. Anal. Biochem.,2003,313(1):89~96.
    [68] Britz-Mckibbin P,Terabe S. High-sensitivity analyses of metabolites in biological samples by capillary electrophoresis using dynamic pH junction-sweeping[J]. Chem. Rec.,2002,2(6):397~404.
    [69] Britz-McKibbin P,Otsuka K,Terabe S. On-line focusing of flavin derivatives using dynamic pH junction-sweeping capillary electrophoresis with laser-induced fluorescence detection[J]. Anal. Chem.,2002,74(15):3736~3743.
    [70] Gong M,Wehmeyer K R,Limbach P A,et al. Unlimited-volume electrokinetic stacking injection in sweeping capillary electrophoresis using a cationic surfactant[J]. Anal. Chem.,2006,78(17):6035~6042.
    [71] Meng P,Fang N,Wang M,et al. Analysis of amphetamine,methamphetamine and methylenedioxy-methamphetamine by micellar capillary electrophoresis using cation-selective exhaustive injection[J]. Electrophoresis,2006,27(16):3210~3217.
    [72] Isoo K,Terabe S. Analysis of metal ions by sweeping via dynamic complexation and cation-selective exhaustive injection in capillary electrophoresis[J]. Anal. Chem.,2003,75(24):6789~6798.
    [73] Zhu L,Tu C,Lee H K. On-line concentration of acidic compounds by anion-selective exhaustive injection-sweeping-micellar electrokinetic chromatography [J]. Anal. Chem.,2002,74(22):5820~5825.
    [74] Quirino J P,Terabe S. Approaching a million fold sensitivity increase in capillary electrophoresis with direct ultraviolet detection:Cation-selective exhaustive injection and sweeping[J]. Anal. Chem.,2000,72(5):1023~1030.
    [75] Quirino J P,Haddad P R. Online Sample Preconcentration in Capillary Electrophoresis using Analyte Focusing by Micelle Collapse[J]. Anal. Chem.,2008,80(17):6824~6829.
    [76] Quirino J P. Neutral analyte focusing by micelle collapse in micellar electrokinetic chromatography[J]. J. Chromatogr. A,2008,1214(1~2):171~177.
    [77] Liu L H,Deng X X,Chen X G. Micelle to trapping solution stacking in micellar electrokinetic chromatography[J]. J. Chromatogr. A,2010,1217(1~2):175~178.
    [78] Dawod M,Breadmore M C,Guijt R M,et al. Strategies for the on-line preconcentration and separation of hypolipidaemic drugs using micellar electrokinetic chromatography[J]. J. Chromatogr. A,2010,1217(3):386~393.
    [79] Raynie D E. Modern extraction techniques[J]. Anal. Chem.,2004,76:4659~4664.
    [80] Wang Z,Hennion B,Urruty L,et al. Solid-phase microextraction coupled with high performance liquid chromatography: a complementary technique to solid-phase microextraction-gas chromatography for the analysis of pesticide residues in strawberries[J]. Food Addit. Contam.,2000,17(11):915~923.
    [81] Falqui-Cao C,Wang Z,Urruty L,et al. Focused microwave assistance for extracting some pesticide residues from strawberries into water before their determination by SPME/HPLC/DAD[J]. J. Agric. Food Chem.,2001,49(11):5092~5097.
    [82] Arthur C L,Pawliszyn J. Solid-phase microextraction with thermal desorption using fused silica optical fibers[J]. Anal. Chem.,1990,62(19):2145~2148.
    [83] Popp P,Kalbitz K,Oppermann G. Application of solid-phase microextraction and gas chromatogtrphy with eletron-capture and mass spectrometric detection for the determination of hexachlorocychohexanes in soil solutions[J]. J. Chromatogr. A,1994,687(1):133~140.
    [84] Sánchez-Ortega A,Sampedro M C,Unceta N,et al. Solid phase microextraction coupled with high performance liquid chromatography using on-line diode-array and electrochemical detection for the determination of fenitrothion and its main metabolites in environmental water samples[J]. J. Chromatogr. A,2005,1094(1-2):70~76.
    [85] Natangelo M , Tavazzi S , Benfenati E. Evaluation of solid phase microextraction-gas chromatography in the analysis of some pesticide with different mass spectrometric techniques:application to environmental waters and food samples[J]. Anal. Lett.,2002,35(2):327~338.
    [86] Ahmadia F,Shahsavari A A,Rahimi-Nasrabadi M. Automated extraction and preconcentration of multiresidue of pesticides on a micro-solid-phase extraction system based on polypyrrole assorbent and off-line monitoring by gas chromatography–flame ionization detection[J]. J. Chromatogr. A,2008,1193(1~2):26~31.
    [87] Sae-Khow O,Mitra S. Carbon nanotubes as the sorbent for integratingμ-solid phase extraction within the needle of a syringe[J]. J. Chromatogr. A,1216,2009(1~2):2270~2274
    [88] Ciucanu I,Swallow K C,CǎpritǎR. Micro-solid phase extraction with helical-solid-sorbent in the presence of organic solvent for gas chromatography–mass spectrometry analysis of per-O-methylated mono- and disaccharides[J]. Anal.Chim. Acta,2004,519:93~101.
    [89] Pederson-Bjergaard S , Rasmussen K E. Liquid-Liquid-Liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis[J]. Anal. Chem.,1999,71(14):2650~2656.
    [90]王春,吴秋华,王志,等.基于中空纤维的液相微萃取技术的研究进展[J].色谱,2006,24(5):516~ 523.
    [91] Shen G,Lee H K. Hollow fiber-protected liquid-phase microextraction of triazine herbicides [J]. Anal. Chem.,2002,74(3):648~654.
    [92] Basheer C, Lee H K, Obbard J P. Determination of organochlorine pesticides in sea water using liquid-phase hollow fibre membrane microextraction and gas chromatography-mass spectrometry[J]. J. Chromatogr.A,2002,968(1~2):191~199.
    [93] Zhu L Y,Ee Z K,Zhao L M,et al. Analysis of phenoxy herbicides in bovine milk by means of liquid-liquid-liquid microextraction with a hollow-fiber membrane[J]. J. Chromatogr. A,2002,963(1~2):335~343.
    [94] Lambropoulou D A,Albanis T A. Application of hollow fiber liquid phase microextraction for the determination of insecticides in water[J]. J. Chromatogr. A,2005,1072(1):55~61.
    [95] Rezaee M,Assadi Y,Milani Hosseini M R,et al. Determination of organic compounds in water using dispersive liquid–liquid microextraction[J]. J. Chromatogr. A,2006,1116(1~2):1~9.
    [96] Berijani S,Assadi Y,Anbia M,et al. Dispersive liquid-liquid microextraction combined with gas chromatography-flame photometric detection very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water[J]. J. Chromatogr. A,2006,1123(1):1~9.
    [97] Fari?a L,Boido E,Carrau F,et al. Determination of volatile phenols in red wines by dispersive liquid-liquid microextraction and gas chromatography-mass spectrometry detection[J]. J. Chromatogr. A,2007,1157(1-2):46 ~50.
    [98] Fattahi N,Samadi S,Assadi Y,et al. Solid-phase extraction combined with dispersive liquid-liquid microextraction-ultra preconcentration of chlorophenols in aqueous samples[J]. J. Chromatogr. A,2007,1169(1~2):63~69.
    [99] Wu Q H,Zhou X,Li Y M, et al. Application of dispersive liquid-liquid microextraction combined with high-performance liquid chromatography to the determination of carbamate pesticides in water samples[J]. Anal. Bioanal. Chem.,2009,393(6~7):1755~1761.
    [100] Wu Q H,Li Y P,Wang C,et al. Dispersive liquid–liquid microextraction combined with high performance liquid chromatography–fluorescence detection for the determination of carbendazim and thiabendazole in environmental samples[J]. Anal.Chim. Acta,2009,638(2):139~145.
    [101] Wu Q H,Wang C,Liu Z M,et al. Dispersive solid-phase extraction followed by dispersive liquid–liquid microextraction for the determination of some sulfonylurea herbicides in soil by high-performance liquid chromatography[J]. J. Chromatogr. A,2009,1216(29):5504~5510.
    [102] Zanjani M R K,Yamini Y,Shariati S,et al. A new liquid-phase microextraction method based on solidification of floating organic drop [J]. Anal.Chim. Acta,2007,585(29):286~293.
    [103]Leong M I,Huang S D. Dispersive liquid–liquid microextraction method based on solidification of floating organic drop combined with gas chromatography with electron-capture or mass spectrometry detection[J]. J. Chromatogr. A,2008,1211(1~2):8~12.
    [104]Leong M I,Huang S D. Dispersive liquid–liquid microextraction method based on solidification of floating organic drop for extraction of organochlorine pesticides in water samples[J]. J. Chromatogr. A,2009,1216(45):7645~7650.
    [105]Anastassiades M,Lehotay S J,Stajnbaher D,et al. Fast and easy multiresidue method employing acetonitrile extraction /partitioning and“dispersive solid-phase extraction”for the determination of pesticide residues in produce[J]. J. AOAC Int.,2003,86(2):412~431.
    [106]Lehotay S J,Kok A,Hiemstrah M,et al. Validation of a fast and easy method for the determination of residues from 229 pesticides in fruits and vegetables using gas and liquid chromatography and mass spectrometric detection[J]. J. AOAC Int.,2005,88(2):595~614.
    [107]Lehotay S J,Mastovskam K,Lighfield A R. Use of buffering to improve results of problematic pesticides in a fast and easy method for residue analysis of fruits and vegetables[J]. J. AOAC Int.,2005,88(2):615~629.
    [108]Banerjee K,Oulkar D P,Dasgupta S,et al. Validation and uncertainty analysis of a multi-residue method for pesticides in grapes using ethyl acetate extraction and liquid chromatography–tandem mass spectrometry[J]. J. Chromatogr. A,2007,1173(1~2):98~109.
    [109]Koesukwiwat U,Sanguankaew K,Leepipatpiboon N. Rapid determination of phenoxy acid residues in rice by modified QuEChERS extraction and liquid chromatography–tandem mass spectrometry [J]. Anal. Chim. Acta,2008,626(1):10~20.
    [110]黄宝勇,潘灿平,张微,等.应用分析保护剂补偿基质效应与气相色谱-质谱快速检测果蔬中农药多残留[J].分析测试学报,2006,25(3):l1~16.
    [111]李莉,江树人,潘灿平,等.分散固相萃取-气相色谱-质谱方法快速净化测定枸杞中12种农药残留[J].农药学学报,2006,8(4):371~374.
    [112] Moreno J L F,Liébanas F J A,Frenich A G,et al. Evaluation of different sample treatments for determining pesticide residues in fat vegetable matrices like avocado by low-pressure gas chromatography-tandem mass spectrometry [J]. J. Chromatogr. A,2006,1111(1):97~105.
    [113] Teske J,Engewald W. Methods for,and applications of,large volume injection in capillary gas chromatography [J]. Trends Anal. Chemi.,2002,21(9~10):584~ 593.
    [114] Martínez-Vidal J L,Fernández-Moreno J L,Arrebola-Liébanas F J,et al. Application of low-pressure gas chromatography/tandem mass spectrometry to the determination of pesticide residues in tropical fruits[J]. J. AOAC Int.,2007,90:1146~1164.
    [115] Baranowska I,Barchanska H,Pacak E. Procedures of trophic chain samples preparation for determination of triazines by HPLC and by ICP-AES methods[J]. Environmental Pollution and Control,2006,143:206 ~211.
    [116] Ta N,Feng J F,Sun C,et al. Determination of atrazine in water of Taihu Meiliang Bay by capillary gas chromatography[J]. Environmental Pollution and Control,2005,27(8):6342~ 6361.
    [117] Djozan D,Mahkam M,Ebrahimi B. Preparation and binding study of solid-phase microextraction fiber on the basis of ametryn-imprinted polymer; Application to the selective extraction of persistent triazine herbicides in tap water, rice, maize and onion[J]. J. Chromatogr. A,2009,1216(1):2211~ 2219.
    [118] Shen G , Lee H K. Hollow Fiber-Protected Liquid-Phase Microextraction of Triazine Herbicides[J]. Anal. Chem.,2002,74:648~654.
    [119] Ma W T,Fu K K,Cai Z W,et al. Gas chromatography/mass spectrometry applied for the analysis of triazine herbicides in environmental waters[J]. Chemosphere,2003,52:1627~1632.
    [120] Nagaraju D,Huang S D. Determination of triazine herbicides in aqueous samplesby dispersive liquid–liquid microextraction with gas chromatography–ion trap mass spectrometry[J]. J. Chromatogr. A,2007,1161 :89~97.
    [121] Frías S,Rodríguez M A,Conde J E,et al. Optimisation of a solid-phase microextraction procedure for the determination of triazines in water with gas chromatography–mass spectrometry detection[J]. J. Chromatogr. A,2003,1007:127~135.
    [122] Bichon E,Dupuis M,Lebizec B,et al. LC-ESI-MS/MS determination of phenylurea and triazine herbicides and their dealkylated degradation products in oysters[J]. J. Chromatogr. A,2006,838:96~106.
    [123] Schraer S M,Shaw D R,Boyette M,et al. Comparison of Enzyme-Linked Immunosorbent Assay and Gas Chromatography Procedures for the Detection of Cyanazine and Metolachlor in Surface Water Samples[J]. J. Agric. Food Chem. 2000,48:5881~5886.
    [124] EC Drinking Water Guideline 98/83/EC,Brussels,November 1998.
    [125] Schmitt Ph,Garrison A W,Freitag D, et al. Separation of s-triazine herbicides and their metabolites by capillary zone electrophoresis as a function of pH [J]. J. Chromatogr. A,1996,723(1):169~177.
    [126] Martínez R C,Gonzalo E R,Domínguez A I M,et al. Determination of triazine herbicides in water by micellar electrokinetic capillary chromatography [J]. J. Chromatogr. A,1996,733(1~2):349~360.
    [127] Quirino J P,Terabe S. Sweeping of analyte zones in electrokinetic chromatography[J]. Anal. Chem,1999,71:1638~1644.
    [128] Kim J B,Quirino J P,Otsuta K,et al. On-line sample concentration in micellar electrokinetic chromatography using cationic surfactants[J]. J. Chromatogr. A,2001,916:123~130.
    [129] Sun S W,Tseng H M. Sensitivity improvement on detection of Coptidis alkaloids by sweeping in capillary electrophoresis[J]. J. Pharm. Biomed. Anal.,2005,37 (1):39~45.
    [130] Types of Pesticides, US Environmental Protection Agency, http: // www. epa. gov/ pesticides/ about/ types. html.
    [131] Zhang J,H.K. Lee. Application of liquid-phase microextraction and on-column derivatization combined with gas chromatography–mass spectrometry to the determination of carbamate pesticides[J].J. Chromatogr. A,2006,1117(1~2):31~37.
    [132] Crespo-Corral E,Santos-Delgadoa M J,Polo-Díeza L M,et al. Determination of carbamate, phenylurea and phenoxy acid herbicide residues by gas chromatography after potassium tert-butoxide/dimethyl sulphoxide/ethyl iodide derivatization reaction[J]. J.Chromatogr. A,2008,1209(1-2):22~28.
    [133] López-Blanco C,Gómez-álvarez S,Rey-Garrote M,et al. Determination of carbamates and organophosphorus pesticides by SDME–GC in natural water[J]. Anal. Bioanal. Chem.,2005,383 (4):557~561.
    [134] Mayer-Helm B,Hofbauer L,Muller J. Development of a multi-residue method for the determination of 18 carbamates in tobacco by high-performance liquid chromatography/ positive electrospray ionisation tandem mass spectrometry[J]. Rapid Commun. Mass Spectrom.,2006,20(4):529~536.
    [135] Vandecasteele K,Gaus I,Debreuck W,et al. Identification and Quantification of 77 Pesticides in Groundwater Using Solid Phase Coupled to Liquid?Liquid Microextraction and Reversed-Phase Liquid Chromatography[J]. Anal.Chem.,2000,72:3093~3101.
    [136] Fu L Y,Liu X J,Hu J,et al. Application of dispersive liquid–liquid microextraction for the analysis of triazophos and carbaryl pesticides in water and fruit juice samples[J]. Anal. Chim. Acta,2009,632 (2):289~295.
    [137] Huertas-Pérez J,García-Campan M. Determination of N-methylcarbamate pesticides in water and vegetable samples by HPLC with post-column chemiluminescence detection using the luminol reaction[J]. Anal. Chim. Acta,2008,630 (2):194~204.
    [138] Fernández M,Pico Y,Manes J. Determination of carbamate residues in fruits and vegetables by matrix solid-phase dispersion and liquid chromatography–mass spectrometry[J]. J. Chromatogr. A,2000,871(1~2):43~56.
    [139] Sagratini G, Ma?es J, GiardináD,et al. Analysis of carbamate and phenylurea pesticide residues in fruit juices by solid-phase microextraction and liquid chromatography–mass spectrometry[J]. J. Chromatogr. A,2007,1147(2):135~143.
    [140] ?zhan G,?zden S,Alpertunga B. Determination of Commonly Used Herbicides in Surface Water Using Solid-Phase Extraction and Dual-Column HPLC-DAD[J]. J. Environ. Sci . Health Part B. 2005,40(6):827~840.
    [141] Lee J M,Chesney D J. Determination of N-methylcarbamate pesticides from spiked matrices using supercritical fluid extraction[J]. Anal. Chim. Acta,1999,389 (1-3):53~57.
    [142] Hylton K,Mitra S. Barrier film protected, and mixed solvent optimized micro-scale membrane extraction of methyl carbamate pesticides[J]. J. Chromatogr. A,2007,1154(1~2):60~65.
    [143] Gou Y N,Eisert R,Pawliszyn J. Automated in-tube solid-phase microextraction high performance liquid chromatography for carbamate pesticide analysis [J]. J. Chromatogr. A,2000,873(1):137~147.
    [144] Sarmah A K,Sabadie A J. Hydrolysis of sulfonylurea herbicidesin soils and aqueous solutions[J]. J. Agri. Food Chem.,2002,50:6253~6265.
    [145] Klaffenbach P, Holland P T. Analysis of sulfonylurea herbicides by gas-liquid chrom atography.1.Formation of thermostable derivatives of chlorsulfuron and metsulfuron- methyl [J]. J. Agri. Food Chem.,1993,41 (3):388~395.
    [146] Zhu Q Z,Degelmann P,Niessner R,et al. Selective trace analysis of sulfonylurea herbicides in water and soil samples based on solid-phase extraction using a molecularly imprinted polymer [J]. Environ. Sci. Technol.,2002,36 (24) :5411~5420.
    [147] Wu Q H,Wang C,Liu Z M,et al. Dispersive solid-phase extraction followed by dispersive liquid–liquid microextraction for the determination of some sulfonylurea herbicides in soil by high-performance liquid chromatography[J]. J. Chromatogr.,A,2009,1216 (29) 5504~5510.
    [148] Perreau F,Bados P,Kerhoas L,et al. Trace analysis of sulfonylurea herbicides and their metabolites in water using a combination of off-line or on-line solid-phase extraction and liquid chromatography-tandem mass spectrometry[J]. Anal. Bioanal. Chem.,2007,388 (5~6):1265~1273.
    [149] Losito I,Amorisco A,Carbonara T,et al. Simultaneous determination of phenyl- and sulfonyl-urea herbicides in river water at sub-parts-per-billion level by on-line preconcentration and liquid chromatography-tandem mass spectrometry[J]. Anal. Chim. Acta ,2006,575 (1): 89~96.
    [150] Dost K,Jones D C,Auerbach R,et al. Determination of pesticides in soil samples by supercritical fluid chromatography-atmospheric pressure chemical ionisation mass spectrometric detection. Analyst,2000,125(10) :1751~1755.
    [151] Brady J F,Turner J,Skinner D H. Application of a triasulfuron enzyme immunoassay to the analysis of incurred residues in soil and water samples[J]. J. Agric. Food Chem.,1995,43 (9) :2542~2547.
    [152]Krynitsky A J. Determination of sulfonylurea herbicides in water by capillary electrophoresis and by liquid chromatography/ mass spectrometry [J]. J AOAC Intern.,1997,80 (2):392~400.
    [153]Krynitsky A J.Determination of sulfonylurea herbicides in grains by capillary electrophoresis [J]. J AOAC Intern.,1995,78 (4):1091~1096.
    [154] Dinelli G,Vicari A,Bonetti A J. Separation of sulfonylurea metabolites in water by capillary electrophoresis [J]. J Chromatogr A,1995,700:195~200.
    [155] Li L Y T,Campbell D A,Bennett P K,et al. Acceptance Criteria for Ultratrace HPLC?Tandem Mass Spectrometry: Quantitative and Qualitative Determination of Sulfonylurea Herbicides in Soil[J]. Anal. Chem.,1996,68 (19):3397~3404.
    [156] Ye G B,Zhang W,Cui X,et al. Determination of Ten Sulfonylurea Herbicides in Soil Samples by Liquid Chromatography with Electrospray Ionization Mass Spectrometric Detection[J]. Chin. J. Anal. Chem.,2006, 34 (9) 1207~1212.
    [157] Font N,Hernández F,Hogendoorn E A,et al. Microwave-assisted solvent extraction and reversed-phase liquid chromatography-UV detection for screening soils for sulfonylurea herbicides[J]. J. Chromatogr. A,1998, 798 (8) :179~186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700