PEMFC流场与电池性能的模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜燃料电池(简称PEMFC)以其高效率、高能量密度、低污染等优点被认为是一种适合人类发展和环境要求的理想电源。流场板是PEMFC的重要部件,极大地影响电池的性能、运行效率和制造成本。流场板的流道结构基本组成要素为流道的长、宽、高和脊宽以及流道形式,本研究建立了不同的数学模型以深入研究电池内部的传递过程以及诸要素因素对电池性能和效率的影响。
     首先,利用Monte-Carlo法建立了3维格点模型,细致地描述了PEMFC催化层复杂的多孔结构,此模型可以用来分析催化层各组分Pt/C、质子导体以及气孔对催化剂利用率的影响。另外,利用随机行走的方法研究了气体在催化层中的扩散行为,为深入理解电池反应和及提高PEMFC整体模型准确性提供了新方法和结构参数。
     其次,建立了流道和脊横截面的2维两相流数学模型(Cross-the-channel Model)。模型描述了主要的传递和反应过程,包括阴、阳两极反应气的质量传递、动量传递、电子和质子的传递以及电化学反应等过程。此外模型还细致的描述了水(液态和气态)在扩散层、催化层以及质子交换膜中的传递过程,详细地考察了流道和脊的宽度对电池性能的影响。研究发现水的传递对电池性能影响很大。模拟结果显示,在膜电极面积一定的情况下,对于低增湿PEMFC而言,应当采用较薄的质子交换膜,较宽的脊以增强保湿性能。而对于高增湿PEMFC而言,应当采用较窄的脊以提高反应气的传质性能。
     第三,建立了改进的沿流道模型(Along-the-channel Model),并结合以流道横截面模型建立了准3维阴极流道模型。考察了各物理量沿流道长度方向的分布情况及其对电池性能的影响。模拟结果显示,对于高增湿PEMFC而言,氧气浓度、电流密度以及流速均沿流道长度方向逐渐降低。而对于低增湿PEMFC,氧气流速会逐渐升高,电流密度呈先升高后降低的趋势。通过对模拟结果的分析,提出了针对高增湿PEMFC的深度渐变流道设计,以增强阴极排水能力。针对低增湿PEMFC,则提出了脊宽度渐变的流道设计,以增强上游流道的保湿能力,同时提高反应气在下游流道的传质性能。
     第四,利用计算流体力学(CFD)工具首次建立了PEMFC完整流场的高效模拟方法,并对5种常见形式的完整流场进行了模拟计算,考察了其中流速以及电流密度等物理量的分布情况。模拟结果显示,流道形式对电流密度分布影响很大。适当拉近上游和下游流道之间的距离可以促进电流密度的均匀分布。所建方法可以用来以电流密度分布和电池性能评价流场,对流场形式的设计有指导作用。
The proton exchange membrane fuel cell (PEMFC) is a electrochemical device that convert chemical energy in fuels directly into electrical energy, with high efficiency and low environmental impact. The flow field plate, which the performance, efficiency and cost of PEMFC strongly depend on, is a very important component. The flow field on the bipolar plate is constituted of channel (length, width, depth), rib and channel patterns. Different mathematical models have been established to improve fundamental understanding of transport phenomena in PEMFC and to investigate the impact of various parameters on performance and efficiency.
     First, the microstructure of catalyst layer is studied based upon a lattice model with the Monte Carlo simulation. The model can predict how the catalyst layer components such as Pt/C, electrolyte and gas pores affect the utilization of catalyst and the cell performance. In addition, diffusion of reaction gas in the catalyst layer has been studied based on the lattice model with random walking method. It provides theory basis of electrochemical reactions in PEMFC and structure parameters of the whole models.
     Next, a two-dimensional, two-phase cross the channel computational model of PEMFC is established. It accounts for all major transport phenomena including: water and proton transport through the membrane; electrochemical reaction; transport of electrons; transport and phase change of water in the gas diffusion electrodes; diffusion of multi-component gas mixtures in the electrode. The performance of the cathode was found to be dominated by the dynamics of water, especially in the high current density range. The simulation results show that for a fixed electrode width, a greater number of channels and shorter shoulder widths are preferred for the high humidity inlet PEMFC, whereas a shorter number of channels and greater number of shoulder widths are preferred to promote slower water removal for the low humidity inlet PEMFC.
     Third, through theoretical analysis by along the channel model, a pseudo-three-dimensional model for conventional gas channels is expanding our two-dimensional model. Base case simulations are presented and analyzed with a focus on the physical insight and fundamental understanding afforded by the availability of detailed distributions of reactant concentrations, current densities along the channel. Simulation results show that the reactant concentration, current density and flow velocity decays monotonically along the channel for the high humidity inlet PEMFC, while the current density increases and then decreases along the channel for the low humidity inlet PEMFC. Therefore, a depth gradual change channel is recommended for the high humidity PEMFCto facilitate better water removal, and a rib width gradual change channel is recommended for the low humidity PEMFC to facilitate better water reservation upriver and better oxygen transport downriver.
     Last, the influence of different flow channels including serpentine channel, parallel channels, parallel serpentine channels, spiral channels and mesh channels on the current density distribution of PEMFC was investigated by a computational fluid dynamics (CFD) model. The results show that significant improvements in current density distribution can be obtained by putting inlet channels and outlet channels closer.
引文
[1] Appleby A J, Foulkes F R, Fuel cell handbook, Van Nostrand Reinhold, New York, 1989
    [2] 江船, 燃料电池, 北京:国防工业出版社, 1983
    [3] 林维明, 燃料电池系统, 北京:化学工业出版社, 1996
    [4] 查全性, 燃料电池技术的发展与我国应有的对策, 应用化学, 1993, 10(5): 38-42
    [5] 周运鸿, 燃料电池, 电源技术, 1996, 20(4): 161-164
    [6] 黄倬, 屠海令, 张冀强等, 质子交换膜燃料电池的研究开发与应用, 北京: 冶金工业出版社, 2000
    [7] 衣宝廉, 燃料电池-高效环境友好的发电方式, 北京:化学工业出版社, 2000
    [8] K.B. Prater, Solid polymer fuel cell developments at Ballard. J. Power Sources, 1992, 37: 181-188
    [9] EG&G Technical Services, Inc, Fuel cell handbook (7th edition), Morgantown, West Virginia, 2004
    [10] Scott K, Taama W M, Argyropoulos P, Material aspects of the liquid feed direct methanol fuel cell, J. Appl. Electrochem., 1998, 28: 1389-1397
    [11] Wilson M S, Gottesfeld S, Thin-film catalyst layers for polymer electrolyte fuel cell electrodes, J. Appl. Electrochem., 1992, 22: 1-7
    [12] Wilson M S, Gottesfeld S, High performance catalyzed membranes of ultra-low Pt loadings for polymer electrolyte fuel cells, J. Electrochem. Soc., 1992, 139: L28-L30
    [13] Hogarth M, Christensen P, Hamnett A, et al., The design and construction of high-performance direct methanol fuel cells. 1. Liquid-feed systems, J. Power Sources, 1997, 69: 113-124
    [14] Liu L, Pu C, Viswanathan R, Carbon supported and unsupported Pt–Ru anodes for liquid feed direct methanol fuel cells, Electrochimica Acta, 1998, 43(24): 3657-3663
    [15] Ticianelli E A, Berry J G, Srinivasav S, Dependence of performance of solid polymer electrolyte fuel cells with low platinum loading on morphological characteristics of the electrodes, J. Appl. Electrochem., 1991, 21: 597-598
    [16] 张军, 许莉, 王宇新, 直接甲醇燃料电池膜电极研究的进展, 化学通报 (网络版), 2002, 65: 1-5
    [17] 陈延禧, 聚合物电解质燃料电池的研究进展, 电源技术, 1996, 20(1): 21
    [18] 蔡年生, 质子交换膜在燃料电池中的应用, 膜科学与技术, 1996, 16(4): 1-6
    [19] The DOE advanced fuel cell working group, Assessment of research needs for advanced fuel cell: 4. Solid polymer electrolyte fuel cells (SPEFCs), Energy, 1986, 11: 137-152
    [20] 李国欣, 新型化学电源导论, 上海:复旦大学出版社, 1992
    [21] Desrosiers K C, Evaluation of novel and low cost materials for bipolar plates in PEM fulel cells, Master Thesis, Virginia Polytechnic and State University, 2002
    [22] Besmann, Theodore M, Burchell, et al., Bipolar plate/diffuser for a proton exchange membrane fuel cell, US Patent No.6,037,073, 2000
    [23] 侯明, 吴金锋, 衣宝廉等, PEM 燃料电池流场板, 电源技术, 2001, 25(4): 294-298
    [24] Besmann T M, Klett J W, Henry J J, et al., Carbon/carbon composite bipolar plate for proton exchange membrane fuel cells, J. Electrochem. Soc., 2000, 147: 4083-4086
    [25] Davies D P, Adcock P L, Turpin M, et al., Bipolar plate materials for solid polymer fuel cells, J. Appl. Electrochem., 2000, 30: 101-105
    [26] Woodman A S, Anderson E B, Jayne K D, et al., Development of corrosion-resistant coatings for fuel cell bipolar plates, AESF SUR/FIN 99 Proceedings, 1999, 6:21-24
    [27] Wilkinson D P, Voss H H, Prater K, Water management and stack design for solid polymer fuel cells, J. Power Sources, 1994, 49: 117-127
    [28] Uribe F A, Springer T E, Gottesfeld S, Microelectrode study of oxygen reduction at the platinum/recast-nafion film interface, J. Electrochem. Soc., 1992, 139: 765-773
    [29] Mosdale R, Srinivasan S, Analysis of performance and of water and thermal management in proton-exchange membrane fuel-cells, Electrochimica Acta, 1995, 40 (4): 413-421
    [30] Shibili S M A, Noel M, Development and evaluation of platinum ruthenium bimetal catalyst-based carbon electrodes for hydrogen oxygen fuel-cells in Naoh media, J. Power Sources, 1993, 45 (2): 139-152
    [31] Hakenjos A, Muenter H, Wittstadt U, et al., A PEM fuel cell for combined measurement of current and temperature distribution, and flow field flooding, J. Power Sources, 2004, 131: 213-216
    [32] Yoon Y G, Lee W Y, Yang T H, et al., Current distribution in a single cell of PEMFC, J. Power Sources, 2003, 118: 193-199
    [33] Natarajan D, Nguyen T V, Effect of electrode configuration and electronic conductivity on current density distribution measurements in PEM fuel cells, J. Power Sources, 2004, 135: 95-109
    [34] Feindel K W, LaRocque L P A, Starke D, et al., In Situ bservations of Water Production and Distribution in an Operating H2/O2 PEM Fuel Cell Assembly Using 1H NMR Microscopy, J. Am. Chem. Soc., 2004, 126: 11436-11437
    [35] Satija R, Jacobson D L, Arif M, et al, In situ neutron imaging technique for evaluation of water management systems in operating PEM fuel cells, J. Power Sources, 2004, 129: 238-245
    [36] Kucernak A, Ladewig B, Blewitt R, et al, Laser doppler anemometry study of reactant flow in fuel cell channels, 3rd European PEFC Forum, 2005
    [37] Gamburzev S, Boyer C, Appleby A J, An analystical model for single cell PEMFC performance and its use in the evaluation of oxygen enrichment, Proc. fuel cell seminar, 1998. 556–9
    [38] Watkins D S, Dircks K W, Epp D G, Fuel cell fluid flow field plate, US Patent No. 5,108,849, 1992
    [39] Watkins D S, Dircks K W, Epp D G, Novel fuel cell fluid flow field plate, US Patent No. 4,988,583, 1991
    [40] http://www.Ballard.com (Last retrieved on May 2004)
    [41] Wilkinson D P, Lamont G J, Voss H H, et al., Embossed fluid flow field plate for electrochemical fuel cells, US Patent No. 5,521,018, 1996
    [42] Pollegri A, Spaziante P M, Bipolar separator for electrochemical cells and method of preparation thereof, US Patent No. 4,197,178, 1980
    [43] Voss H H, Chow C Y, Coolant flow field plate for electrochemical fuel cells, US Patent No. 5,230,966, 1993
    [44] Johnson M C, Wilkinson D P , Kenna J, et al., Differential pressure fluid flow fields for fuel cells, US Patent No. 6,586,128, 2003
    [45] Lee J H, Lalk T R, Modeling fuel cell stack systems, J. Power Sources, 1998, 73:229-241
    [46] Yoshiaki E, Solid polymer electrolyte fuel cell, US Patent No. 5,922,485, 1999
    [47] Spurrier F R , Pierce B E, Wright M K, Fuel cell plates with improved arrangement of process channels for enhanced pressure drop across the plates, US Patent No. 4,631,239, 1986
    [48] Marvin R H, Carlstrom C M, Fuel cell fluid flow plate for promoting fluid service, US Patent No. 6,500,580, 2002
    [49] Cavalca C, Homeyer S T, Walsworth E, Flow field plate for use in a proton exchange membrane fuel cell, US Patent No. 5,686,199, 1997
    [50] Rock J A, Serially-linked serpentine flow channels for PEM fuel cell, US Patent No. 6,309,773, 2001
    [51] Kaskimies, Kiinte?polymeeripolttokennon virtauskanavien ptimointi, Helsinki University of Technology, Department of Engineering Physics and Mathematics, Master thesis, 2000
    [52] Reiser C A, Sawyer R D, Solid polymer electrolyte fuel cell stack water management system, US Patent No. 4,769,297, 1988
    [53] Wilson M S, Fuel cell with metal screen flow-field, US Patent No. 6,207,310, 2001
    [54] Gamburzev S, Low platinum loading, lightweight PEM fuel cells, Fuel Cells Bulletin, 1999, 2(6):6-8
    [55] Herron, System and method for optimizing fuel cell purge cycles, US Patent No. 6,242,120, 2001
    [56] Yi J S, Nguyen T V, The Effect of the Flow Distributor of the Performance of PEM Fuel Cells, Electrochem Soc Proc 1995, 23:66-75
    [57] Kazim A, Liu H T, Forge P, Modeling of performance of PEM fuel cell with conventional and interdigitated flow fields, J Appl Electrochem, 1999, 29:1409-1416
    [58] Gurau V, Fuel cell collector plates with improved mass transfer channels, US Patent No. 6,551,736, 2003
    [59] Tüber K, Investigation of fractal flow-fields in portable proton exchange membrane and direct methanol fuel cells, J. Power Sources, 2004, 131:175-181
    [60] 钟家轮, 质子交换膜燃料电池的导流板结构改进,中国专利,No. CN00124567.8, 2002
    [61] Besmann T M, Bipolar plate/diffuser for a proton exchange membrane fuel cell, US Patent No. 6,037,073, 2000
    [62] Chow C Y, Wozniczka B, Chan J K K, Integrated reactant and coolant fluid flow field layer for a fuel cell with membrane electrode assembly, Canadian Patent No. 2,274,974, 1999
    [63] Ernst W D, Mittleman G., PEM-type fuel cell assembly having multiple parallel fuel cell sub-stacks employing shared fluid plate assemblies and shared membrane electrode assemblies, US Patent No. 5,945,232, 1999
    [64] Chen F L, Wen Y Z, Chu H S, et al., Convenient two-dimensional model for design of fuel channels for proton exchange membrane fuel cells, J. Power Sources, 2004, 128:125-134
    [65] Watkins D S, Dircks K W, Epp D G, Fuel cell fluid flow field plate, US Patent No. 5,108,849, 1992
    [66] Natarajan D, Nguyen T V, A two-dimensional , two-phase, multicomponent, transient model for the cathode of a proton exchange membrane fuel cell using conventional gas distributors, J Electrochem Soc., 2001, 148(2):A1324-1335
    [67] Susai T, Kaneko M, Nakato K, et al., Optimization of proton exchange membranes and the humidifying conditions to improve cell performance for polymer electrolyte fuel cells, int. J. Hydrogen Energ., 2001, 26:631-637
    [68] Kumar A, Reddy R G, Effect of channel dimensions and shape in the flow-field distributor on the performance of polymer electrolyte membrane fuel cells, J. Power Sources, 2003, 113:11-18
    [69] David P W, Electrochemical fuel cell stack with concurrent flow of coolant and oxidant stream and countcurrent flow of fuel and oxidant streams, US Patent No. 5,773,160, 1998,
    [70] Commenge J M, Falk L, Corriou J P, et al., Optimal Design for Flow Uniformity in Microchannel Reactors, AIChE J., 2002, 48(2):345-358
    [71] Hoogers G, Fuel cell technology handbook, CRC Press, Boca Raton, Fla., 2003
    [72] Kim J, Lee S M, Srinivasan S, et al., Modeling of proton exchange membrane fuel cell performance with an empircal equation, J. Electrochem. Soc., 1995, 142(8):2670-2674
    [73] Lee J H, Lalk T T, Appleby A J, Modeling electrochemical performance in large scale proton exchange membrane fuel cell stacks, J. Power Sources, 1998, 70(2):258-268
    [74] Squadrito G, Maggio G, Passalacqua E, et al., An empirical equation for polymer electrolyte fuel cell (PEFC) behaviour, J. Applied Electrochemistry, 1999, 29:1449-1455
    [75] Pisani L, Murgia G, Valentini M, et al., A new semi-empirical approach to performance curves of polymer electrolyte fuel cells, J. Power sources, 2002, 108(1-2):192-203
    [76] Kulikovsky A A, The voltage–current curve of a polymer electrolyte fuel cell: "exact" and fitting equations , Electrochemistry Communications, 2002, 4(11):845-852
    [77] Amphlett J C, Baumert R M, Mann R F, et al., Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell. I. Mechanistic Model Development , J. Electrochem. Soc., 1995, 142(1):1-8
    [78] Amphlett J C, Baumert R M, Mann R F, et al., Performance Modeling of the Ballard Mark IV Solid Polymer Electrolyte Fuel Cell. II. Empirical Model Development , J. Electrochem. Soc., 1995, 142(1):9-15
    [79] Amphlett J C, Baumert R M, Mann R F, et al., Performance model for PEM fuel cells, Proc. Intersoc. Energy Convers. Eng. Conf., 1993, 28(1):1.1215-1.1220
    [80] Amphlett J C, Baumert R M, Mann R F, et al., Parametric modelling of the performance of a 5-kW proton-exchange membrane fuel cell stack, J. Power Sources, 1994, 49(1-3):349-356
    [81] Yao K Z, Karan K, McAuley K B, et al., A review of mathematical models for hydrogen and direct methanol polymer electrolyte membrane fuel cells, Fuel cells, 2004, 4(1-2):3-29
    [82] Bernardi D M, Verbrugge M W, Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte, AIChE J., 1991, 37(8):1151-1163
    [83] Bernardi D M, Verbrugge M W, A mathematical model of the solid-polymer-electrolyte fuel cell, J. Electrochem. Soc., 1992, 139(9):2477-2491
    [84] Springer T E, Zawodzinski T A, Gottesfeld S, Polymer electrolyte fuel cell model, J. Electrochem. Soc., 1991, 138(8):2334-2342
    [85] Yi J S, Nguyen T V, Multicomponent transport in porous electrodes of proton exchange membrane fuel cells using the interdigitated gas distributors, J. Electrochem. Soc., 1999, 146(1):38-45
    [86] He W, Yi J S, Nguyen T V, Two-phase flow model of the cathode of PEM fuel cells using interdigitated flow fields, AIChE J., 2000, 46(10):2053-2064
    [87] Gurau V, Barbir F, Liu H, An analytical solution of a half-cell. Model for PEM fuel cells, J. Electrochem. Soc., 2000,147(7):2468-2477
    [88] Gurau V, Liu H, Kakac S, Two-dimensional model for proton exchange membrane fuel cells, AIChE J., 1998, 44(11):2410-2422
    [89] Kazim A, Liu H T, Forges P, Modelling of performance of PEM fuel cells with conventional and interdigitated flow fields, J. Appl. Electrochem., 1999, 29(12):1409-1416
    [90] Kulikovsky A A, Divisek J, Kornyshev A A, Modeling the cathode compartment of polymer electrolyte fuel cells: dead and active reaction zones, J. Electrochem. Soc., 1999, 146(11):3981-3991
    [91] West A C, Fuller T F, Influence of rib spacing in proton-exchange membrane electrode assemblies, J. Appl. Electrochem., 1996, 26(6):557-565
    [92] Kulikovsky A A, Divisek J, Kornyshev A A, Two-dimensional simulation of direct methanol fuel cell. A new (embedded) type of current collector, J. Electrochem. Soc., 2000, 147(3):953-959
    [93] Nguyen T V, White R E, A water and heat management model for proton-exchange-membrane Fuel Cells, J. Electrochem. Soc., 1993, 140(8):2178-2186
    [94] Suares G E, Hoo K A, Parameter estimation of a proton-exchange-membrane fuel cell using voltage-current data, Chem. Eng. Sci., 2000, 55(12):2237-2247
    [95] Um S, Wang C Y, Chen K S, Computational fluid dynamics modeling of proton exchange membrane fuel cells, J. Electrochem. Soc., 2000, 147(12):4485-4493
    [96] Wang Z H, Wang C Y, Chen K S, Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells, J. Power Sources, 2001, 94(1):40-50
    [97] Hsing I M, Futerko P M, Two-dimensional simulation of water transport in polymer electrolyte fuel cells, Chem. Eng. Sci., 2000, 55(19):4209-4218
    [98] Bussel H V, Koene F, Mallant R, Dynamic model of solid polymer fuel cell water management, J. Power Sources, 1998, 71(1-2):218-222
    [99] Wang Z H, Wang C Y, Mathematical modeling of liquid-feed direct methanol fuel cells, Proc. Electrochem. Soc., 2001, 4:286-319
    [100] Springer T E, Rockward T, Zawodzinski T A, et al., Model for polymer electrolyte fuel cell operation on reformate feed: effects of CO, H/sub 2/ dilution, and high fuel utilization, J. Electrochem. Soc., 2001, 8(1):A11-A23
    [101] Fuller T F, Newman J, Water and thermal management in solid-polymer-electrolyte fuel cells, J. Electrochem. Soc., 1993, 140(5):1218-1225
    [102] Dannenberg K, Ekdunge P, Lindbergh G, Mathematical model of the PEMFC, J. Appl. Electrochem. 2000, 30(12):1377-1387
    [103] Janssen G J M, A phenomenological model of water transport in a proton exchange membrane fuel cell, J. Electrochem. Soc., 2001, 148(12):A1313-A1323
    [104] Kulikovsky A A, Quasi three-dimensional modelling of the PEM fuel cell: comparison of the catalyst layers performance, Fuel cells, 2001, 1(2):162-169
    [105] Costamagna P, Transport phenomena in polymeric membrane fuel cells, Chem. Eng. Sci., 2001, 56(2):323-332
    [106] Berning T, Lu D M, Djilali N, Three-dimensional computational analysis of transport phenomena in a PEM fuel cell, J. Power Sources, 2002, 106(1-2):284-294
    [107] Dutta S, Shimpalee J W, Zee V, Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell, Int. J. Heat Mass Transfer, 2001, 44(11):2029-2042
    [108] Dutta S, Shimpalee J W, Zee V, Three-dimensional numerical simulation of straight channel PEM fuel cells, J. Appl. Electrochem., 2000, 30(2):135-146
    [109] Ju H, Wang C Y, Experimental validation of a PEM fuel cell model by current distribution data, J. Electrochem Soc, 2004, 151:A1954-A1960
    [110] Meng H, Wang C Y, Large-scale simulation of polymer electrolyte fuel cells by parallel computing, Chem. Eng. Sci., 2004, 59: A3331-A3343
    [111] Pasaogullari U, Wang C Y, Two-phase transport and the role of micro-porous layer in polymer electrolyte fuel cells, Electrochimica Acta, 2004, 49: 4359-4369
    [112] Pasaogullari U, Wang C Y, Liquid Water Transport in Gas Diffusion Layer of Polymer Electrolyte Fuel Cells, J. Electrochem. Soc., 2004, 151: A399-A406
    [113] Meng H, Wang C Y, Electron Transport in PEFCs, J. Electrochem. Soc., 2004, 151: A358-A367
    [114] Um S, Wang C Y, Three-dimensional Analysis of Transport and Electrochemical Reaction in Polymer Electrolyte Fuel Cells, J. Power Sources, 2004, 125:40-51
    [115] Pasaogullari U, Wang C Y, Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells, 2002 Fluent Users Group Meeting, Manchester, NH, 2002
    [116] Kimble M C, Vanderborgh N E, Reactant gas flow fields in advanced PEM fuel cell designs, Proc. Intersoc. Energy Convers. Eng. Conf., 1992, 27(3):3.413-3.417
    [117] Thirumalai D, White R E, Mathematical modeling of proton exchange membrane fuel cell stacks, J. Electrochem. Soc., 1997, 144(5):1717-1723
    [118] Levie R D, Adv. Electrochem. Eng., Interscience, New York, 1967
    [119] Keddam M, Rakotomavo C, Takenouti H, Impedance of a porous electrode with an axial gradient of concentration, J. Appl. Electrochem., 1984, 14: 437-448
    [120] Cachet C, Wiart R, Couple axial gradients of potential and concentration in a cylindrical pore electrode: an impedance model, J. Electroanal. Chem., 1985,195:21-37
    [121] Wang Q, Eikerling M, Song D, et al., Structure and performance of different types of agglomerates in cathode catalyst layers of PEM fuel cells, J. Electroanal. Chem. 2004, 573:61-69
    [122] Jaouen F, Lindbergh G, Sundholm G, Investigation of mass-transport limitations in the solid polymer fuel cell cathode, I. Mathematical model, J. Electrochem. Soc., 2002, 149(4):A437-A447
    [123] Jaouen F, Lindbergh G, Sundholm G, Investigation of mass-transport limitations in the solid polymer fuel cell cathode, II. Experimental, J. Electrochem. Soc., 2002, 149(4):A448-A454
    [124] Gloaguen F, Durand R, Simulations of PEFC cathodes: an effectiveness factor approach, J. Applied Electrochem., 1997, 27:1029-1035
    [125] Broka K, Ekdunge P, Modelling the PEM fuel cell cathode, J. Applied Electrochem., 1997, 27:281-289
    [126] Bultel Y, Ozil P, Durand R, Concentration and potential distributions in the active layer of proton exchange membrane fuel cell electrodes, J. Appl. Electrochem., 2000, 30(12):1369-1376
    [127] Jaouen F, Electrochemical characterization of porous cathodes in the polymer electrolyte fuel cell, Doctoral Thesis, 2003, Department of Chemical Engineering and Technology Applied Electrochemistry, Kungl Tekniska skolan Stockholm
    [128] Marr C, Li X G, Composition and performance modelling of catalyst layer in a proton exchange membrane fuel cell, J. Power Sources, 1999, 77(1):17-27
    [129] Baschuk J J, Li X G, Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding, J. Power Sources, 2000, 86(1-2):181-196
    [130] 陶文铨,数值传热学(第二版),西安:西安交通大学出版社,2001
    [131] Smith G D, Numerical solutions of partial differential equations (finite difference methods), 3rded, Oxford: Clarendon Press, 1985
    [132] 刘西云,赵润详,流体力学中的有限元法与边界元法,上海:上海交通大学出版社,1993
    [133] Siegel N P, Development and validation of a computational model for a proton exchange membrane fuel cell, Doctoral Thesis, 2003, Department of Mechanical Engineering, Blacksburg Virginia
    [134] Hoshen J, Kopelman R, Percolation and cluster distribution. I. Cluster multiple labelling technique and critical concentration algorithm, Phys. Rev. B, 1976, 14:3438-3445
    [135] Latour L L, Mitra P P, Kleinberg R L, et al., Time-dependent diffusion coefficient of fluids in porous media as a probe of surface-to-volume ratio. J. Magn. Reson., 1993, A101:342-346
    [136] Curtiss C F, Bird R B, Multicomponent diffusion, Ind. Eng. Chem. Res., 1999, 38:2515-2522
    [137] Broka K, Characterization of the component of the proton exchange membrane fuel cell, Doctorial thesis, Royal Institute of Technology, Stockholm, 1995
    [138] Kulikovsky A A, Gas dynamics in channels of a gas-feed direct methanol fuel cell: exact solutions, Electrochemistry Communications, 2001, 3:572-579
    [139] 胡军,衣宝廉,侯中军等,采用常规条形流场的质子交换膜燃料电池阴极数值模拟(I):模型建立,化工学报,2004, 55:91-95
    [140] 胡军,衣宝廉,侯中军等,采用常规条形流场的质子交换膜燃料电池阴极数值模拟(I):电池性能影响因素的分析,化工学报,2004, 55:96-100
    [141] Dohle H, Jung R, Kimiaie N, et al., Interaction between the diffusion layer and the flow field of polymer electrolyte fuel cells—experiments and simulation studies, J. Power Sources, 2003, 124:371-384
    [142] Toray Industries, Inc, Toray carbon fiber paper TGP-H, 2005
    [143] Huppert H E, The propagation of two-dimensional and axisymmetric viscous gravity currents over a rigid horizontal surface, J. Fluid Mech., 1982, 121:43-58
    [144] Liu Z X, Mao Z Q, Wu B, et al., Current density distribution in PEFC, J.Power Sources, 2005, 141(2): 205-210
    [145] Yoon Y G, Lee W Y, Park G G, et al., Effects of channel configurations of flow field plates on the performance of a PEMFC, Electrochimica Acta, 2004, 50: 709-712
    [146] Li X, Sabir I, Review of bipolar plates in PEM fuel cells: Flow-field designs, Int. J. Hydrogen Energy, 2005, 30: 359-371
    [147] Weber A Z, Newman J, A theoretical study of membrane constraint in polymer-electrolyte fuel cells, AIChE Journal, 2004, 50: 3215-3226
    [148] Srinivasan S, Ticianelli E A, Derouin C R, et al., Advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes, J. Power Sources, 1988, 22:359-375
    [149] Chu D, Jiang R, Performance of polymer electrolyte membrane fuel cell (PEMFC) stacks. Part I. Evaluation and simulation of an air-breathing PEMFC stack, J. Power Sources, 1999, 83: 128-133
    [150] Chu D, Jiang R, Walker C, Analysis of PEM fuel cell stacks using an empirical current-voltage equation, J. Appl. Electrochem., 2000, 30: 365-370
    [151] Jiang R, Chu D, Stack design and performance of polymer electrolyte membrane fuel cells, J. Power Sources, 2001, 93: 25-31
    [152] Eaton B, Spakovsky M R, Ellis M W, et al., One-Dimensional, transient model of heat, mass and charge transfer in a proton exchange membrane, Proceedings of IMECE, 2001
    [153] Springer T E, Gottesfeld S, Pseudohomogeneous catalyst layer model for polymer electrolyte fuel cell, Proc. of the Symposium on modeling of batteries and fuel cells, PV 91-10: 197-208
    [154] Marr C, Li X, Composition and performance modeling of catalyst layer in a proton exchange membrane fuel cell, J. Power Sources, 1999, 77:17-27
    [155] Sui P C, Chen L D, Seaba J P, et al., Modeling of optimization of a PEMFC catalyst layer, SAE Congress, 1999, 1999-01-0539: 61-70
    [156] Wang Z H, Wang C Y, Two-Phase flow and transport in the interdigitated air cathode of proton exchange membrane fuel cells, Proceeding ASME Heat Transfer Division, 2000, HTD-366-1: 27-33
    [157] Natarajan D, Nguyen T V, Three-dimentional effects of liquid water flooding in the cathode of a PEM fuel cell, J. Power Sources, 2003, 115:66-80

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700