苜蓿HD-Zip转录因子基因Mfhb-1的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题所研究的Mfhb-1基因是在苜蓿体细胞胚胎发生早期经扣除杂交得到的,前期研究表明该基因属于同源异型域-亮氨酸拉链蛋白(homeodomain-leucine zipper protein, HD-Zip)家族I类转录因子基因。与其相似的HD-Zip基因已在多种物种中发现并与体细胞胚胎发生有关。为了研究Mfhb-1转录因子的生物学功能,在前期工作中,以苜蓿品系47/1-5为起始材料,应用正义、反义转化技术得到了转化植株。它们分别为:D3,携带Mfhb-1基因编码区反向序列的反义转化植株;F4,携带Mfhb- 1基因编码区序列的正义转化植株;以及携带Mfhb-1基因全长序列的正义转化植株C5。
     本文对上述3种转化材料D3、F4、C5和未转化的原始材料47/1-5进行了体细胞胚胎发生诱导,并对其体细胞胚胎发生过程进行了观察;利用HPLC技术和ICP-AES技术对苜蓿体细胞胚胎发生过程中的8种内源激素和10种金属元素的含量进行了测定;为了探索Mfhb-1基因在苜蓿以外的其他模式植物中的表达方式,对Mfhb-1基因转化拟南芥进行了初步研究;并对Mfhb-1基因进行了生物信息学分析。其主要研究结果及结论如下:
     (1)在苜蓿体细胞胚胎诱导发育早期,F4、47/1-5、D3和C5表面的突起结构形成时期分别为诱导培养的第5 d、10 d、15 d、15 d。在发育培养结束后(发育培养30 d) 4种植物材料所产生的体细胞胚胎数量由低到高分别为:D3、C5、47/1-5、F4。
     (2)在体细胞胚胎发生诱导培养的第5 d时4种材料中F4的IAA含量最低;在诱导培养的第18 d时4种材料体内IAA含量由低到高分别为D3、C5、47/1-5、F4。可以推测出Mfhb-1基因的过量表达在苜蓿体细胞胚胎发生初期可能抑制了IAA的合成,而随着培养时间的延长,培养物的生长,Mfhb-1基因表达情况又与IAA含量成反比关系,由此可推测出Mfhb-1基因的可能参与了IAA合成的反馈调节。
     (3)在诱导培养的第5 d时4种材料的GA3含量由低到高分别为F4、C5、D3、47/1-5,并在随后的整个培养过程保持在较低水平(1.92μg/g ~ 2.25μg/g)。可以说明Mfhb-1基因的过量表达可能在苜蓿体细胞胚胎发生过程中抑制了GA3的合成。
     (4)在诱导培养的第5 d时,4种材料的ZT含量由低到高分别为C5、F4、47/1-5、D3;在诱导培养的第18 d时4种材料的ZT含量由低到高分别为F4、C5、47/1-5、D3。可以推测Mfhb-1基因的表达在苜蓿体细胞胚胎发生初期抑制了ZT的合成。
     (5)在诱导培养的第10 d时,4种植物材料的ABA含量由低到高分别为C5、D3、47/1-5、F4,在诱导培养结束(18 d)时,4种植物材料的ABA含量由低到高分别为47/1-5、F4、C5、D3,结合体细胞胚胎发生情况可以说明Mfhb-1基因的表达在苜蓿体细胞胚胎发生初期可能促进了ABA的合成。
     (6)在诱导培养的第5 d和第18 d,4种材料中Ca元素的含量由低到高均表现为F4、47/1-5、C5、D3,这可以说明Ca元素对胚性细胞的形成可能有一定的促进作用,也可推测Mfhb-1基因的表达很可能促进植物材料对Ca元素的吸收。
     (7)在诱导培养的后期除D3外其余3种材料的Na元素含量均表现出下降的趋势,可以推测出Mfhb-1基因的表达可能在苜蓿体细胞胚胎发生诱导的初期促进了植物材料对Na元素的吸收。
     (8)Mg元素含量在苜蓿体细胞胚胎诱导培养时期主要表现为上升的过程,D3的峰出现在第10 d,C5和F4的峰出现在第15 d,47/1-5出现最晚,在诱导培养的第18 d,可以推测Mfhb-1基因的表达在体细胞胚胎诱导初期可能抑制了Mg元素的吸收。
     (9)4种材料在诱导培养期间的Zn元素含量峰值由低到高分别为F4、47/1-5、C5、D3,说明Mfhb-1基因的表达在苜蓿体细胞胚胎诱导初期可能抑制了植物材料对Zn元素的吸收。
     (10)生物信息学分析表明Mfhb-1基因编码的蛋白属于不稳定亲水性蛋白,无跨膜区,主要分布在细胞核和细胞质中,还有少量在线粒体上,与苜蓿体细胞胚胎发生过程中首先观察到的线粒体增殖现象相对应,说明Mfhb-1基因可能是通过促进苜蓿胚性细胞内线粒体的增殖来促进苜蓿体细胞胚胎发育进程的;与百脉根(Lotus japonicus)的HDZ-M48基因同源性达(90.82%),在系统发育上亲缘关系较为接近。
     以上结果表明,Mfhb-1转录因子基因的表达对苜蓿体细胞胚胎发生过程中的内源激素的合成和金属元素的吸收产生影响。可以推测Mfhb-1基因的生物学功能的发挥可能受到Ca元素的调节;Mfhb-1基因可能通过调节苜蓿对Na元素的吸收来抑制IAA、GA_3的合成来达到促进苜蓿体细胞胚胎的发生;Mg元素和ZT的含量与Mfhb-1基因的表达量相反,说明Mg和ZT可能对Mfhb-1蛋白生物功能的发挥有负反馈调节的作用。
Previous research have indicated that the gene named Mfhb-1 in this study which was isolated during the induction of the early stages of somatic embryogenesis in alfalfa by subtractive cDNA cloning technology belongs to a kind of HD-zip I transcription factor gene. The similar genes have been found in other systems and associated to somatic embryogenesis. Sense and antisense technology were used to investigate the biological function of the Mfhb-1 during somatic embryogenesis in alfalfa. The transformed plants derived from 47/1-5 were generated and they are F4 (containing Mfhb-1 coding sequence), D3 (containing Mfhb-1 coding sequence in antisense orientation), C5 (containing full length Mfhb-1 sequence, including CDS and uORF).
     Somatic embryogenesis was inducted and record in 4 kinds of alfalfa in study. 8 kinds of hormones and 10 kinds of metal elements were surveyed by HPLC technology and ICP-AES technology; In reasearching for the expressing of Mfhb-1 gene in other model plant, the preliminary research of transforming Arabidopsis thaliana was done; The bioinformatics sciences analysis of Mfhb-1 gene was done. The main results as follows:
     (1) In the early development of somatic embryogenesis of alfalfa (5th day), some protuberant structure appears on the surface of F4; 47/1-5 is 10th day; D3 and C5 is 15th day. At the end of culture, somatic embryos quantity of 4 kinds plant material from low to high is D3、C5、47/1-5、F4.
     (2) In the 5th day of inducting culture, the lowest content of IAA of 4 plant material is F4; In the 18th day of inducting culture, the content of IAA from low to high is F4, C5, 47/1-5, D3, That the overexpress of Mfhb-1 gene maybe inhibits the increase of the content of IAA at the early of somatic embryogenesis could be inferred. But along with the culture the content of IAA is contrary with the expression of Mfhb-1 gene, this maybe could explain that Mfhb-1 gene participate in the feedback regulation of the synthesise of the IAA.
     (3) In the 5th day of inducting culture, the content of GA3 from low to high is F4、C5、D3、47/1-5; and keeping at a low level (1.92μg/g ~ 2.25μg/g) in the other period of culture time. This can explain that the overexpress of Mfhb-1 inhibits the increase of the content of GA3 at the early of somatic embryogenesis, high content of GA3 is not good for the increase and grown of the embryogenesis cell.
     (4) In the 5th day of inducting culture, the content of ZT from low to high is C5、F4、47/1-5、D3; In the 18th day, the content of ZT from low to high is F4、C5、47/1-5、D3, This can explain that the overexpress of Mfhb-1 maybe inhibits the increase of the content of ZT at the early of somatic embryogenesis, high content of ZT is good for the increase and grown of the embryogenesis cell possibly.
     (5) In the 10th day of inducting culture, the content of ABA of 4 kinds of plant material from low to high is C5、D3、47/1-5、F4;In the 18th day, the content of ABA from low to high is 47/1-5、F4、C5、D3. This can explain that the overexpress of Mfhb-1 promotes the increase of the content of ABA at the early of somatic embryogenesis.
     (6) In the 5th and 18th day of inducting culture, the content of Ca element of 4 plant material from low to high is F4、47/1-5、C5、D3. This can explain that the overexpress of Mfhb-1 promotes the increase of the content of Ca elements of the plant material.
     (7) In the late of inducting culture the content of Na element of 3 plant material dropping expect D3 material, This can explain that the overexpress of Mfhb-1 gene maybe promotes the increase of the content of Na elements of the material in the somatic embryogenesis of alfalfa.
     (8) In the period of inducting culture, the content of Mg element of 4 plant material appears a rising trend, the peak of 4 kinds of plant material appears in D3, 10th day; F4, 15th day; C5, 15th day; 47/1-5, 18th day. This can explain that the express of Mfhb-1 maybe inhibits the increase of the content of Mg elements of the plant material.
     (9) In the period of inducting culture, the peak of Zn element of 4 kinds of plant material from low to high is F4、47/1-5、C5、D3. This can explain that the express of Mfhb-1 inhibits the increase of the content of Mg and Zn elements of the plant material, high content of Zn maybe is not good for the increase and grown of the embryogenesis cell.
     (10) Bioinformatics analysis shows that the protein coded by Mfhb-1 is an unstable hydrophilic protein without transmembrane area, is mainly distributed in the nuclear and the cytoplasmic, 4.3% lies in the mitochondrial, corresponding to the increase of mitochondrial in somatic embryogenesis of alfalfa, and has a close relationship with HDZ-M48 gene of Lotus japonicus.
     Based on the results presented above, it can be demonstrated that the Mfhb-1 affects the content of the hormones and metal elements of embryo: The expression and biological function of Mfhb-1 is regulated by the content of Ca element; Possible Mfhb-1 promotes the somatic embryogenesis of alfalfa by inhibiting the sythesis of IAA and GA_3 though regulating the absorption of Na element; The content of Mg and ZT is contrast with the expression of Mfhb-1, shows that the Mg and ZT may be play a negative feedback regulation in the biological function of Mfhb-1 protein.
引文
[1] Ariel, F.D., Manavella, P.A., Dezar, C.A. et al. The true story of the HD-Zip family[J]. Trends Plant Sci., 2007, 12: 419-426.
    [2] Yan Zhou. The control of embryogenic competence in alfalfa (Medicago Falcata L.)[D]. U K, De Montfort University, 2004.
    [3]王文洁,魏琦超,周岩.苜蓿转录因子基因Mfhb-1的生物学功能初探[J].河南农业科学, 2008, 11: 50-54.
    [4]吴雅洁.棉花PIP基因和HB基因的克隆、鉴定、表达分析及转基因研究[D].湖北武汉,华中农业大学硕士论文, 2008.
    [5] Elhiti M., Stasolla C. Structure and function of homodomain-leucine zipper (HD-Zip) proteins [J]. Plant Signal Behav, 2009, 2: 86-88.
    [6] Henriksson E., Olsson A. S. B., Johannesson H., et al. Homeodamin leucine zipper class I genes in Arabidopsis. Expression patterns and phylogentic relationships[J]. Plant Physiol, 2005, 139: 509-518.
    [7] Keiko S.,Tomoaki N.,Naomi S., et al. Involvement of auxin and a homeodomain-leucine zipper I gene in rhizoid development of the moss Physcomitrella patens[J]. Development, 2003, 30: 4835-4846.
    [8] Agalou A., Purwantomo S., Overn?s E., et al. A genome-wide survey of HD-Zip genes in rice and analysis of drought-responsive family members[J]. Plant Mol Biol, 2008, 66(1-2): 87-103.
    [9] Manavella P. A., Arce A. L., Dezar C. A., et al. Cross-talk between ethylene and drought signaling pathways is mediated by the sunflower Hahb-4 transcription factor[J]. Plant J, 2006, 48(1): 125-137.
    [10]王文杰.苜蓿HD-Zip转录因子Mfhb-1基因的表达及生物学功能研究[D].河南新乡,河南科技学院硕士论文, 2008.
    [11] Kim Y. K., Son O., Kim M. R., et al. ATHB23, an Arabidopsis class I homeodomain-leucine zipper gene, is expressed in the adaxial region of young leaves[J]. Plant Cell Rep, 2007, 26(8): 1179-1185.
    [12] Ciarbelli A. R., Ciolfi A., Salvucci S., et al. The Arabidopsis homeodomain-leucine zipper II gene family: diversity and redundancy[J]. Plant Mol Biol, 2008, 68(4-5): 465-478.
    [13] Dezar C. A., Gago G. M., González D. H., et al. Hahb-4, a sunflower homeobox-leucine zipper gene, is a developmental regulator and confers drought tolerance to Arabidopsis thaliana plants[J]. Transgenic Research, 2005, 14: 429-440.
    [14] Rueda E. C., Dezar C. A., Gonzalez D. H., et al. Hahb-10, a sunflower homeodoamin-leucine zipper gene, is regulated by light quality and quantity, and promotes early flowering when expressed in Arabidopsis[J]. Plant Cell Physiol, 2005, 46: 1954-1963.
    [15] Byrne M. E. Shoot meristem function and leaf polarity: the role of class III HD-ZIP genes[J]. PLoS Genet. 2006, 2(6): 0785-0790.
    [16] Emery J. F., Floyd S. K., Alvarez J., et al. Radial patterning of Arabidopsis shoots by class III HD-Zip and KANADI genes[J]. Curr Biol, 2003, 13: 1768-1774.
    [17] Ohashi-Ito K., Kubo M., Demura T., et al. Class III homeodomain leucine-zipper proteins regulate xylem cell differentiation[J]. Plant Cell Physiol, 2005, 46(10): 1646-1656.
    [18] Ochando I., González-Reig S., Ripoll J. J., et al. Alteration of the shoot radial pattern in Arabidopsis thaliana by a gain-of-function allele of the class III HD-Zip gene INCURVATA4[J]. Int J Dev Biol, 2008, 52(7): 953-961.
    [19] Sahu B. B., Shaw B. P. Isolation, identification and expression analysis of salt-induced genes in Suaeda maritima, a natural halophyte, using PCR-based suppression subtractive hybridization[J]. BMC Plant Biol. 2009, 5(9): 69-94.
    [20] Vernoud V., Laigle G., Rozier F., et al. The HD-ZIP IV transcription factor OCL4 is necessary for trichome patterning and anther development in maize[J]. Plant J, 2009, 59(6): 883-894.
    [21] Li Q. J., Xu B., Chen X. Y. et al. The effects of increased expression of an Arabidopsis HD-ZIP gene on leaf morphogenesis and anther dehiscence[J]. Plant Sci, 2007, 173: 567-576.
    [22] Wijeratne A. J., Zhang W., Sun Y., et al. Differential gene expression in Arabidopsis wild-type and mutant anthers: insights into anther cell differentiation and regulatory networks[J]. Plant J. 2007, 52: 14-29.
    [23] Tahir M., Belmonte M. F., Elhiti M., et al. Identification and characterization of PgHZ1, a novel homeodomain leucine-zipper gene isolated from white spruce (Picea glauca) tissue[J]. Plant Physiol Biochem, 2008, 46(12): 1031-1039.
    [24] Deng X., Phillips J., Br?utigam A., et al. A homeodomain leucine zipper gene from Craterostigma plantagineum regulates abscisic acid responsive gene expression and physiological responses[J]. Plant Mol Biol, 2006, 61(3): 469-489
    [25] Dai M., Hu Y., Ma Q., et al. Functional analysis of rice HOMEOBOX4 (Oshox4) gene reveals a negative function in gibberellin responses[J]. Plant Mol Biol, 2008, 66(3): 289-301.
    [26] Manavella P. A., Dezar C. A., Ariel F. D., et al. The sunflower HD-Zip transcription factor HAHB4 is up-regulated in darkness, reducing the transcription of photosynthesis-related genes[J]. J Exp Bot, 2008, 59(11): 3143-3155.
    [27] Yu S. W., Zhang L. D., Zuo K. J., et al. Brassica napus L. Homeodomain Leucine-Zipper Gene BnHB6 Responds to Abiotic and Biotic Stresses[J]. Journal of Integrative Plant Biology, 2005, 47 (10): 1236-1248.
    [28] Qiu C., Zuo K., Qin J., et al. Isolation and characterization of a class III homeodomain-leucine zipper-like gene from Gossypium barbadense[J]. DNA Seq, 2006, 17(5): 334-341.
    [29] Itoh J., Hibara K., Sato Y., et al. Developmental role and auxin responsiveness of Class III homeodomain leucine zipper gene family members in rice[J]. Plant Physiol, 2008, 147(4): 1960-1975.
    [30] Wang Y. J., Li Y. D., Luo G. Z., et al. Cloning and characterization of an HD-Zip I gene GmHZ1 from soybean[J]. Planta, 2008, 8, 221(6): 831-843.
    [31] Kim Y. S., Kim S. G., Lee M. HD-ZIP III activity is modulated by competitive inhibitors via a feedback loop in Arabidopsis shoot apical meristem development[J]. Plant Cell, 2008, 20(4): 920-933.
    [32] Kawahara R, Komamine A, Fukuda H. Isolation and characterization of homeobox-containing genesof carrot[J]. Plant Molceular Biology, 1995, 27: 155-164
    [33]韦带莲.香蕉重要基因的克隆与功能的初步分析[D].海南儋州,华南热带农业大学硕士论文, 2006, 6
    [34] Schwechheimer M., Zourelidou M., Bevan M. V. Plant transcription factor a studies[J]. Annu Rev Plant Physiol Plant Mol Biol, 1998, 49: 127-150
    [35] Ito M., Araki S., Matsunaga S. G2/M-phase-specific transcription during the plant cell cycle is mediated by c-Myb-like transcription factors[J]. Plant Cell, 2001, 13: 1891-1905
    [36] Yanagisawa S. Improving plant drought, salt and freezing tolerance by gene transfer of a single stress- inducible transcription factor[J]. Nocartis Found Symp, 2001, 236: 176-186
    [37] Uno Y., Futihata T., Abe H. Arabidepsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought an high-salinity condition[J]. Proc Nat Acad Sci USA, 2000, 97: 11632-11637
    [38] Sablowski R. W. M., Meywrowitz E. M. A homolog of NO AFICAL MERISIEM is an immediate target of the floral homeotie gene AFETALAFISTALLATA[J]. Cell, 1998, 92: 93-103
    [39] Yang Y., Li R., Qi M. In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves[J]. Plant, 2000, 22: 543-551
    [40]雷娟利,徐志豪.转座子在功能基因组学中的应用[J].浙江农业学报, 2002, 5: 291-296
    [41] Tang Wei, Wanessa S., Uanet O, et al. Functional genomics: Gene identification via T-DNA mediated gene tzap tagging in plants[J]. Forest Res, 2001, 12(1): 1-8
    [42]张利生,陈大元. RNA干涉及其应用前景[J].遗传, 2003, 25(3): 341-344
    [43] Park J. M., Park C. J., Lee S. B. Overexpression of the tobacco Tsil gene encoding an EREBP/AP2- type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco [J]. Plant Cell, 2001, 13: 1035-1046
    [44] Aoyama T, Chun N H. A gluvovorticooid-mediated transcriptional induction system in transgenic plants[J]. Plant J, 1997, 11: 605-612
    [45] Lloyd A. M., Schena M., Walbot V. Epidermal cell fate determination in Arabidopsis, Patterns defin- ed by a steroid-inducible regulator[J]. Science, 1994, 266: 436-439
    [46] Simon R., Igeno M. I., Coupland G. Activation of floral meristrem identity genes Arabidopsis[J]. Nature, 1996, 384: 32-59
    [47] Gatz C. Chemical control of gene expression[J]. Annu Rev Plant Mol Biol, 1997, 48: 59-108
    [48] Liu L., White M J., MacRae T. H. Transcription factors and their genes in higher plants functional domains, evolution and regulation[J], Eur J Biochem, 1999, 262(2): 217-257
    [49] Picard D., Salser S. J., Yamamoto K. R. A movable and regulable inactivation function within the glucocorticoid receptor[J]. Cell, 1998, 54: 1073-1080
    [50] Schena M., Lloyd A. M., Davis R. W. A steroid-inducible gene expression system for plant cells[J]. Proc Natl Acad Sci USA, 1991, 88: 10421-10425
    [51] Zuo J. R., Niu Q. W., Frugis G., et al. The WUSCHEL gene promotes vegetative-to-embryonictransition in Arabidopsis[J]. Plant J, 2002, 30(3): 349-359
    [52] Clement T., Meyer D., Himber C., et al. Spatial expression of a sunflower SERK gene during induct- ion of somatic embryogenesis and shoot organogenesis[J]. Plant Physiol Biochem, 2004, 42: 35-42
    [53] Hu H., Xiong L., Yang Y. Rice SERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection[J]. Planta, 2005, 222(1): 107-117
    [54]朱长浦,镰田博,原田宏,等.与胡萝卜胚胎发生相关的胚性细胞蛋白63分离及其基因表达研究[J].植物学, 1997, 39: 1091-1098
    [55]林慧馨,张雷,杨志攀,等.胡萝卜DcPAB基因的分离及其结构与功能分析[J].中国生物化学与分子生物学报, 2004, 20(3): 319-324
    [56] Nambara E., Hayama R., Tsuchiya Y., et al. The role of ABI3 and FUS3 loci in Arabidopsis thaliana on phase transition from late embryo development to germination[J]. Dev Biol, 2000, 220: 412-423
    [57] Monke G., Altschmied L., Tewes A., et al. Seed-specific transcription factors ABI3 and FUS3: molecular interaction with DNA[J]. Plant, 2004, 219: 158-160
    [58] Tsuchiya Y., Nambara E., Naito S., et al. The FUS3 transcription factor functions through the epidermal regulator TTG1 during embryogenesis in Arabidopsis[J]. Plant J, 2004, 37: 73-81
    [59] Raz V., Bergervost J. H. W., Koornneef M. Sequential steps for development arrest in Arabidopsis seeds[J]. Development, 2001, 128: 243-252
    [60] Brocard G. I. M., Lynch T. J., Finkelstein R. R. Regulatory networks in seeds integrating develop- menttal, abscisic acid, sugar, and light signaling[J]. Plant Physiol, 2003, 131: 78-92
    [61] Gazzarrini S., Tsuchiya Y., Lumba S., et al. The transcription factor FUSCA3 controls development- al timing in Arabidopsis through the hormones gibberellin and abscisic acid[J]. Dev Cell, 2004, 7: 373-385
    [62] Curaba J., Moritz T., Blervaque R., et al. AtGA3ox2, a key gene responsible for bioactive gibberellin biosynthesis, is regulated during embryogenesis by LEAFY COTYLEDON2 and FUSCA3 in Arabidopsis[J]. Plant Physiol, 2004, 136: 3660-3669
    [63] Gaj M. D., Zhang, S. B., Harada J. J., et al. Leafy cotyledon genes are essential forinduction of somatic embryogenesis of Arabidopsis[J]. Planta, 2005, 222: 977-988.
    [64] Ikeda-Iwai M., Satoh S., Kamada H. Establishment of a reproducible tissue-culture system for the induction of Arabidopsis somatic embryos[J]. Exp Bot, 2002, 53: 1575-1580
    [65] Lotan T., Ohto M., Yee K. M., et al. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce em- bryo development in vegetative cells[J]. Cell, 1998, 93: 1195-1205
    [66] Zhang S., Wong L., Meng L., et al. Similarity of expression patterns of knotted1and ZmLEC1 dur- ing somatic and zygotic embryogenesis in maize (Zea mays L.)[J]. Planta, 2002, 215: 191-194
    [67] Yazawa K., Takahata K., Kamada H. Isolation of the gene that encodes carrot leafy cotyledon and expression analysis during somatic and zygotic embryogenesis [J]. Plant Physiol Biochem, 2003, 42: 215-223
    [68]刘华英,萧浪涛,何长征.植物体细胞胚胎发生与内源激素的关系研究进展[J].湖南农业大学学报, 2002, 28(4): 349-354
    [69]肖关丽,杨清辉.植物组织培养过程中内源激素研究进展[J].云南农业大学学报, 2001,16(2): 135-138
    [70]崔凯荣,邢更生,周功克,等.植物激素对体细胞胚胎发生的诱导与调节[J].遗传, 2000, 22(5): 349-354
    [71]陈以峰,周燮,汤日圣,等.水稻体细胞培养中胚性细胞出现与IAA的关系[J].植物学报, 1998, 40(5): 474-477
    [72]王丽,鲍晓明,黄百渠,等.重要外植体形态学极性决定的体细胞胚胎发生[J].植物学报, 1998, 40(2): 138-143
    [73] Sasakin K., Chimomura K., Kamada H., et al. IAA metabolism in embryogenic carrot cells[J]. Plant Cell Physiol, 1994, 35: 1159-1164
    [74] Dusits D., Bogre L., Gyorgye Y. Molecular and cellular approaches to the plant embryo development from somatic cells in vitro[J]. J Cell Sci, 1991, 99: 473-482.
    [75]王清连,王敏,师海荣.植物激素对棉花体细胞胚胎发生的诱导及调节作用[J].生物技术通讯, 2004, 15(6): 577-579
    [76] Durley R. C., Zaerr J. B., Sung R. M., et al. Changes in endogenous cytokinins and IAA during somatic embryogenesis of carrot cell cultures[ J ]. Plant Physiol, 1984, 75(1): 13-18
    [77] Hanower J., Hanower P. Inhibition etstimulation enculture in vitro embryogenesis desouches tissuede explants foliare de palmier a huile[J]. Rendus academie des Science (Sci desla Vie), 1984, 298(2): 45
    [78]邢登辉,赵云云,黄承芳.皇冠草体细胞胚胎发生及其体胚发生过程中内源激素的变化[J].生物工程学报, 1999, 15(1): 98-101.
    [79] Ernst D., Oesterhelt D., Schaper W. Endogenous cytokinins during embryogenesis in an anise cellcu- lture (Pimninella anisum L.)[J]. Plant, 1984, 161(2): 240
    [80] Wenck A. R., Conge B. V., Trigiano R. N., et al. Inhibition of somatic embryogenesis in orchardgra- ss byendogenous cytokinins[J]. Plant Physiol, 1988, 88(4): 990
    [81]韩碧文,李颖章.植物组织培养中器官建成的生理生化基础[J].植物学通报, 1993, 10(2): 1-6.
    [82]崔凯荣,裴新梧,秦琳,等. ABA对枸杞体细胞胚发生的调节作用[J].实验生物学报, 1998, 31(2):195-199
    [83] Roustan J. P., Latche A., Fallot J. Role of ethylene oninduction and expression of carrot somatic embryogenesis: relationship with polyamine metabolism[J]. Plant Science, 1994, 103(2): 223-229.
    [84]陈洁,王颖,李辉亮,等.植物体细胞胚发生过程中基因表达的研究进展[J].生物技术通讯, 2008, 9(3): 52-56
    [85]张东向,张崇浩,李杰芬.玉米叶片胚性愈伤组织诱导及其与内源IAA和ABA关系的初步研究[J].作物学报, 2000, 26(2): 195-199
    [86] Roustan J. P., Latche A., Fallot J. Inhibition of ethylene production and stimulation of carrot somatic embryogenesis by salicylic acid[J]. Biologia Plantarium, 1990, 32(4): 273
    [87] Auborion E., Carron M. P., Michaux-Gerriere N. Atmospheric gazes and ethylene synthesis in soma- tic embryogenesis of Hevea brasiliensis[J]. Plant Cell and Tissue Culture, 1989, 21: 31
    [88] Galston A. W. Polyamines as modulators of plant development[J]. Bioscience, 1983, 33: 382-388
    [89]李素梅,张自立,姚彦如.植物激素检测技术的研究进展[J].安徽农业大学学报, 2003, 30(2): 227-230
    [90]向景葵,黄哲.黄姜体细胞胚发生过程中内源激素含量变化的研究[J].岳阳职业技术师范学院学报, 2006, 2: 62-65
    [91]王秀红.水稻不同外植体的组织培养能力及其内源激素分析[D].四川雅安,四川农业大学硕士论文, 2006, 6
    [92]冯质雷.玉米未成熟胚胚性愈伤组织诱导率与内源激素的关系[D].四川雅安,四川农业大学硕士论文, 2004, 6
    [93]盛艳萍.大葱再生体系的建立及内源激素变化的研究[D].山东泰安,山东农业大学硕士论文, 2004, 6
    [94]韩瑞宏,张亚光,田华,等.干旱胁迫下紫花苜蓿叶片几种内源激素的变化[J].华北农学报, 2008, 23(3): 81-84
    [95] Pullman. Loblolly pine (Pinus taeda L.): stage-specific elemental analyses of zygotic embryo and female gametophyte tissue[J].Plant Science, 2003, 164: 943-954
    [96] Pullman. Loblolly pine (Pinus taeda L.) somatic embryogenesis:maturation improvements by metal analyses of zygotic and somatic embryos[J]. Plant Science, 2003, 164: 955-969
    [97] Clemens, S. Molecular mechanism of plant metal tolerance and homeostasis[J]. Planta, 2001, 212: 475-486
    [98] Lane, B., Kajioka, R., and Dennedy, T. The wheat germ Ec protein is a Zn2+ containing metallothi- onein[J]. Biochem Cell Biol, 1987, 65: 1001-1005
    [99] Chatthai M., Kaukinen K. H., et al. The isolation of a novel metallothionein-related cDNA expressed in somatic and zygotic embryos of Douglas-firregulation by ABA, osmoticum and metal ions[J]. Plant Mol Biol, 1997, 34: 243-254.
    [100] Reynolds, T. L., and Crawford, R. L. Changes in abundance of an abscisic acid-responsive, early cysteine-labeled metallothionein transcript during pollen embryogenesis in bread wheat (Triticum aestivum)[J]. Plant Mol Biol, 1996, 32: 823-829
    [101]顾垒,毕玉芬.转基因苜蓿研究的现状和前景[J].草原与草坪, 2004, 1: 17-21
    [102]刘进远,吴庆余译.植物分子生物学实验指南[M].北京:科学出社, 2000
    [103]孙之荣译.生物信息学与功能基因组学[M].北京:化学工业出版社, 2006.5
    [104] Yan Zhou, Mark R. Fowler, Jenny Russinova, et al. Molecular Identification of the Regulation of the HD-Zip Gene Expressed During the Induction Stage of Direct Somatic Embryogenesis in Alfalfa. Seventh International Congress of Plant Molecular Biology, Barcelona, Spain, June 2003, P55
    [105]郭敏敏,王清连,胡根海.利用高效液相色谱法分离和测定棉花组织培养过程中4种内源激素[J].生物技术通讯. 2009, 20(2): 213-216
    [106]宋纯鹏,王学路,等译.植物生理学(Plant physiology)[M].第四版,北京:科学出版社, 2009
    [107]魏琦超.蓝猪耳(Torenia fournieri L.)肌动蛋白的克隆及生物信息学分析[D].重庆,西南大学硕士学位论文, 2006, 6
    [108] Arnold K., Bordoli L., Kopp J., et al. The SWISS-MODEL Workspace: A web-based environment for protein structure homology modeling[J]. Bioinformatics, 2006, 22:195-201

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700