热致相分离法制备EVOH微孔膜的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜分离技术过程简单,节能,高效,无二次污染,可在常温下连续操作,因为这些优点,膜技术已经广泛应用在各个领域。在水处理方面,膜分离在海水淡化、污水处理、纯净水的生产方面都起着重要作用。目前,用于水处理的膜材料有聚丙烯、聚砜、聚偏氟乙烯等。这些疏水性材料在实际应用中容易被蛋白质吸附而污染,造成膜孔堵塞,从而使分离效率降低,使用寿命减短。而亲水性的聚合物材料如聚乙烯醇、醋酸纤维素等其机械强度和耐溶剂性能又不尽如人意。
     聚乙烯—乙烯醇(EVOH)是一种半结晶的无规共聚物,该聚合物在所有乙烯组成范围内都能结晶,具有良好的机械强度、耐化学腐蚀性和阻隔性,已经被广泛用于包装材料,如食品、化妆品、化学用品等。由于EVOH具有亲水性的聚乙烯醇链段,该材料的抗污染性要优于聚丙烯、聚偏氟乙烯等。近年来,EVOH作为水处理用膜材料成为一个研究热点。在本文中对热致相分离(TIPS)法制备EVOH微孔膜过程中的物理化学以及膜形态的控制问题进行了研究。
     在热致相分离法中,相图是重要的信息,它反映了体系的相行为,也是控制膜形态的基础。对体系相图进行预测是一项非常有意义的工作。在本文中计算了EVOH在乙烯摩尔含量为38%和44%(EVOH38,EVOH44)时分别与1,4—丁二醇、1,3—丙二醇和丙三醇体系的相图。为了准确的估算出共聚物与稀释剂之间的相互作用参数,引入了聚合物共混中的二元作用模式。该模式认为体系的相容性不仅与分子间的相互作用有关,也与分子内的相互作用有关。从EVOH38、EVOH44与1,4—丁二醇,1,3—丙二醇和丙三醇的预测结果来看,计算的液固、液液分相线与实验所得的数据及文献数值相符较好。为了说明二元作用模式引入的重要性,用传统的溶度参数理论计算共聚物与稀释剂的相互作用参数,并对EVOH38、EVOH44与1,4—丁二醇和丙三醇体系相图进行了计算。比较两种算法的结果发现,引入二元作用模式的结果与实验数据更加吻合。
     相图如此的重要,如果能对体系的相图进行控制也很有意义。在本文中使用与EVOH38相容性良好的1,4—丁二醇和相容性较差的聚乙二醇(PEG)400的混合溶剂为稀释剂,研究了不同的溶剂配比对体系相图的影响。结果发现随着PEG400含量的增加,原来不发生液—液相分离的体系渐渐出现了液液相分离区域,而且PEG400的含量越高,液液相线向高温移动,液液分相区域变宽。同时,在同一制膜工艺下,不同溶剂配比的体系得到了不同形态的膜。这也为膜形态的控制提供了一种新的方法。
     中空纤维由于比平膜具有更大的比表面积而拥有更广泛的用途。以前有人已经对纤维的纺织工艺进行过详细的研究,然而对后处理工艺却涉及较少。在本文中使用丙酮、甲醇和水作为萃取剂处理EVOH微孔中空纤维,研究了不同的萃取剂及不同的干燥工艺对纤维形态及性能的影响。从纤维的干燥体积收缩率可以发现甲醇和水作为萃取剂时,纤维在干燥中体积收缩率较大,接近50%,而使用丙酮时则小得多。通过计算三种萃取剂与EVOH的相互作用参数可以得出,萃取剂与聚合物的相互作用越强,在干燥过程中其体积收缩率越大。为了减小纤维在干燥过程中的尺寸收缩,将中空纤维的两端固定在不锈钢架上进行干燥。结果表明,这种固定干燥法能够有效地降低纤维的体积收缩。通过电镜观察了三种萃取剂处理后纤维的结构形态。从电镜照片可以看到,使用甲醇和水在挥发后造成了中空纤维部分膜孔结构的坍塌。孔结构的坍塌过程是一个需要时间的高分子链蠕动过程,为了减少这一时间将中空纤维处于真空状态下干燥,结果表明,当水作为萃取剂时,真空干燥下纤维体积的收缩率要比自然干燥下的小,而孔结构坍塌的范围也比自然干燥下的小。测量了不同干燥工艺的中空纤维的透气、透水性。从结果可以看出,使用丙酮得到的纤维透气、透水的性能最佳,而用水处理的次之,用甲醇处理得到的是透气性很小且不透水的中空纤维。对比真空干燥和自然干燥的结果可以发现,丙酮和甲醇处理的中空纤维区别不大,而用水处理的纤维,其真空干燥的透气和透水性比自然晾干的要好的多。
     在本文最后一章中,使用热致相分离(TIPS)的方法制备了EVOH/PVP共混膜。从DSC的结果可以看出EVOH与PVP具有良好的相容性,而从红外分析发现,EVOH与PVP具有氢键作用,两者的相容性可能是分子水平的。PVP的用量也对体系的相行为有着影响,随着体系中PVP含量的增加,浊点向高温方向移动,而结晶温度却变化不大。由于热致相分离制膜工艺的特点,PVP分为包埋于聚合物本体和吸附于膜表面两部分。前者由于PVP与EVOH具有特殊相互作用,不容易被水洗掉,而后者由于只是附着于膜表面,很容易被水洗掉,于是可以通过测量共混膜在水中减少的质量来分析PVP的分布情况。研究表明,膜中PVP的含量越高,本体中的PVP所占的比例越小。通过扫描电镜观察了PVP对膜的形态的影响,从电镜照片中可以看出,膜形态均为蜂窝状,而且膜孔结构随着PVP含量的增加而增大。最后用静态水接触角和BSA吸附试验表征了膜的亲水性和抗污染性,结果表明,PVP的加入改善了膜的亲水性和抗污染性,而且PVP的含量越高,材料的亲水性和抗污染性越好。
Membrane separation technology is simple, energy-saving, high-effective, no secondary pollution, operational in room temperature, and has been applied in various fields. In water treatment aspect, membrane separation has been used in salt-water desalination, waster water treatment, and purified water production. In present, the membrane materials used in water treatment are polypropylene (PP), polysulfone (PSF), poly(vinylidene fluoride) (PVF), et.al. Most of these membranes are hydrophobic and thus the separation flux tends to decline during the operations due to solute adsorption and pore blocking. Some hydrophilic materials, such as polyvinyl alcohol (PVA), cellulose acetate (CA), have bad mechanical intensity and solvent resistance.
    Poly (ethylene-co-vinyl alcohol) (EVOH) is a semi-crystalline random copolymer, can crystallize over whole composition range of ethylene. EVOH has very low gas permeability, excellent chemical resistance and mechanical properties and been widely used as packing material, such as food, cosmetic, chemical product. Because EVOH has hydrophilic vinyl alcohol segment, it has superior properties over other hydrophobic polymers for the prevention of membrane fouling. Recently, EVOH membranes have been the subjects of significant research interest for water treatment applications. In this thesis, EVOH microporous membranes have been prepared via thermally induced phase separation (TIPS), and some research have been done about physical chemical topic and membrane morphology control in preparation process.
    In TIPS, the phase diagrams provided the critical information about phase behavior of the system and the base to control membrane morphology. Predication of phase diagram is a kind of interesting work. The binary interaction model was applied to estimate the phase diagrams of copolymer and diluent systems. The S-L and L-L phase separation curves of EVOH/ 1,4-butanediol, EVOH/1,3-propanediol, and EVOH/glycerol have been calculated. The fair agreement between the experimental data and the calculated values indicated the feasibility to predict the phase separation
    behavior of copolymer-diluent systems on the basis of binary interaction model. In order to confirm the importance of incorporating intra-molecular interaction, calculations with and without the consideration of intra-molecular interaction were performed and compared. And it was found that better results were obtained if intra-molecular interaction was introduced.
    Phase diagram is important in TIPS, if phase behavior of the system can be controlled, which would be significative. The mixtures of 1,4-butanediol and poly (ethylene glycol)(PEG400) were used as diluents. The phase diagrams of this system were studied. The morphology of microporous membrane was observed by scanning electron microscope (SEM). It was found that the composition of the binary solvents could influence the temperature of L-L phase separation and the morphology of the membrane.
    A hollow fiber module is more efficient than a flat sheet module because the hollow fiber module has more surface area for separation per unit volume of module than the flat sheet module. For this reason, hollow fibers are more commonly used in industry than flat sheet. EVOH38 hollow fibers were prepared via TIPS process. Water, methanol and acetone were used to extract the diluent in the fibers, respectively. Bigger shrinkage of fibers during extractant evaporation was observed when water or methanol was used. The results of calculation for interactive parameters indicated that the molecules of water and methanol had stronger interaction with EVOH38. Therefore, the affinity of extractant with polymer would be the crucial factor for the shrinkage during extractant evaporation. Besides, the analysis of X-ray diffraction in extraction process indicated that water and methanol could reach the amorphous region of the polymer and destroy the structure of crystal, so that the polymer would be easier to be deformed and shrunk. The smaller pore size and porosity at inner layer of fibers were observed on the SEM images of cross-section of hollow fibers treated with water and methanol. The denser morphology must result from the larger volume shrinkage and the collapse of porous structure caused by the extractants due to the better affinity of the two extractants with the polymer. The measurement results of water and gas permeability are coincident with the SEM images and shrinkage data.
    In the last chapter of this thesis, Poly (ethylene-co-vinyl alcohol) with ethylene content of 44mol% (EVOH44)/PVP (K30) membranes were prepared via thermally induced phase separation (TIPS). Poly (ethylene glycol) with average number weight of 300 (PEG300) was used as diluent. Differential scanning calorimetry (DSC) and
    attenuated total reflectance infrared (ATR-FT-IR) spectra were used to investigate the compatibility of EVOH44 and PVP (K30). From disappearance of the melting peak of EVOH, T_g of PVP in DSC, the shift of PVP carbonyl and C-O bonds of EVOH in ATR, it was indicated that they are compatible. The effects of PVP content on phase diagram, PVP distribution and membrane morphology were studied. It was found that the binodal point shifted to higher temperature and proportion of PVP between polymer matrixes to pore surface decreased with PVP content increasing. It was also found that the pore size of the membranes increased as PVP content increased. The hydrophilicity and protein adsorption properties of EVOH/PVP membranes were also measured; the results indicated that they had better hydrophilicity and protein antifouling property compared with pure EVOH membrane.
引文
[1] 于丁一,陈培祺,呼丙辰.我国膜法海水淡化技术现状与发展前景[J].给水排水,1884,8:15-18
    [2] 高从阶.膜技术与相关海洋产业[J].海洋通报,1997,4:44-51
    [3] 闫道恒,刘洪谦,屈凌波.膜分离技术在饮用纯水中的应用[J].河南 科技,1994,7:18-19
    [4] 闻瑞梅,岩堀博,桂常敦,高岷.反渗透膜在超纯水生产中的应用[J].微电子学,1996,4:271-274
    [5] 郑领英.国外膜技术在食品工业中的应用现状和发展动向[J].水处理技术,1994,5:247-253
    [6] 薛德明.膜分离技术在医药、食品工业中的应用[J].中国海洋药物,1994,1:47-52
    [7] 尹沛松.微孔膜滤器在医药工业中的应用[J].过滤与分离,1998,4:32-34
    [8] 顾瑾.郑成.膜分离在生物工程应用中存在的问题及对策[J].合肥工业大学学报(自然科学版),1998,2:102-108
    [9] 胡云光.膜反应器在石油化工中的应用[J].石油化工,1994,6:400-406
    [10] 孙晓辉,郝建飞,王竞.膜技术在醋酸生产中的应用[J].中国调味品,1995,4:6-7
    [11] 宋锦安.膜分离及应用[J].化学工程师,1995,3:28-29
    [12] 徐又一.聚烯烃中空纤维膜及分离新技术在环保工程中的开发、应用[J].中国环保产业,1996.Z1:38-40
    [13] Koros W. J.,MA Y. H., Terminology for membranes and membrane processes [J]. J. Membr. Sci., 1996,120:149-159
    [14] Bungay P. M., Lonsdale H. K., et al. Synthetic Membranes: Science, Engineering and Applications [M]. Holland: D Reidel Publishing Co. 1998
    [15] Govind R., Zhao R. Proceedings on International Conference of Membrane [M]. New York: Wiley. 1989
    [16] Hwang S. T., Kammermeyer K. Membranes in Separation [M]. New York: Wiley, 1975
    [17] Biesheuvel P.M., Verweij H. Design of ceramic membrane supports: permeability, tensile strength and stress [J]. J. Membr. Sci., 1999,156 (1): 141-152
    [18] Kim J. J., Jang T. S., Kwon Y. D., et al. Structural study of microporous polypropylene hollow fiber membranes make by the melt-spinning and cold-stretching method [J]. J. Membr. Sci., 1994, 93 (3): 209-215
    [19] Apel P. Track etching technique in membrane technology [J]. Radiation Measurements, 2001, 34 (1-6): 559-566
    [20] Kiein L. C., Yu C., Woodman R., et al. Microporous oxides by the sol-gel process-synthesis and applications [J]. Catalysis Today, 1992, 14 (2): 165-173
    [21] Julbe A., Guizard C., Larbot A., et al. The sol-gel approach to prepare candidate microporous inorganic membranes for membrane reactors [J]. J. Membr. Sci., 1993, 77 (2-3): 137-153
    [22] Nagy E., Hadik P. Three-phase mass transfer: Effect of the size distribution [J]. Indus. & Engin. Chem. Research, 2003, 42 (21): 5363-5372
    [23] Strathmann H. Production of microporous media by phase inversion process [M]. New York, ACS Syrup, Ser., 1985:165
    [24] Wijmans J. G., Smolders C. A.. Preparation of asymmetric membranes by the phase inversion process [M]. Hong Kong, The Netherlands, 1986:39
    [25] Zeman L., Fraser T., Formation of air-cast cellulose-acetate membrane.1. Study of macrovoid formation [J]. J. Membr. Sci., 1993, 84 (1): 93-10t
    [26] Zeman L., Fraser T., Formation of air-cast cellulose-acetate membrane.2. Kinetics of demixing and microvoid growth [J]. J J. Membr. Sci., 1994,87 (3): 267-279
    [27] Nechifor G., Popescu G., Asymmetric membranes prepared by immersion-precipitation technique [J]. Revue Roumaine de Chimie, 1990, 35 (7-9): 899-908
    [28] Kang Y. S., Kim H. J., Kim U. Y., Asymmetric membranes formation via immersion-precipitation method [J]. 1. Kinetic effect, J. Membr. Sci., 1991, 60 (2-3): 219-232
    [29] Radovanovic P., Thiel S. W., Hwang S. T., Formation of Asymmetric polysulfone membranes by immersion precipitation.2. The effects of casting solution and gelation bath compositions on membrane-structure and skin formation [J]. J. Membr. Sci., 1992, 65 (3): 231-246
    [30] Smolders C. A., Reuvers A. J., Boom R. M., et al. Microstructures in phase inversion membranes.1. Formation of macrovoids [J]. J. Membr. Sci., 1992, 73 (2-3): 259-275
    [31] Boom R. M., Wienk I. M., Vandenboomgaard T., et al. Microstructures in phase inversion membranes.2. The role of a polymeric additive [J]. J. Membr. Sci., 1992, 73 (2-3): 277-292
    [32] Cheng L. P., Sob Y. S., Dwan A. H., et al. An improved model for mass-transfer during the formation of polymeric membranes by the immersion precipitation process [J]. J. Polym. Sci. Part B Polym. Phys., 1994, 32(8): 1413-1425
    [33] Hiatt W. C., Vitzthum G. H., Wagener K. B., Gerlach K., Josefiak C, Microporous membranes via upper critical temperature phase separation, in: D. R. Lloyd (Ed.), Materials Science of Synthetic Membranes, ACS Symp. Ser. No. 269, American Chemical Society, Washington, DC, 1985, 229
    [34] Kinzer K. E., Oriented microporous films [P]. U.S. 4-867-881, 1989
    [35] Hikmet R.M., Callister S., Keller A., Thermoreversible gelation of atactic polystyrene: phase transformation and morphology [J]. Polymer, 1998, 29: 1378-1388
    [36] Vandeweerdt P., Berghmans H., Y. Tervoort, Temperature-concentration behavior of solutions of polydisperse, atactic poly(methylmethacrylate) and its influence on the formation of amorphous, microporous membranes [J]. Macromolecules, 1991, 24: 3547-3552
    [37] Amauts J., Berghmans H., Koningsveld R., Structure formation in solutions of atactic polystryrene in trans-decalin [J]. Makromol. Chem., 1993, 194:77-85
    [38 Berghmans S., Mewis J., Berghmans H., Meijer H.E.H., Phase behavior and structure formation in solutions of poly (2,6-dimethyl-1,4-phenylene ether) [J]. Polymer, 1995, 36: 3085-3091
    [39] Song S. W., Torkelson J. M., Microstructure formation and coarsening of polystyrene membranes via thermally induced phase separation (TIPS) [J]. Polymer Preprints, 1993, 34: 496-497
    [40] Song S. W., Torkelson J. M., Coarsening effects on the formation of microporous membranes produced via thermally induced phase separation of polystyrene-cyclohexanol solutions [J]. J. Membr. Sci., 1995, 98: 209-222
    [41] Prasad A., Marand H., Mandelkern L., Supermolecular morphology of thermoreversible gels formed from homogeneous and heterogeneous solutions [J]. J. Polym. Sci.: Part B: Polym. Phys., 1993, 32: 1819-1835
    [42] Vitzthum G. H., Davis M. A., 0.1 micron rated polypropylene membrane and method for its preparation [P]. U.S. 4490431, 1984
    [43] Kesting R. E., Phase inversion membranes, in: D.R. Lloyd(Ed), Materials Science of Synthetic Membranes [M]. ACS Symposium Series, 269, ACS press, Washington, DC, 1985, 131
    [44] Caneba G.. T., Soong D. S., Polymer membrane formation through the thermal inversion process. 1. Experimental study of membrane structure formation [J]. Macromolecules, 1985, 18: 2538-2545
    [45] Caneba G.. T., Soong D. S., Polymer membrane formation through the thermal inversion process. 2. Mathematical modeling of memebrane structure formation [J]. Macromolecules, 1985, 18: 2538-2545
    [46] Lloyd D. R., Membrane materials science-an overview, in:D. R. Lloyd(Ed), Materials science of synthetic membranes [M]. ACS Symposium Series, 269, ACS press, Washington, DC, 1985
    [46] Lloyd D.R., Kinzer K. E., Tseng H. S., Microporous membrane formation via thermally-induced phase separation. Ⅰ. Solid-liquid phase separation [J]. J. Membr. Sci., 1990,52:239-261
    [47] Lloyd D.R., Kim S. S., Microporous membrane formation via thermally-induced phase separation. Ⅱ. liquid-liquid phase separation [J]. J. Membr. Sci., 1991,64: 1-11
    [48] Kim S. S., Lloyd D.R., Microporous membrane formation via thermally-induced phase separation. Ⅲ . Effect of thermodynamic interactions on the structure of isotactic polypropylene membranes [J]. J. Membr. Sci., 1991,64: 13-29
    [49] Lim G. B. A., Kim S. S., Lloyd D. R., et. al., Microporous membrane formation via thermally-induced phase separation. IV. Effect of isotactic polypropylene crystallization kinetics on membrane structure [J]. J. Membr. Sci., 1991,64:31-40
    [50] Kim S. S., Lim G. B. A., Alwattari A. A., Wang Y. F., Lloyd D. R., Microporous membrane formation via thermally-induced phase separation. V. Effect of diluent mobility and crystallization on the structure of isotactic polypropylene membranes [J]. J. Membr. Sci., 1991, 64: 41-53
    [51] Alwattari A. A., Lloyd D. R., Microporous membrane formation via thermally-induced phase separation. VI. Effect of diluent morphology and relative crystallization kinetics on polypropylene membrane structure [J]. J. Membr. Sci., 1991,64:55-68
    [52] Loeb S., Sourirajan S., Sea water demineralization by means of an osmotic membrane, Advances in Chemistry Series, 38 [M]. Washington, DC, ACS Press, 1962, 117
    [53] Kurata M., Thermodynamic of polymer solution [M], London, Harwood Academic, 1982
    [54] Binder K., Spinodal decomposition, in P. Haasen (Ed). Materials Science and Technology, A Comprehensive Treatment [M]. New York, 1991,405
    [55] Cahn J. W., Spinodal decomposition [J]. Trans. Metall. Soc. AIME, 1968, 242:166-175
    [56] Ronner. J. A., Groot Wassink S., Smolders C. A., Inversigation of liquid-liquid demixing and aggregate formation in a membrane forming system by means of pulse-induced critical scattering(PICS) [J]. J. Membr. Sci. 1989, 42:27-36
    [57] Tsai F. J., Torkelson J. M., Roles of phase separation mechanism and coarsening in the formation of poly(methylmethacrylate) asymmetric membranes [J]. Macromolecules, 1990,23(3): 775-784
    [58] Tsai F. J., Torkelson J. M., Microporous poly(methylmethacrylate) membranes: effect of a low-viscosity solvent on the formation mechanism [J]. Macromolecules, 1990, 23(23): 4983-4989
    [59] McMaster L. P., Aspects of liquid-liquid phase transition phenomena in multicomponent polymeric systems [J]. Adv. Chem. Ser., 1975, 142:43-49
    [60] Laxminarayan A., McGuire K. S., Kim S. S., Lloyd D. R., Effect of initianl composition, phase separation temperature and polymer crystallization one the formation of microcellular structures via thermally induced phase separation [J]. Polymer, 1994, 35:3060-3068
    [61] Siggia E. D., Late stages of spinodal decomposition in binary mixtures [J]. Phys. Rev. A, 1979,20:595-603
    [62] Crist B., Nesarikar A. R., Coarsening in polyethylene-copolymer blends [J]. Macromolecules, 1995, 28(4): 890-896
    [63] Mcguire K. S., Laxminarayan A., Lloyd D. R., Kinetics of droplet-growth in liquid-liquid phase separation of polymer-diluent systems: experimental results [J]. Polymer, 1995, 36:4951-4960
    [64] Guo H. F., Laxminarayan H. F. A., Caneba G. T., Solc K., Morphological studiesof late-stage spinodal decomposition in polystyrene-cyclohexanol system [J]. J. Appl. Polym. Sci., 1995, 55:753-760
    [65] Mandelkern L., Crystallization and melting in C. Booth and C. Price (Ed), Comprehensive Polymer Science [M]. Oxford, Pergamon, 1989
    [66] Woodward A. E., Atlas of polymer morphology [M]. New York, Oxford University Press, 1989
    [67] Bush P. J., Pradhan D., Ehrlich P., Lamellar structure and organization in polyethylene gels crystallized from supercritical solution in propane [J]. Macromolecules, 1991, 24(6): 1439-1440
    [68] Mandelkern L., Edwards C. O., Domszy R. C., Davidson M. W., Gelation accompanying crystallization from dilute solutions: some guiding principles, jin P. Dubin(Ed), Polymer Science and Technology, Vol 30 (M). New York/London, Plenum Press, 1985: 121
    [69] Domszy R. C, Alamo R., Edwards C. O., Mandelkern L., Thermoreversible gelation and crystallization of homopolymer and copolymers [J]. Macromolecules, 1986, 19(2): 310-325
    [70] Miles M. J., Gelation. D. C. Bassett(Ed), Developments in crystalline polymers [M]. New York, Elsevier Applied Science, 1988: 233
    [71] Tanaka T., Phase transitions in gels, in R. S. Harland and R. K. Prud'homm(Ed). Polyelectrolyte Gels [M]. Washingto DC, ACS, 1992: 1
    [72] Lemstra P. J., Van Aerle N. A. J. M., Bastiaansen C. W. M., Chain extended polyethylene [J]. Polym. J. 1987, 19: 85-91
    [73] Zwijnenburg A., Pennings A. J., Longitudinal growth of polymer crystal from flowing solutions. III. Polyethylene crystal in coquette flow [J]. Colloid Polym. Sci., 1976, 254: 868-873
    [74] Keller A., Structure property relationships of polymeric solids [M]. New York, Plenum Press, 1983:25
    [75] Giralomo M., Keller A., Miyasaka K., Overbergh N., Gelation-crystallization in isotactic polystyrene solutions and its imolications to crystal morphology to the original and strucrue of gels and to the chemical heterogeneity of polyolefins [J]. J. Polym. Sci., Part B: Polym. Phys. Ed., 1976, 14: 39-45
    [76] Flory P. J., Princles of Polymer Chemistry [M]. New York, Cornell University Press, 1953
    [77] Debert F., Berghmans H., Phase behavior of syndiotactic polystyrene-decalin [J]. Polymer, 1993, 34:2192-2197
    [78] Prasad A., Mandelkern L., Thermoreversible gelation of syndiotactic polystyrene [J]. Macromolecules, 1990, 23:5041-5043
    [79] Tanigami T., Suzuki H., Yamaura K., Matsuzawa S., Gelation and crystallization of poly(4-metthyl pentene) incyclohexane solution [J]. Macromolecules, 1985, 18: 2595-2600
    [80] Cho J. W., Song H. Y, Kim S. Y, Thermoreversible gelation of poly(vinylidene fluoride) in Y -butyrolactone solution [J]. Polymer, 1993, 24: 102-107
    [81] Chatani Y, Shimane Y, Inagaki T., Ijitsu T. Yukinari, T., Shikuma H., Structural study on syndiotactic polystyrene: 2. crystal structure of molecular compound with toluene [J]. Polymer, 1993, 34: 1620-1666
    [82] Arnauts J., Berghmans H., Amorphous gels of atactic polystyrene [J]. Polym. Commun., 1987, 28: 66-68
    [83] Arnauts J., Berghmans H., Koningsveld R., Structure formation in solutions of atactic polystyrene in trans-decalin [J]. Macromol. Symp., 1993,194: 77-84
    [84] Callister S., Keller A., Hikmet R. M., On thermoreversible gels: their classification, relation to phase transitions and vitrification, their morphology and properties [J]. Makromol. Chem. Macromol. Symp., 1990, 39: 19-24
    [85] Coniglio A., Stanley H. E., Klein W., Site-bond correlated percolation problem: a statistical model of polymer gelation [J]. Phys. Rev. Lett., 1979, 42:518-522
    [86] Tanaka F., Stockmayer W. H., Thermoreversible gelation with junctions of variable multiplicity [J]. Macromolecules, 1994, 27: 3943-3954
    [87] Eldridge J. E., Ferry J., Studies on the cross-linking process in gelatin gels. III. Dependence of the melting point on concentration and molecular weight [J]. J. Phys. Chem., 1954,58: 992
    
    [88] Joanny J. F., Gel formation in ionomers [J]. Polymer, 1980,21: 714-717
    [89] Frank F. C., Keller A., Two-fluid phase separation modified by a glass transition [J]. Polym. Commun., 1988,29: 186-189
    [90] Burghardt W. R., Phase diagrams for binary polymer systems exhibiting both crystallization and limited liquid-liquid miscibility [J]. Macromolecules, 1989, 22: 2482-2486
    
    [91] Aubert J. H., Clough R. L., Low density, microcellular polystyrene foams [J]. Polymer, 1985, 26: 2047-2054
    [92] 王熊,郭宏,郭维奇.膜分离技术在食品加工水处理中的应用[J].中国食品工业,1995,11:23-25
    [93] 徐荣安.膜技术在饮用水深度处理中的应用[J].水处理技术,1999,5:249-254
    [94] 王静,张雨山.超滤膜和微滤膜在污(废)水处理中的应用研究现状及发展趋势[J].工业水处理,2001,3:4-8
    [95] 吴志超,陈绍伟,赵一德.超滤技术在水污染控制中的应用[J].上海环境科学,1997,12:29-31
    [96] 何桂华.聚砜中空纤维超滤膜在油田注入水处理中的应用[J].膜科学与技术,1998,2:16-21
    [97] 王世昌,周清,王志.海水淡化与反渗透技术的发展形势[J].膜科学与技术,2003,4:162-171
    [98] 陈益棠,陈雷.高回收率反渗透-纳滤海水淡化成本[J].水处理技术,2004,5:251-254
    [99] Mccray S. B., Vilker V. L., Nobe K. Reverse-osmosis cellulose acetate membranes. 2. Dependence of transport-properties on acetyl content [J]. J. Membr. Sci., 1991, 59 (3): 317-330
    [100] Albastakinm, Alqahtani Hi. Assessment of thermal effects on the reverse-osmosis of salt-water solutions by using a spiral wound polymide membrane [J]. Deslination, 1994, 99 (1): 159-168
    [101] Castro A.J., Methods for making microporous products [P], US Patent 4247498, 1981.
    [102] Shipmen G. H., Microporous sheet material, methods of making and articles made therewith [P]. US Patent 4539256, 1988.
    [103] Clinnton Jr P. W.., Microporous materials of ethylene-vinylalcohol copolymer and methods for making same [P], WO Patent 9720885, 1997.
    [104] Toyomoto K., Higuchi A., Microfiltration and ultrafiltration, in: Y. Osada, T. Nakagawa (Eds.), Membrane Science and Technology [M], Marcel Dekker, New York, 1992:289
    [105] Kulkarni S. S., Funk E. W., N. N. Li, Ultrafiltration membranes, in: W.S.W. Sirkar (Ed.), Membrane Hand Book [M], New York, Van Nostrand Reinhold, 1992, 409
    [106] Kim K.J., Fane A.G., Fell C.J.D., The effect of Langmuir-Blodgett layer pretreatment on the performance of ultra-filtration membranes [J]. J. Membr. Sci. 1989, 43: 187-204.
    [107] Yasuda H., March H.C., Brandt E.S., C.N. Reilly, Preparation of composite reverse osmosis membranes by plasma polymerization of organic compounds. IV. Influence of plasma-polymer (substrate) interaction [J]. J. Appl. Polym. Sci., 1976, 20:543-555.
    [108] Sharma A.K., Millich F., Hellmath E.W., Wettability of glow discharge polymers [J]. J. Appl. Polym. Sci., 1981, 26: 2205-2210.
    [1] Lloyd D.R., Kinzer K. E., Tseng H. S., Microporous membrane formation via thermally-induced phase separation. I. Solid-liquid phase separation [J]. J. Membr. Sci., 1990, 52:239-261
    [2] Lloyd D.R., Kim S. S., Microporous membrane formation via thermally-induced phase separation. Ⅱ. liquid-liquid phase separation [J]. J. Membr. Sci., 1991, 64: 1-11
    [3] Liu, B., Du Q. G., Yang Y. L. The phase diagrams of mixtures of EVAL and PEG in relation to membrane formation [J]. J. Membr. Sci., 2000, 180:81-92
    [4] Kim, S. S., Lloyd D. R., Thermodynamics of polymer/diluent systems for thermally induced phase separation: 1. Determination of equation of state parameters [J]. Polymer, 1992, 33:1026-1035
    [5] McGuire, K. S.; Laxminarayan, A.; Lloyd D. R., A simple method of extrapolating the coexistence curve and predicting the melting point depression curve from cloud point data for polymer-diluent systems [J]. Polymer, 1994, 35: 4404-4407
    [6] Paul, D. R.; Barlow, J. W., A binary interaction model for miscibility of copolymers in blends [J]. Polymer, 1984, 25:487-494
    [7] Cowie, J. M. G.; Reid, V. M. C.; Mcewen, I. J., Prediction of the miscibility range in blends of poly(styrene-co-acrylonitrile) and poly(N-phenyl itaconimide-co-methyl methacrylate): a six-interaction-parameter system [J]. Polymer, 1990, 31:486-489
    [8] Okaya, T.; Ikari, K. in: C.A. Finch (Ed.), Polyvinyl alcohol developments [M]. New York, Wiley, 1992, 196
    [9] 邹盛欧.功能性包装材料[J].化工新型材料,1999,5:10-13
    [10] Shang, M. X.; Matsuyama, H.; Teramoto, M,;,Llyord, D. R.; Noboru, K. Preparation and membrane performance of poly(ethylene-co-vinylalcohol) hollow fiber membrane via thermally induced phase separation [J]. Polymer, 2003, 44:7441-7447
    [11] Matsuyama, H.; Iwatani, T.; Kiitamura, Y.; Tearamoto, M.; Sugoh, N. Formation of Porous Poly(ethylene-co-vinyl alcohol) Membrane via Thermally Induced Phase Separation [J]. J. Appli. Polym. Sci., 2001,79:2449-2455
    [12] Shang, M. X.; Matsuyama, H.; Maki, T.; Tearamoto, M.; Lloyd, D. R. Preparation and Characterization of Poly(ethylene-co-vinylalcohol) Membranes via Thermally Induced Liquid-Liquid Phase Separation [J]. J. Appli. Polym. Sci., 2003, 87:853-860
    [13] Matsuyama, H.; Takida, Y.; Maki, T.; Tearamoto, M. Preparation of porous membrane by combined use of thermally induced phase separation and immersion precipitation [J]. Polymer, 2002, 43:5243-5248
    [14] Matsuyama, H.; Kiyotaka, K.; Maki, T.; Tearamoto, M.; Tsuruta, H. Effect of the Ethylene Content of Poly(ethylene-co-vinylalcohol) on the Formation of Microporous Membranes via Thermally Induced Phase Separation [J]. J Appli Polym Sci., 2001, 82:2583-2589
    [15] Shang, M. X.; Matsuyama, H.; Maki, T.; Tearamoto, M.; Lloryd, D. R.. Effect of crystallization and liquid-liquid phase separation on phase-separation kinetics in poly(ethylene-co-vinyl alcohol)/glycerol solution [J]. J. Polym. Sci.: Part B: Polym Phys., 2003,41: 194-201
    [16] Cheng, L. P.; Young, T. H.; You, W. M. Formation of crystalline EVAL membranes by controlled mass transfer process in water-DMSO-EVAL copolymer systems [J]. J. Membr. Sci., 1998, 145:77-90
    [17] Hansen, C. M. Hansen solubility parameters Boca Raton, FL:CRC Press, 2000
    [18] D.W. van Krevelen, Properties of Polymers, 2nd Edition, Elsevier, Amsterdam, 1976
    [19] Cruz-Ramos, C. A.; Paul, D. R. Evaluation of interactions in blends of ethylene-vinyl acetate copolymers with poly(vinyl chloride) using model compounds [J]. Macromolecules, 1989, 22: 1289-1300
    [20] Matsumoto, T.; Nakamae, K.; Ochiumi, T.; Horie, S. Effect of molecular weight of ethylene-vinyl alcohol copolymer on membrane properties [J]. J Membr Sci., 1981, 10:109-119
    [21] Xu, Z. L.; Qusay, F.A. Effect of polyethylene glycol molecular weights and concentrations on polyethersulfone hollow fiber ultrafiltration membranes [J]. J Appli Polym Sci., 2004, 91:3398-3407
    [1] Castro A J. Methods for making microporous products [P]. US Patent, 4247498, 1981
    [2] Shipmen G H. Microporous sheet material, methods of making and articles made therewith [P]. US Patent, 4539256, 1988
    [3] Lim G. B. A., Kim S. S., Lloyd D. R., et. al., Microporous membrane formation via thermally-induced phase separation. Ⅳ. Effect of isotactic polypropylene crystallization kinetics on membrane structure [J]. J. Membr. Sci., 1991, 64: 31-40
    [4] Osada Y, Nakagawa T. Membrane Science and Technology [M]. New York, Marcel Dekker, 1992, 289
    [5] Sirkar W S W. Membrane Hand Book [M]. New York, Van Nostrand Reinhold, 1996, 409.
    [6] Zeman L J, Zydney A L. Microfiltratron and Ultrafiltration [M]. New york, Marcel Dekker, 1996.
    [7] Matsuyama, H.; Kiyotaka, K.; Maki, T.; Tearamoto, M.; Tsuruta, H. Effect of the Ethylene Content of Poly(ethylene- co-vinylalcohol) on the Formation of Microporous Membranes via Thermally Induced Phase Separation [J]. J Appli Polym Sci., 2001, 82:2583-2589
    [8] Young T H, Yao C H, Sun J S. The effect of morphology variety of EVAL membranes on the behavior of myoblasts in vitro [J]. Biomaterials, 1998, 19: 717-724.
    [9] Clinnton Jr P W. Microporous materials of ethylene-vinyl alcohol copolymer and methods for making same [P]. WO Patent 97,20,885. 1997
    [10] 郭行蓬,柳波,葛昌杰,杜强国,杨玉良.热致相分离法制备微孔EVAL中空纤维膜的探索[J].功能高分子学报,2001,3:23-26.
    [11] Caneba G.. T., Soong D. S., Polymer membrane formation through the thermal inversion process. 1. Experimental study of membrane structure formation [J]. Macromolecules, 1985, 18:2538-2545
    [12]Caneba G.. T., Soong D. S., Polymer membrane formation through the thermal inversion process. 2. Mathematical modeling of memebrane structure formation [J]. Macromolecules, 1985, 18: 2538-2545
    [13] Kim S. S., Lloyd D.R., Microporous membrane formation via thermally-induced phase separation. Ⅲ. Effect of thermodynamic interactions on the structure of isotactic polypropylene membranes [J]. J. Membr. Sci., 1991, 64: 13-29
    [14]Alwattari A. A., Lloyd D. R., Microporous membrane formation via thermally-induced phase separation. Ⅵ. Effect of diluent morphology and relative crystallization kinetics on polypropylene membrane structure [J]. J. Membr. Sci., 1991, 64:55-68
    [15] Young T H , Lai J Y , You W M.et al. Equilibrium phase behavior of the membrane forming water-DMSO-EVAL copolymer system [J]. J Membr Sci , 1997, 128 : 55-65.
    [16]Liu, B., Du Q. G., Yang Y. L. The phase diagrams of mixtures of EVAL and PEG in relation to membrane formation [J]. J. Membr. Sci., 2000, 180: 81-92
    [17]Shang, M. X.; Matsuyama, H.; Maki, T.; Tearamoto, M.; Lloyd, D. R. Preparation and Characterization of Poly(ethylene-co-vinylalcohol) Membranes via Thermally Induced Liquid-Liquid Phase Separation [J]. J. Appli. Polym. Sci., 2003, 87: 853-860
    [18] Lloyd D.R., Kinzer K. E., Tseng H. S., Microporous membrane formation via thermally-induced phase separation. I. Solid-liquid phase separation [J]. J. Membr. Sci., 1990, 52: 239-261
    [19]Lloyd D.R., Kim S. S., Microporous membrane formation via thermally-induced phase separation. II. liquid-liquid phase separation [J]. J. Membr. Sci., 1991, 64: 1-11
    [20]Hitesh C. Vadalia, Hwan K. Lee, Allan S.Myerson, Kalle Levon. Thermally induced phase separation in ternary crystallizable polymer solutions [J]. J. Membr. Sci., 1994,89(1): 37-50
    [21]Mengxian S., Matsuyama H., Masaaki T. H., Junpei O. H., Lloyd D. R., Noboru K. Effect of Diluent on Poly(ethylene-co-vinyl alcohol)Hollow-Fiber Membrane Formation via Thermally InducedPhase Separation [J]. Journal of Applied Polymer Science, 2005, 95: 219-225
    [22] Lv R, Zhou J, Peng X, Du Q G, Wang H T, Zhong W. Estimation of Phase Diagrams for Copolymer-diluent Systems in Thermally Induced Phase Separation [J]. J. Appli. Polym. Sci., 2006 (in press)
    [23] Suzana P. N., Takashi I. Evidence for spinodal decomposition and nucleation and growth mechanisms during membrane formation [J]. J. Membr. Sci., 1996, 111: 93~103
    [1] 王保国.蒋维钧.中空纤维膜的研究现状与发展[J].化工进展,1994,2:39-43
    [2] Rwei S. P. Formation of hollow fibers in the melt-spinning process [J]. J. Appl. Polym. Sci., 2001, 82 (12): 2896-2902
    [3] Kim J. J., Jang T. S., Kwon Y. D., et al. Structural study of microporous polypropylene hollow fiber membranes made by the mel-spinning and cold-stretching method [J]. J. Membr. Sci., 1994, 93 (3): 209-215
    [4] Horacek I,, Kalisek V. Polylactide.1. Continuous dry spinning hot drawing preparation of fibers [J]. J. Appli. Polym. Sci., 1994 54 (11): 1751-1757
    [5] Mok S, Worsfold D. J., Fouda A. E., et al. Study on the effect of spinning oconditions and surface-treatment on the geometry and performance of polymeric hollow fiber membranes [J]. J. Membr. Sci., 1995, 100 (3): 183-192
    [6] Kim J. H., Park Y. I., Jegal J., et al. The effects of spinning conditions on the structure formation and the dimension of the hollow fiber membranes and their relationship with the permeability in dry-wet spinning technology [J]. J. Appli. Polym. Sci., 1995, 57 (13): 1637-1644
    [7] Albrecht W, Weigel T, Paul D. Phase inversion with gel/sol/gel-treatment-A new technology for the formation of hollow-fiber membranes at a wet spinning process [J]. Acta Polymerica, 1997, 48 (3): 100-106
    [8] Qin J. J., Gu J., Chung T. S. Effect of wet and dry-jet wet spinning on the sheer-induced orientation during the formation of ultrafiltration hollow fiber membranes [J]. J. Membr. Sci., 2001, 182 (1-2): 57-75
    [9] Wang K. Y, Matsuura T., Chung T. S., et al. The effects of flow angle and shear rate within the spinneret on the separation performance of poly (ethersulfone) (PES) ultrafiltration hollow fiber membranes [J]. J. Membr. Sci., 2004, 240 (1-2): 67-79
    [10] Zhao C. S., Zhou X. S., Yue Y. L. Determination of pore size and pore size distribution on the surface of hollow-fiber filtration membranes: a review of methods [J]. Desalination, 2000, 129 (2): 107-123
    [11] Berghmans S., Berghmans H., Meijer H. E. H. Spinning of hollow porous fibers via the TIPS mechanism [J]. J. Membr. Sci., 1996, 116: 171-189
    [12] Mahoney R. Process for preparing microporous polyethylene hollow fibers [P]. U.S. Patent 4115492, 1978
    [13]Gerlach K., Kessler E., Henne W. Hollow fiber membrane for plasma separation [P]. U.S.Patent, 4708799, 1987
    [14] Gerlach K., Kessler E. Porous fibers and membranes and methods for their preparation and use [P]. U.S.Patent, 4744906, 1988
    [15]Ichikawa T., Takahara K., Shimoda K., Seita Y, Emi M. Hollow fiber membrane and method for manufacture thereof [P]. U.S. Patent, 4708800, 1987
    
    [16]Mengxian S., Matsuyama H., Masaaki T. H., Junpei O. H., Lloyd D. R., Noboru K. Effect of Diluent on Poly(ethylene-co-vinyl alcohol)Hollow-Fiber Membrane Formation via Thermally inducedPhase Separation [J]. Journal of Applied Polymer Science, 2005, 95: 219-225
    [17]Kopp C. V., Streeton R. J. W., Khoo P. S. Hollow fiber membrane extrusion [P]. U.S. Patent, 5395570, 1995
    [18]Beck T. W., Lee M. B., Grant R. D., Streeton R. J. W. Method of making polyvinylidene fluoride membrane [P]. U.S. Patent, 5489406, 1996
    [19]Kessler E. Porous tubing [P]. U.S. Patent, 4434250, 1984
    [20]Doi Y, Matsumura H. Polyvinylidene fluoride porous membrane and a method for producing the same [P]. U.S. Patent, 5022990, 1991
    [21] Matsuyama, H.; Kim, M. M.; Lloyd, D. R. Effect of extraction and drying on the structure of microporous polyethylene membranes prepared via thermally induced phase separation [J]. J. Membr. Sci., 2002, 204: 413-419
    [22]Lui, A.; Talbot, F. D. F.; Fouda, A.; Matsuura, T.; Sourirajan, S. Studies on the solvent exchange technique for making dry cellulose acetate membranes for the separation of gaseous mixtures [J]. J. Appli. Polym. Sci., 1998, 36: 1809-1818
    [23]Jie, X. M.; Cao, Y. M.; Qin, J. J.; Liu, J. H.; Yuan, Q. Influence of drying method on morphology and properties of asymmetric cellulose hollow fiber membrane [J]. J. Membr. Sci., 2005, 246:157-165
    [24] Iwata H., Saito K., Furusaki S. Adsorption Characteristics of an Immobilized Metal Affinity Membrane [J]. Biotechnol. Prog., 1991, 7:412-418
    [25] D.W. van Krevelen, Properties of Polymers, 2nd Edition, Elsevier, Amsterdam, 1976
    [1] 朱长乐,刘茉娥.膜科学技术[M].浙江省,浙江大学出版社,1992,46
    [2] Radovanovic P., Thiel S. W., Hwang S. T. Formation of asymmetric polysulfone membranes by immersion precipitation.1. Modeling mass-transport during gelation [J]. J. Membr. Sci., 1992, 65 (3): 213-229
    [3] Radovanovic P., Thiel S. W., Hwang S. T. Formation of asymmetric polysulfone membranes by immersion precipitation.2. The effects of casting solution and gelation bath compositions on membrane-sructure and skin formation [J]. J. Membr. Sci., 1992, 65 (3): 231-246
    [4] Lai J. Y., Liu M. J., Chen S. H. Polycarbonate (DMF metal salt) complex membrane prepared via a wet phase phase inversion method for oxygen enrichment from air [J]. Europ. Polym. J., 1994, 30 (7): 833-843
    [5] Lee K. R, Wang A A, Wang D. M, et al. Pervaporation of aqueous alcohol solution through a polycarbonate (DMF metal salt) complex membrane prepared via a wet-phase inversion method [J]. J. Appli. Polym. Sci., 1998, 68(7): 1191-1198
    [6] Park J. S., Kim S. K., Lee K. H. Effect of ZnCl2 on formation of asymmetric PEI membrane by phase inversion process [J]. J. Indus. Engin.Chem., 2000, 6 (2): 93-99
    [7] Yeow M. L., Liu Y. T., Li K. Preparation of porous PVDF hollow fibre membrane via a phase inversion method using lithium perchlorate (LiC104) as an additive [J]. J. Membr. Sci., 2005, 258 (1-2): 16-22
    [8] Lin D. J., Chang C. L., Huang F. M, et al. Effect of salt additive on the formation of microporous poly(vinylidene fluoride) membranes by phase inversion from LiClO4/water/DMF/PVDF system [J]. Polymer, 2003, 44 (2): 413-422
    [9] Koops G. H., Nolten Jam, Mulder MhV, et al. Intergally skinned polysulfone hollow-fiber membranes for pervaporation [J]. J. Appli. Polym. Sci., 1994, 54 (3): 385-404
    [10] Yeow M. L., Liu Y. T., Li K. Morphological study of poly(vinylidene fluoride) asymmetric membranes: Effects of the solvent, additive, and dope temperature [J]. J. Appli. Polym. Sci., 2004, 92 (3): 1782-1789
    [11]Hoyer B, Jensen N. Phase inversion cellulose acetate membranes for suppression of protein interferences in anodic stripping voltammetry .2. Improvement of the membrane preparation procedure [J]. Talanta, 1996, 43 (8): 1393-1400
    [12]Yanagishita H., Nakane T., Yoshitome H. Effect of licl on preparation of asymmetric polyimide membranes by phase inversion process [J]. Kobunshi Ronbunshu, 1992,49(12): 1011-1014 1992
    [13]Wang D. L., Li K., Teo W. K. Relationship between mass-ratio of nonsolvent-additive to solvent in membrane casting solution and its coagulation value [J]. J. Membr. Sci., 1995, 98 (3): 233-240
    [14]Chuang W. Y, Young T. H., Chiu W. Y, et al. The effect of polymeric additives on the structure and permeability of poly(vinyl alcohol) asymmetric membranes [J]. Polymer, 2000, 41 (15): 5633-5641
    [15]Yoo S. H., Kim J. H., Jho J. Y, et al. Influence of the addition of PVP on the morphology of asymmetric polyimide phase inversion membranes: effect of PVP molecular weight [J]. J. Membr. Sci., 2004, 236 (1): 203-207
    [16]Matsuyama H, Maki T, Teramoto M, et al. Effect of PVP additive on porous polysulfone membrane formation by immersion precipitation method [J]. Separation Science & Technology, 2003, 38 (14): 3449-3458
    [17]Qin J. J., Li Y, Lee L. S., et al. Cellulose acetate hollow fiber ultrafiltration membranes made from CA/PVP 360 K/NMP/water [J]. J. Membr. Sci., 2003, 218 (1-2): 173-183
    [18]Lu Y, Chen H. L, Li B. G. Influence of additives on phase separation process of PVDF solution and membrane morphology [J]. Acta Polymerica Sinica, 2002, 5: 656-661
    [19]Han M. J, Nam S. T. Thermodynamic and rheological variation in polysulfone solution by PVP and its effect in the preparation of phase inversion membrane [J]. J. Membr. Sci., 2002, 202 (1-2): 55-61
    [20]Yeo H. T, Lee S. T, Han M. J. Role of a polymer additive in casting solution in preparation of phase inversion polysulfone membranes [J]. J. Chem. Engin. Jap., 2000,33(1): 180-184
    [21]Miyano T., Mastuura T., Sourirajan S. Effect of polyvinylpyrrolidone additive on the pore-size and the pore-size distribution of polyethersulfone (victrex) membranes [J]. Chem. Engin. Comm., 1993, 119: 23-39
    [22]Qin J. J, Cao Y. M, Li Y. Q, et al. Hollow fiber ultrafiltration membranes made from blends of PAN and PVP [J]. Separation and Purification Technology, 2004, 36(2): 149-155
    [23]Borneman Z, Gokmen V, Nijhuis H. H. Selective removal of polyphenols and brown colour in apple juices using PES/PVP membranes in a single ultrafiltration process [J]. Separation and Purification Technology, 2001, 22-3 (1-3): 53-61
    [24]Lloyd D.R., Kinzer K. E., Tseng H. S., Microporous membrane formation via thermally-induced phase separation. 1. Solid-liquid phase separation [J]. J. Membr. Sci., 1990,52:239-261
    [25]J. Zhou, J. Yin, R. Lv, Q. G. Du, W. Zhong, Preparation and properties of MPEG-grafted EAA membranes via thermally induced phase separation, J. Membr. Sci., 2005, 267: 90-98.
    [26]Z. Liu, Z. Xu, J. Wang, Q. Yang, Surface modification of microporous polypropylene membranes by the grafting of poly (_-stearyl-lglutamate), Eur. Polym. J., 2003, 39: 2291-2299.
    [27] B. Liu, Q. G. Du, Y. L. Yang, The phase diagrams of mixtures of EVAL and PEG in relation to membrane formation, J. Membr. Sci.. 2000, 180: 81-92.
    [28]Ping Z. H., Nguyen Q. T., Neel J., Investigations of poly (vinyl alcohol)/poly (N-vinyl-2-pyrrolidone) blends, 1 compatibility Makromol. Chem., 1988, 189: 437-448.
    [29]Ahn S. B., Jeong H. M., Phase behavior and hydrogen bonding in poly(ethylene-co-vinyl alcohol) poly(N-vinyl-2-pyrrolidone) blends, Korea Polym. J., 1998, 6: 389-395.
    [30] Shang M., Matsuyama H., Teramoto M., Okuno J., Lloyd D. R., et al., Effect of diluent on poly(ethylene-co-vinyl alcohol) hollow-fiber membrane formation via thermally induced phase separation, J. Appli. Polym. Sci., 2005, 95: 219-225.
    [31] Lloyd D.R., Kim S.S., Kinzer K.E., Microporous membrane formation via thermally-induced phase separation. Ⅱ. L-L phase separation, J. Membr. Sci., 1991, 64:1-11.
    [32] Wavhal D.S., Fisher E.R., Hydrophilic modification of polyethersulfone membranes by low temperature plasma-induced graft polymerization, J. Membr. Sci., 2002, 209: 255-269.
    [33] Wavhal D.S., Fisher E.R., Membrane surface modification by plasma-induced polymerization of acrylamide for improved surface properties and reduced protein fouling, Langmuir, 2003, 19: 79-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700