Ta_2O_5基三维光子晶体带隙性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体是在光学尺度上具有周期性介电结构的人工设计和制造的晶体。自从Yablonovitch和John分别提出光子晶体概念以来,在实验与理论研究上受到了广泛关注并得到了飞速的发展。光子晶体因为“光子带隙”的存在而具有许多崭新特性,类似于半导体材料中电子在周期性势场作用下形成能带结构,在光子晶体中光子由于受到周期性介电结构的调制,于是出现了光子带隙,一些特定频率范围的光不能在光子晶体中传播。由于光子存在许多电子没有的优势:如速度快,没有相互作用等,我们可以通过对光子晶体带隙结构的设计来实现对光子的控制,因此光子晶体材料有望实现光子领域的一次变革。
     工作在可见及近红外光波段的光子晶体是近年来人们研究的热点,由于在该波段范围内可选材料少、所得带隙窄,至今研究进展都很缓慢。研究发现:增大介质材料的介电常数是提高光子晶体光学性能的有效手段之一;将光子晶体的常规结构改进为由不同材料构成的异质结构也可有效改善其光学特性。
     本文从材料选择和结构优化两个方面对三维光子晶体进行了研究。采用密度泛函理论计算了氮掺杂五氧化二钽的光学性质,并将其运用到了三维光子晶体的研究之中。最后采用传输矩阵方法和平面波展开法分别研究了氮掺杂Ta_2O_5金刚石结构三维光子晶体以及由Ta_2O_5/MgF_2组成的异质结构三维光子晶体的带隙特性。
     研究结果表明:氮掺杂明显提高了Ta_2O_5的折射率,当氮掺杂量为7.14%即Ta_2O_(4.5)N_(0.5)结构的折射率最高,光学性质最佳。金刚石结构Ta_2O_(4.5)N_(0.5)三维光子晶体具有完全光子带隙,宽度Δω=0.05(a/λ, a为晶格常数),为实验制备具有高反射性能的三维光子晶体提供了理论依据,也为新型光学器件的开发奠定了理论基础。Ta_2O_5/MgF_2异质结构三维光子晶体具有“带隙叠加”的特性,显著增大了带隙宽度,调节其晶格常数可出现几乎涵盖整个红光波段的光子带隙;同时在TM模式下在820~1020nm范围内具有一不受入射光角度影响的全方位光子带隙,该结构有望被用于制备偏振器件;
Photonic crystal, are artificially arranged periodic electromagnetic structures in optical wavelength scale. Since the pioneering work of Yablonovitch and John there has been an enormous amount of interest in the fabrication and theoretical research of the so-called PC, has obtained the rapid development. This kind of system can be used to control light propagation in a way analogous to what semiconductors band structure do with electrons, photonic band gaps inhibit the existence of light in certain frequency ranges. Photonic have the advantage of fast and no interaction over electron, we can control light by designing photonic band gaps structure, so PC hopeful to realize revolution in photonic field.
     PC of the near infrared and visible regions is the focus of research in recent years, but research progress was slow because of a limited number of optional dielectric materials and a narrow band gaps. Usually, PCs properties may be modified via increasing dielectric constant of the dielectric materials; Subsequent to growth, research shows that the heterostructure PCs which was formed with various materials can improve optical properties.
     In this paper, we studied the material selection and structural optimization for three-dimensional photonic crystal. We calculated the optical properties of nitrogen doped Ta_2O_5 by density functional theory and applied it to the study of three-dimensional photonic crystal. Finally, we studied the diamond structure with nitrogen doped Ta_2O_5 and Ta_2O_5/MgF_2 heterostructure three-dimensional photonic crystal by calculation of the transfer matrix method(TMM) and plane wave expansion method(PWEM).
     It is shown that the refractive index of Ta_2O_5 could be remarkably increased by nitrogen doping, when the doping content was 7.14%, molecular formula is Ta_2O_(4.5)N_(0.5) had the best optical properties. The three-dimensional photonic crystal with diamond structure of Ta_2O_(4.5)N_(0.5) has an omnidirectional band gap withΔω=0.05 (a/λ, a is the lattice constant), this Provide theoretical support for the preparation of three-dimensional photonic crystal which have high reflectivity and application of novel optoelectronic devices. The three-dimensional photonic crystal with the heterostructure of Ta_2O_5/MgF_2 had characteristics of band gaps stacking, and remarkably increased the breadth of band gaps, adjusted the lattice constant could get better band gaps which can almost cover the whole red spectral band. At the same time, the three-dimensional photonic crystal with the heterostructure of Ta_2O_5/MgF_2 had omnidirectional band gaps without influence of incident angles around 820~1020 nm of near infrared region with TM polarization. The structure should enable new applications for polarizing devices.
引文
[1] J. D. Joannopoulos, P. R. Villeneuve, S. Fan. Photonic crystals: putting a new twist on light [J]. Nature, 1997, 386: 143-149.
    [2]王东栋.光子晶体理论、制备及其光学特性研究[D].北京:北京交通大学, 2008.
    [3] J. D. Joannopoulos, R.D. Meade, and J. N. Winn, et al. Photonic Crystals: Molding the flow of light [M]. Princeton: Princeton University Press, 1995.
    [4] C. M. Soukoulis. Photonic Band Gap Materials [M]. Dordrecht: Kluwer, 1996.
    [5] E.Yablonovitch. Inhibited spontaneous emission in solid-state physics and electronics [J]. Phys. Rev. Lett., 1987, 58(20): 2059-2062.
    [6] S. John. Strong localization of photons in certain disordered dielectric superlattices [J]. Phys. Rev. Lett., 1987, 58(23): 2486-2489.
    [7] Ho. K. M, Chan. C. T, Soukoulis. C. M. Existence of s photonic gap in periodic dielectric structures. Phys. Rev. Lett., 1990, 65(25): 3152-3155.
    [8] Yablonovitch. E, Gmitter. T. J, Leung. K. M. Photonic Band Structure: The Face-Centered-Cubic Case Employing Nonspherical Atoms [J]. Phys. Rev. Lett,1991, 67(17): 2295-2298.
    [9]何晓东.光子晶体及其应用的研究[D].长春:中国科学院长春光学精密机械与物理研究所, 2002.
    [10] Rich C Schroden, Nagalingnam Balakrishnan; Inverse Opal Photonic Crystals-A Laboratory Guide[M]; Minnesota: A University of Minnesota Materials Research Science and Engineering Center Publication,2001: 15.
    [11] Biro L P, et al. Role of photonic-crystal-type structures in the thermal regulation of a Iycaenid butterfly sister species pair[J]. Phys. Rev. E., 2003, 67: 021907-021914.
    [12] Ha. Y. K, Yang. Y. C, Kim. J. E, et al. Tunable omnidirectional reflection bands and defect mode of a one-dimensional photonic band gap structure with liquid crystals [J]. Appl. Phys. Lett., 2001, 79(1): 15-17.
    [13] M. S. Kushwaha, B. D. Rouhani. Band-gap engineering in two-dimensional periodic photonic crystals [J]. Appl. Phys., 2000, 88(5): 2877-2884.
    [14] Ha. Y. K, Kim. J. E, Park. H. Y. Tunable three-dimensional photonic crystals using semiconductors with varying free-carrier densities [J]. Phys. Rev. B., 2002, 66(7): 075109-075113.
    [15] Ozbay E, Michel E, Tuttle G, et al. Appl. Lett.,1994, 64: 2059.
    [16]韩喻,谢凯.三维光子晶体及其制备研究发展[J].材料导报, 2007, 5(21): 4-9.
    [17] Ho. K. M,Chan. C. T and Soukoulis. C. M. Existence of a Photonic Gap in Periodic Dielectric Structures [J]. Phys. Rev. Lett., 1990, 65(25): 3152-3155.
    [18] Fink. Y, J. N. Winn, J. D. Joannopoulos, et al. A dielectric omnidirectional reflector [J]. Science, 1998, 282(5394): 1679-1682.
    [19] Yao Peijun, Chen Xiyao, Chen Bo, et al. Optical reflector and high Q filter based on two-dimensional photonic-crystal waveguide [J]. Optics Communications, 2004, 236(1-3): 101-107.
    [20] Y. Akahane, T. Asano, B.S. Song, et al. Investigation of high-Q channel drop filters using donortype defects in two-dimensional photonic crystal slabs [J]. Appl. Phys. Lett., 2003, 83(8): 1512-1514.
    [21]张路.可见光波段—维光子晶体的缺陷模研究[D].太原:太原理工大学, 2009.
    [22] Leung. K. M, Liu. Y. F. Full vector wave calculation of photonic band structures in FCC dielectric media [J]. Phys. Rev. Lett., 1990, 65(21): 2646-2649.
    [23]庄飞,何赛灵,何江平,等.大带隙的二维各向异性椭圆介质柱光子晶体[J].物理学报, 2002, 51(2): 355-361.
    [24] zhang XiangDong, Zhang Zhaoqing. Creating a gap without symmetry breaking in two-dimensional photonic crystals [J]. Phys. Rev. B., 2000, 61(15): 9847-9850.
    [25]茹宗玲,向安,高建平.光子晶体结构、制备技术和应用进展[J].电子元件与材料, 2002, 21(9): 17-20.
    [26] E. R. Brown, C. D. Parker, and E. Yabnolovitch. Radiation properties of a planar anenna on a photonic-crystal substrate[J]. Opt. Soc. Am. B, 1993, 10(2): 404-407.
    [27] Mekis. A, Chen. J. C, Kurland. I, et al. High transmission through sharp bends in photonic crystal waveguides [J]. Phys. Rev. Lett., 1996, 77(18): 3787-3790.
    [28] Lei Xinya, Li Hua, Ding feng, et al. Novel application of a perturbed photonic crystal: High-quality filter[J]. Appl. Phys. Lett., 1997, 71(20): 2889-2891.
    [29] J. S. Foresi, P. R. Villeneuve, J. Ferrera, et al. Photonic-bandgap microcavities in optical waveguides [J]. Nature, 1997, 390(6656): 143-145.
    [30] J. C. Knight, J. Broeng, T. A. Birks, et al. Photonic band gap guidance in optical fibers [J]. Science, 1998, 282: 1476.
    [31] H Kosaka, T Kawashima. Superprism phenomena in photonic crystals [J]. Phys. Rev. B, 1998, 58: R10096-R10099.
    [32] J. Trull, J. Martorell, and R. Vilaseca. Angular dependence of phase-matched second-harmonic generation in a photonic crystal [J]. Opt. Soc. Am. B, 1998, 15(10): 2581-2585.
    [33] Kanamori Y, InoueK, HorieK and HaneK. Photonic crystal switch by inserting nano-crystal defects using MEMS actuator [J]. Optical MEMS, 2003, 18: 107-108.
    [34]周利斌.一维和二维光子晶体的特性研究[D].西安:西北大学,2008.
    [35] Krauss. T. F, De La Rue R. M. Photonic crystals in the optical regime-past, present and future [J]. Progress in Quantum Electronics, 1999, 23(2): 51-96.
    [36] Michael F. Weber, Carl A, Stover, et al, Giant Birefringent Optics in Multilayer Polymer Mirrors [J]. Science, 2000, 287: 2451-2456.
    [37] A. Birner, R. B. Wehrspohn, U. Gosele, et al. Silicon-Based Photonic Crystals [J]. Adv. Mater., 2001, 13(6): 377-388.
    [38] E. Ozbay. Layer-by-layer photonic crystals from microwave to far-infrared frequencies [J]. Opt. Soc. Am. B., 1996, 13(9): 1945-1955.
    [39] Yablonovitch E, Gmitter T J, et al. Photonic band structure: The face-centered-cubic ease employing nonspherical atoms [J]. Phys. Rev. Lett., 1991, 67(17): 2295-2298.
    [40] M. Deubel, G. von Freymann, et al. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications [J]. Nature Mater., 2004, 3(7): 444-447.
    [41] E. zbay, E. Michel, G. Tuttl, et al. Micromachined millimeter-wave Photonic bnad-gap crystals [J]. Appl. Phys. Lett., 1994, 64: 2059-2061.
    [42] E. zbay, B. Temelkuran, M. sigalas, et al. Defect structures in metallic Photonic crystals [J]. Appl. Phys. Lett., 1996, 64: 3797-3799.
    [43] Anvar A. Zakhidov, et al. Carbon Structures with Three-Dimensional Periodicity at Optical Wavelengths [J]. Science, 1998, 282: 897-901.
    [44] Qingfeng Yan, X.S. Zhao, Zuocheng Zhou. Fabrication of colloidal crystal heterostructures using a horizontal deposition method[J]. Journal of Crystal Growth, 2006, 288: 205-208.
    [45] Romanov S G, Sotomayor Torres C M, Ye J, et al. Light propagation in triple-film hetero-opals. Progress in Solid State Chem[J]. 2005, 33(2-4): 279-286.
    [46] Deubel M, Wegener M, Linden S, et al. 3D-2D-3D photonic crystal heterostructures fabricated by direct laser writing[J]. Optics Letters, 2006, 31(6): 805-807.
    [47] Yan Qingfeng, Zhou Zuocheng, Zhao X S. Introduction of three-dimensional extrinsic defects into colloidal photonic crystals[J]. Chem Mater, 2005, 17(12): 3069-3071.
    [48] D. M. Teter and R. J. Hemley. Low-Compressibility Carbon Nitrides[J]. Science, 1996, 271(5245): 53-55.
    [49] Irie, H.; Watanabe, Y.; Hashimoto, K. Carbon-doped Anatase TiO2 Powders as a Visible-light Sensitive Photocatalyst[J]. Chem. Lett, 2003, 32(8): 772-773.
    [50] M. Kerlau et al. Synthesis of crystallized TaON and Ta3N5 by nitridation of Ta2O5 thin films grown by pulsed laser deposition. Solid State Sciences, 2004, 6(1): 101–107.
    [51] Lam Research Corporation. ULSI MOS with high dielectric constant gate insulator: US, US2003000622484. 2004-05-06.
    [52] M. Hara, et al. Catalysis Today 78 (2003) 555-560.
    [53]王义全,李志远,张道中,等.中国材料工程大典13(下) [M].北京:化学工业出版社, 2006: 612-635.
    [54]葛祥友.光子晶体的能带结构研究及大带隙设计[D].济南:山东大学, 2006.
    [55] J. B. Pendry. Photonic band structures [J]. J of Mod. Opt., 1994, 41(2): 209-229.
    [56] J. B. Pendry, A. Mackinnon. Calculation of photonic dispersion relations [J]. Phys. Rev. Lett., 1992, 69(19): 2772-2775.
    [57] P. M. Bell, J. B. Pendry and A. J. Ward. A program for calculating photonic band structures and transmission coefficients of complex structures [J]. Computer. Phys. Comm., 1995, 85: 306-322.
    [58] Z. Zhang, S. Satpathy. Electro-magnetic wave propagation in periodic structures: Bloch wave solution of maxwell’s equations [J]. Phys. Rev. Lett., 1990, 65(21): 2650-2653.
    [59] K. M. Ho, C. T. Chan, C. M. Soukoulis. Existence of a photonic gap inperiodic dielectric structures [J]. Phys. Rev. Lett., 1990, 65(25): 3152-3155.
    [60] W. H. Butler. One-dimensional model for transition metals and their alloys [J]. Phys. Rev. B, 1976, 14(2): 468-478.
    [61] K. M. Leung and Y. Qiu. Multiple-scattering calculation of the two-dimensional photonic band structure [J]. Phys. Rev. B, 1993, 48(11): 7767-7771.
    [62] Z. Y. Li, B. Y. Gu, G. Z. Yang. Large Absolute Band Gap in 2D Anisotropic Photonic Crystals [J]. Phys. Rev. Lett., 1998, 81: 2574-2577.
    [63] K. Sakoda. Transmittance and Bragg reflectivity of two-dimensional photonic lattices [J]. Phys. Rev. B., 1995, 52: 8992-9002.
    [64] B. Gralak, S. Enoch, G. Tayeb. Anomalous refractive properties of photonic crystals [J]. J. opt. Soc. Am. A, 2000, 17: 1012-1020.
    [65] N. A. Nicorovici, R. C. McPhedran, L. C. Botten. Photonic band gaps for arrays of perfectly conducting cylinders [J]. Phys. Rev. E., 1995, 52(1): 1135-1145.
    [66] C. T. Chan, Q. L. Yu, et al. Order-N spectral method for electromagnetic waves [J]. Phys. Rev. B, 1995, 51(23): 16635-16642.
    [67] A. J. Ward, J. B. Pendry. Calculating photonic Green's functions using a nonorthogonal finite-difference time-domain method [J]. Phys. Rev. B, 1998, 58(11): 7252-7259.
    [68] Chan C T, Yu Q L, Ho K M. Order-N spectral method for electromagnetic waves [J]. Phys. Rev. B, 1995, 51: 16635-16642.
    [69] Michael Bartsch, Micha Dehler, Martin Dohlus, et al. Solution of Maxwell's equations [J]. Computer Physics Communications, 1992, 73(1-3): 22-39.
    [70] K. Ohtaka, Y. Tanabe. Photonic Band Using Vector Spherical Waves. I. Various Properties of Bloch Electric Fields and Heavy Photons [J]. J. Phys. Soc. Jpn. 1996, 65: 2265-2275.
    [71] P. P. Silvester, R. L. Ferrari. Finite elements for electrical engineers, 3rd ed [M]. Cambridge: Cambridge University Press, 1996.
    [72] K. M. Leung. Defect modes in photonic band structures: a Green’S function approach using vector Wannier functions [J]. J. Opt. Soc. Am. B., 1993, 10: 303-306.
    [73] A. R. McGurn. Green's-function theory for row and periodic defect arrays in photonic band structures [J]. Phys. Rev. B, 1996, 53: 7059-7064.
    [74] R. Sainidou, N. Stefanou, A. Modinos. Green's function formalism for photonic crystals. Phys. Rev. B., 2004, 69(6): 064301-064317.
    [75]闫凌云.紫外波段—维金属插层光子晶体结构设计[D].太原:太原理工大学, 2008.
    [76]王东栋.光子晶体理论、制备及其光学特性研究[D].北京:北京交通大学, 2008.
    [77]王辉,李永平.用特征矩阵法计算光子晶体的带隙结构物理学报[J]. 2001, 50(11): 2172-2178.
    [78] J. B. Pendry, et al. photonic band gaps and localization [M]. New York: Plenum Press, 1993.
    [79] Shen L F, He S L, Wu L. The application of effective-medium theory in the plane-wave expansion method for analyzing photonic crystals [J]. Acta. Phy. Sin., 2002, 51: 1133-1138.
    [80] F. Piret, et al. Chemical Physics Letters. 453 (2008) 87-91.
    [81]王灿. Nd及Al对Mg基合金电子特性、力学性能影响的理论分析[D].太原:太原理工大学, 2009.
    [82] Aleshina, L. A. Logrwva, S. V. Rietveld Analysis of X-ray Diffraction Pattern from beta-Ta2O5 Oxide [J]. Crystallography Reports. 2002, 47(3): 415-419.
    [83] Zhou Jicheng, Luo Ditian, Li Youzhen et al. Effect of sputtering pressure and rapid thermal annealing on optical properties of Ta2O5 thin films [J]. Trans. Nonferrous Met. Soc. China, 2009, 19(2): 359-363.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700