典型热塑性装饰材料火灾特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热塑性装饰材料因其质轻、便宜、加工方便和防水、耐腐蚀等优点,在建筑中得到了广泛的应用。然而热塑性装饰材料在建筑火灾中,会释放出大量的有毒烟气,通过壁面火蔓延或流动火蔓延,为火灾向邻区发展提供通道,扩大火灾面积并强化室内火灾,加速室内火灾的发展过程。
     以往的装饰材料火灾研究主要集中在“热固型”材料,对于热塑性装饰材料的火灾行为研究非常少,热塑性材料的受热流动特性其火灾行为与“热固型”材料的火灾行为有很大的差异,因此本文的目标是对热塑性装饰材料的火灾特性进行研究。根据实际情况选取了五种常见的热塑性装饰材料PP(聚丙烯)、PE(聚乙烯)、PS(聚苯乙烯)、PMMA(聚甲基丙烯酸甲脂)和PVC(聚氯乙稀)装饰板作为研究对象,运用小尺寸实验和全尺寸实验相结合的方法进行火灾特性研究。
     小尺寸实验采用热失重分析仪(TG)和锥形量热仪(Cone),热失重分析仪用于研究材料的热解特性,分析了材料在空气中的热解过程和热解动力学,为热塑性装饰材料火灾行为的研究提供最基础的支持。锥形量热仪用于研究材料的小尺寸燃烧性能,分析了材料厚度与外加热辐射通量对材料的点燃时间、热释放速率和质量损失速率等火灾参数的影响。利用无量纲化、数值模拟和线性拟合的方法建立了预测热薄型、热中型和热厚型材料的点燃时间公式,以无量纲热辐射通量的形式给出了各预测公式的适用范围,并验证了其可靠性。
     目前建筑装饰材料的对火行为测试标准很难能够反映热塑性装饰材料的火灾行为,因此本文根据火灾中热塑材料的受热行为,基于ISO 9705热释放速率实验台,设计并搭建了热塑性装饰材料火灾行为实验平台。利用该实验平台研究了材料种类、材料厚度、点火源功率、地板材料和熔融流动能力对热塑性装饰材料全尺寸火灾行为的影响,测量了热释放速率、油池与油池火面积、火焰高度等关键的火灾参数。通过对实验数据的分析提出了热塑性装饰材料的流动燃烧与固体表面燃烧两种燃烧形式,运用材料热解机理对燃烧形式进行了解释,分析得到影响热塑性装饰材料火灾行为的重要因素。
     在实验研究文献分析基础上,提出了热塑性装饰材料火灾过程模拟的困难与方向,利用场模拟软件FDS对热塑性装饰材料固体表面燃烧过程进行了模拟计算,分析了FDS对固体表面燃烧过程模拟的适用性。根据顺流火蔓延理论,推导了无点火源作用下壁面向上火蔓延的计算公式,并对固体表面燃烧火灾过程进行了模拟,验证了推导的计算公式的适用性。
Thermoplastic lining materials, due its light weight, low cost, easy manufacturing, waterproof, are widely used in all types of buildings to cover floors, walls and ceilings. When subject to fire, thermoplastic materials would release lots of toxic smoke, provide routes to adjacent zones through surface flame spread or melt flow flame spread, increase fire area, intensify and accelerate enclosure fire growth.
     Previous research was focused on 'thermoset' materials, which do not show melt flow in fire, and there were little research on thermoplastic linings, whose melting behavior makes it different from other materials. The aim of this thesis is to study the fire performance of thermoplastic linings. The most common commercial thermoplastic linings, PP, PE, PS, PMMA and PVC, were selected and tested on small scale and large scale experiments to explore their fire behavior.
     Small scale experiments were carried out on thermogravimetry and cone calorimeter respectively. Through thermogravimetric analysis, materials' thermal decomposition characteristics were studied, the process and kinetics of thermal decomposition were analyzed and discussed, which provided foundermental support for fire performence research on thermoplastics. Combustibility were studied through cone calorimeter, the effect of lining thickness and external irradiance levels on ignition, heat release rate and mass loss rate were investigated. Based on dimensionless analysis, numerical calculation and linear regression methods, formulae of ignition for thermally thin, intermediate thermally thick and thermally thick materials were established with applicable range given in the form of dimensionlessparameter for each formula, and the reliability were proved through comparison with experiments and literature.
     Since there are no published 'standard tests' capable of revealling real fire performance of thermoplastic linings, especially the melt flow behavior, a rig for test on fire behavior of thermoplastic linings was established based on the ISO9705 heat release rate measurement platform. The effect of material type, thickness, ignitor, flooring and melt flow viscosity were explored, the parameters such as heat release rate, pool and pool fire growth, lining surface temperatures, pool temperatures and flame height were obtained. Through the data analysis, two types of burning modes for thermoplastic linings, melt flow burning and solid surface burning, were discovered, the reasons for each mode were explained with the thermal decomposition mechanisms and the important factors affecting thermoplastic lining fire behavior were identified.
     Difficulties and advices for simulation of thermoplastic lining fire behavior were put forward based on expermtal research and literature. CFD software FDS was used to simulate solide surface burning process, and its applicability was discussed. A formula for upward flame spread without ignitor, which is proved to be capable of simulating the solide surface combustion, was deduced from the concurrent flame spread theory.
引文
1.王晔,室内装修的火灾危险性.消防技术与产品信息,1998(2):p.43-50.
    2. ISO5660, Fire-Reaction to Fire-Rate of Heat Release from Building Products. 1991, International Standards Organization.
    3. ISO 9705, Fire Tests-Full Scale Room Test for Surface Product. 1993, International Standards Organization
    4. Proceedings of EUREFIC Seminar. 1991. London: Interscience Communications Ltd.
    5. Gann, R. G., NIST Research On Less Flammable Materials. SAMPE Journal, 1996: p. 16-20.
    6. Shields, T. J., G. W. Silcock, and M. A. Azhakesan, A Comparison of Fire Retarded and Non-Fire Retarded Wood-based Wall Linings Exposed to Fire in an Enclosure. Fire and Materials, 1999. 23: p. 17-25.
    7. Wickstrom, U. and U. Goransson, Prediction of heat release rates of surface materials in large-scale fire test based on cone calorimeter results. ASTM Journal of Testing and Evaluation, 1987.
    8. Goransson, U. and U. Wickstrom. Flame spread prediction in the room/corner test based on the cone calorimeter. Interflam symposium. 1990.
    9. Karlsson, B., A mathematical model for calculating heat release rate in the room corner test. Fire Safety Journal, 1993. 22: p. 93-113.
    10. Karlsson, B., Models for Calculating Flame Spread on Wall Lining Materials and the Resulting Heat Release Rate in a Room. Fire Safety Journal, 1994.23: p. 365-386
    11. Quintiere, J. G., A simulation model for fire growth on materials subject to a room-comer test. Fire Safety Journal, 1993. 20: p. 313-339.
    12. Quintiere, J. G., G. Haynes, and B. T. Rhodes, Applications of a model to predict flame spread over interior finish materials in a compartment. Journal of Fire Protection Engineering, 1995. 7(1): p. 1-13.
    13.王正洲,范维澄,常用高分子装饰材料的燃烧特性.火灾科学,1999.8(3):p.67-71.
    14. Zhang, J., Yang Feng-ke, Effects of Surface Flame Spread of Plywood Lining on Enclosure Fire in a Modified ISO Room. Journal of Fire Science, 2003. 21: p. 67-83.
    15.张和平,王蔚,杨昀等,在全尺寸墙角火实验中木工板表面火蔓延的研究.燃烧科学与技术,2004.10(6):p.506-510.
    16.张和平,聂磊,张军等,建筑装饰板材的ISO ROOM 大型热释放速率测试与研究放速率.火灾科学,2003.12(2):p.105-114.
    17.张和平,蔡智敏,室内火灾条件下复合板装潢材料火灾特性的实验研究.火灾科学,1999. 8(2):p.21-28.
    18.杨昀.张和平,王蔚,典型建筑装饰材料热释放速率全尺寸火灾实验研究.火灾科学.2003.12(4):p.191-196.
    19. YANG, Y., et al. Effects of Surface Flame Spread of Block board Lining on Enclosure Fire in the ISO Room Comer Fire Test. in Progress in Safety Science and Technology. 2004. shanghai. China: Science Press.
    20.杨昀,装饰胶合板火灾特性及对室内火灾发展的影响.中国科学技术大学,博士论文,2005.
    21. J. Zhang, T. J. Shields and G. W. H. Silcock. Effect of Melting Behaviour on Upward Flame Spread of Thermoplastics. Fire and Materials, 1997. 21(1): p. 1-6.
    22. J. Zhang, T. J. Shields and G. W. H. Silcock. Fire Hazard Assessment of Polypropylene Wall Linings Subjected to Small Ignition Sources. Fire Sciences, 1996, 14: p. 67-84.
    23. T. J. Ohlemiller, J. Shields, K. Butler. Exploring the Role of Polymer Melt Viscosity in Melt flow and Flammability Behaviour. New Developments and Key Market Trends in Flame Retardancy. Fall Conference. Proceedings. Fire Retardant Chemicals Association. Lancaster, P A, 2000: p. 1-28.
    24. T. J. Ohlemiller, K. Butler. Influence of Polymer Melt Behavior on Flammability. Fifteenth Meeting of the UJNR Panel on Fire Research and Safety, 2000.
    25. Jo Sherratt, D Drysdale. The effect of melt flow process on the fire behaviour of thermoplastics. Inter flame 2001 9th international fire science and engineering conference, Greenwich, London: West Yard House, 2001: p. 149-150.
    26. Jo Sherratt, The effect of thermoplastic melt flow behaviour on the dynamics of fire growth. Doctoral Dissertation, University of Edinburg, 2001.
    27. K. Butler, T. J. Ohlemiller and G. T. literis. A Progress Report on Numerical Modelling of Experimental Polymer Melt Flow Behaviour. fire. nist. gov/bfrlpubs/fire04/PDF/f04032. pdf
    1.钟世云,许乾慰,王公善.聚合物降解与稳定化.北京化学工业出版社,2002
    2. Craigl. Beyler and Marcelo M. Hirschler. Thermal Decomposition of Polymers. SFPE handbook.
    3.w.L.霍金斯著,吕世光译,聚合物的稳定化,北京:轻工业出版社,1981.
    4. Tsuchiya Y and Sumi K, Thermal decomposition Products of Poly(vinylalcohol), Journal of Polymer Science, PartA-1, 1969, 7(11 ): p. 3151-3158.
    5.w.施纳叭尔著,陈用烈,张培尧,宋中键译,聚合物降解原理及应用,北京:化学工业出版社,1981.
    6. Quintiere, J. G., A Semi-Quantitative Model for the Burning Rate of Solid Materials. NIST, 1992.
    7. Mikkola, E. and I. Wichman, On the Thermal Ignition of Combustible Materials. Journal of Fire and Materials, 1989. 14: p. 87-96.
    8. Brian T. Rhodes and James G. Quintiere. Burning rate and flame heat flux for PMMA in a cone calorimeter. Fire Safety Journal, 1996. 26: p, 221-240.
    9. D. Hopkins Jr and J. G. Quintiere. Material Fire Properties and Predictions for Thermoplastics. Fire Safety Journal, 1996. 26: p. 241-268.
    10. Janssens, M. A. Thermal Model for Pioted Ignition of Wood Including Variable Thermophysical Properties. in Proceedings of the Third International Symposium. 1991.
    11.邹样辉,固体可燃物表面火蔓延研究.2001.中国科学技术大学:合肥.
    12. Quintiere, J. G., SFPE Handbook of Fire Protection Engineering. 2nd ed. 1995: National Fire Protection Assoction.
    13. Incropera, F. P. and D. P. D. Witt, Fundamentals of Heat and Mass Transfer. 1990: John Wiley and Sons.
    14. Sation, K., J. G. Quintiere, and F. A. Williams. Upward turblent flame spread, in Fire Safety Science-Proceedings of the First International Symposium. 1985: Hemishpere Publishing Corporation.
    15. Thomas, P. H., On concurrent upward surface spread of flame. Fire Safety Journal, 1994. 22: p. 89-99.
    16. Williams, F. A., Mechanisms of fire spread, in Proceedings of the Sixteenth Internaitonal Symposium on Combustion. 1977.
    1.李余增,热分析,北京:清华大学出版社,1987.
    2.神户太郎编,刘震海译,热分析,北京:化学工业出版社,1979.
    3.陈镜泓,李传儒,热分析及其应用,北京:科学出版社,1985.
    4.张美珍主编,聚合物研究方法,北京:中国轻工业出版社,2000.
    5. Babrauskas, V. and R. D. Peacock, Heat Release Rate: The Single Most Important Variable in Fire Hazard. Fire Safety Journal, 1992. 18: p. 255-272.
    6. Huggett, C., Estimation of rate of heat release by means of oxygen consumption measurements. Fire and Materials, 1980.4: p. 61-65.
    7. Parker, W. J., Calculations of the Heat Release Rate by Oxygen Consumption for Various Applications. NBSIR 81-2427 National Bureau of Standards, Gaitherburg, MD, 1982.
    8. ISO5660, Fire-Reaction to Fire-Rate of Heat Release from Building Products. 1991. International Standards Organization.
    9. ASTM E1354, Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using Oxygen Consumption Calorimeter, 1997. American Society for Testing and Materials.
    10.王庆国,张军,张峰,锥形量热仪的工作原理及应用.现代科学仪器,2003.6:p.36-39.
    11. J. Zhang, T. J. Shields and G. W. H. Silcock. Effect of Melting Behaviour on Upward Flame Spread of Thermoplastics. Fire and Materials, 1997. 21(1): p. 1-6.
    12. J. Zhang, T. J. Shields and G. W. H. Silcock. Fire Hazard Assessment of Polypropylene Wall Linings Subjected to Small Ignition Sources. Fire Sciences, 1996. 14: p. 67-84.
    13. Jo Sherratt, D Drysdale. The effect of melt flow process on the fire behaviour of thermoplastics. Inter flame 2001 9th international fire science and engineering conference, Greenwich, London: West Yard House, 2001: p. 149-150.
    14. Jo Sherratt. The effect of thermoplastic melt flow behaviour on the dynamics of fire growth. Doctoral Dissertation, University of Edinburg, 2001.
    15. ISO 9705, Fire Tests-Full Scale Room Test for Surface Product. 1993. International Standards Organization.
    16. Janssens, M. L., Measuring Rate of Heat Release by Oxygen Consumption. Fire Technology, 1991. 27: p. 235-249.
    17. Janssens, M., Heat Release in Fires, chapter 9 Determining Flame Spread Properties From Cone Calorimeter Meaurements. 1992: Elsevier Applied Science.
    1.钟世云,许乾慰,王公善.聚合物降解与稳定化.北京化学工业出版社,2002
    2. A ubebert R, A ubineau C. Kinetics of styrene po lymerization at ultrah igh conversion. J Chem Phys, 1969. 66: p. 414-420.
    3. J. H. Chan and S. T. Balke., The thermal degradation kinetics of polypropylene: PartⅢ. Thermogravimetric analyses. Polymer Degradation and Stability, 1997. 57: p. 135-149.
    4. Zhiming Gao, Iwao Amasaki, Masahiro Nakada. A thermogravimetric study on thermal degradation of polyethylene. Journal of Analytical and Applied Pyrolysis, 2003. 67: p. 1-9.
    5. H. Bockhorn, A. Hornung, U. Hornug. Mechanisms and kinetics of thermal decompositon of plastics from isothermal and dynamic measurements. Journal of Analytical and Applied Pyrolysis, 1999. 50: p. 77-101.
    6. H. Bockhorn, A. Hornung, U. Hornug, et al. Kinetic study on the thermal degradation of polypropylene and polythylene. Journal of Analytical and Applied Pyrolysis, 1999. 48: p. 93-109.
    7. E. Ranzi, M. Dente, T. Faravelli. Kinetic modeling of polyethylene and polypropylene thermal degradation. Journal of Analytical and Applied Pyrolysis, 1997. 40-41: p. 305-319.
    8. H. Bockhorn, A. Hornung, U. Hornug, et al. Dehydrochlorination of plastic mistures. Journal of Analytical and Applied Pyrolysis, 1999. 49: p. 97-106.
    9.汤子强,聚苯乙烯热解反应动力学.太原理工大学学报,1999.30(5):p.496-499.
    10. Serge Bourbigot, Jeffrey W. Gkilman, Charles A. Wilkie. Kinetic analysis of the thermal degradation of polystyreneemontmorillonite nanocomposite. Polymer Degradation and Stability, 2004. 84: p. 483-492.
    11. Xinsheng Zhu. Effects of acids on thermal and thermo-oxidative degradation of polystyrene. Polymer Degradation and Stability, 1997. 57: p. 163-173.
    12. Yong-Shine Cho, Mi-ja Shim, Sang-Wook Kim. Thermal degradation kinetics of PE by the Kissinger equation. Materials Chemistry and Physics, 1998. 52: p. 94-97.
    13. Craigl. Beyler and Marcelo M. Hirschler. Thermal Decomposition of Polymers. SFPE handbook.
    14. Denq B L, Ch iu W Y, L in K F. J. App 1. Po lym. Sci. ,1997. 66: p. 1855.
    15. Kashiwagi T, Inaba A, Brown J E, et al. Macromolecules, 1986.19 : p. 2160
    16. Grassie N, Scott G, Polymer Degradation and Stabilization, Cambridge University Press, Cambridge, 1985.
    17.曾文茹,李疏芬,周允基,聚甲基丙烯酸甲酯氧化热降解的化学动力学研究.化学物理学报,2003.16(1):p.64-68
    18.曾文茹,李疏芬,周允基.聚甲基丙烯酸甲酯的热降解研究进展.高分子材料科学与工程,2003.19(3):p.12-16.
    19. T. C. Chang and K. H. Wu. The effect of silicon and phosphorus on the thermo-oxidative degradation of poly(methyl methacrylate). Polymer Degradation and Stability, 1997. 57: p. 325-330.
    20. M. Ferriol, A. gentilhomme, M. Cochez, et al. Thermal degradation of poly(methyl methacrylate): modeling of DTG and TG curves. Polymer Degradation and Stability, 2003. 79: p. 271-281.
    21. Jellinek, H. H. G., and Kachi, H., J. Polym. Sci. Part C 1968. 23: p. 87-95.
    22. H. Arisawa and T. B. Brili. Kinetics and Mechanisms of Flash Pyrolysis of poly(methyl methacrylate). Combustion and Flame, 1997. 109: p. 415-426.
    23.Wang Zhengzhou,Wang Ying,Metcalfe E.Thermogrvimetric Analysis of PVC Materials.中国科学技术大学学报,1998.28(5):p.598-603.
    24.金杨.不同热流条件下聚合物的热解动力学研究.硕士论文,青岛科技大学,2004.
    25.郑学刚.PVC热解行为及动力学研究.硕士论文,华东理工大学,2002.
    26. Hjerberg T, Sorvik E M. Degradation and stability of PVC, Ed. E. D. Oven. Elsevier Applied Science, London, 1984.
    1.季经纬,杨立中,范维澄,外部热辐射对材料燃烧性能影响的实验研究.燃烧科学与技术,2003.9(2):p.139-143.
    2.陈晓军,季经纬,杨立中等,外界热辐射作用下木材热解和着火的预测模型.火灾科学,2002.11(3):p.147-151.
    3. Richard D. P, Paul A. R, Richard W. B., Defining flashover for fire hazard calculations. Fire Safety Journal, 1999. 32: p. 331-345.
    4. Janssens, M. A. Thermal Model for Pioted Ignition of Wood Including Variable Thermophysical Properties. in Proceedings of the Third International Symposium. 1991.
    5. Mikkola, E. and I. Wichman, On the Thermal Ignition of Combustible Materials. Journal of Fire and Materials, 1989. 14: p. 87-96.
    6. Brian T. Rhodes and James G. Quintiere. Burning rate and flame heat flux for PMMA in a cone calorimeter. Fire Safety Journal, 1996. 26: p. 221-240.
    7. Quintiere, J. G and Rhodes, B. T., Fire growth models for materials. M. S. Thesis, Department of Fire Protection Engineering, University of Maryland, 1994.
    8. Thomson, H. E & Drysdale, D. D., Flammability of plastics Ⅰ: ignition temperatures. Fire and Materials, 1987. 11(4 ): p. 163-172.
    9. G. W. H. Silcock and T. J. shields, A Protocol for Analysis of Time to Ignition Data From Bench Scale Tests. Fire Safety Journal, 1995. 24(1): p. 75-95.
    10. CHEN Chang kun, WANG Jian, Liao Guang xuan, et al. Study on the Heat Release Rate of Solid Materials Burned in Limited Space. Journal of Combustion Science and Technology, 2002, 8(2): p. 122-125
    11. Takashi Kashiwagi, Polymer Combustion and Flammabilty-Role of the Condensed Phase. Twenty-Fifth Symposium on Combustion/The Combstion Institue, 1994: 1423-1437.
    12. Messerschmidt B, Van Hees pP, Wickstrom U, Conference Proceedings,Vollume 1, Interflam 99, 8th International Fire Science and Engineering Conference, Edinburgh, Scotland, 29th, 1999, Interscience Communications: London, 1999, 11-22.
    13. Tran, H. and R. White, Burning rate of solid wood measured in a heat release rate calorimeter. Fire and Materials, 1992. 16: p. 197-206.
    1. J. Zhang, T. J. Shields and G. W. H. Silcock, Effect of Melting Behaviour on Upward Flame Spread of Therrnoplastics. Fire and Materials, 1997. 21(1): p. 1-6.
    2. J. Zhang, T. J. Shields and G. W. H. Silcock, Fire Hazard Assessment of Polypropylene Wall Linings Subjected to Small Ignition Sources. Fire Sciences, 1996. 14: p. 67-84
    3. Jo Sherratt, D Drysdale, The effect of melt flow process on the fire behaviour of thermoplastics. Inter flame 2001 9th international fire science and engineering conference, Greenwich, London: West Yard House, 2001: p. 149-150.
    4. Jo Sherratt. The effect of thermoplastic melt flow behaviour on the dynamics of fire growth. Doctoral Dissertation, University of Edinburg, 2001.
    5. BS5825-1990. Methods of Test for Assessment of the Ignitability of Upholstered Seating by Smoldering and Flaming Ignition Sources, British Standard Institution, London, 1990.
    6.钟世云,许乾慰,王公善.聚合物降解与稳定化.北京化学工业出版社,2002
    7. Craigl. Beyler and Marcelo M. Hirschler. Thermal Decomposition of Polymers. SFPE handbook.
    8. T. J. Ohlemiller, J. Shields, K. Butler. Exploring the Role of Polymer Melt Viscosity in Melt flow and Flammability Behaviour. New Developments and Key Market Trends in Flame Retardancy. Fall Conference. Proceedings. Fire Retardant Chemicals Association. Lancaster, P A, 2000: p. 1-28.
    9.尼尔生著.聚合物流变学.北京科学出版社,1983.
    10. Saito, K., Quintiere, J., and Williams, F. A., Upward turbulent flame spread. Fire Safety Science: Proceedings of the First International Symposium, editors: C. E. Grant and P. J, Pagni, Hemisphere Pub. Cop., Washington, 1991, pp. 75~86
    1. Wickstr6m, U. and U. Goransson, Prediction of heat release rates of surface materials in large-scale fire test based on cone calorimeter results. ASTM Journal of Testing and Evaluation, 1987.
    2. Goransson, U. and U. Wickstrom. Flame spread prediction in the room/corner test based on the cone calorimeter, in Interflam symposium. 1990.
    3. Karlsson, B., A mathematical model for calculating heat release rate in the room corner test. Fire Safety Journal, 1993.22: p. 93-113.
    4. Karlsson, B., Models for Calculating Flame Spread on Wall Lining Materials and the Resulting Heat Release Rate in a Room. Fire Safety Journal, 1994.23: p. 365-386
    5. Quintiere, J.G., A simulation model for fire growth on materials subject to a room-corner test. Fire Safety Journal, 1993.20: p. 313-339.
    6. Quintiere, J.G., G. Haynes, and B.T. Rhodes, Applications of a model to predict flame spread over interior finish materials in a compartment. Journal of Fire Protection Engineering, 1995. 7(1): p. 1-13.
    7. K.Butler, T.J.Ohlemiller and G.T.literis. A Progress Report on Numerical Modelling of Experimental Polymer Melt Flow Behaviour. fire.nist.gov/bfrlpubs/fire04/PDF/f04032.pdf
    8. Ostman, B.A.-L. and L.D. Tsantaridis, Correlation between cone calorimeter data and time to flashover in the room fire test. Fire and Materials, 1994. 18: p. 205-209.
    9. Hansen, A.S. and P.J. Hovde, Prediction of Time to Flashover in the ISO 9705 Room Corner Test based on Cone Calorimeter Test Results. Fire and Materials, 2002.26: p. 77-86.
    10. B. Ostman and R. Nussbaum, Correlation between small-scale rate of heat release and full-scale room flashover for surface linings. IAFSS Symposium, Tokyo,1988.
    11. McGrattan, K.B., et al., Fire Dynamics Simulator (Version 3) -User's Guide. 2002: National Institute of Standards and Technology.
    12. Baum, H.R., K.B. McGrattan and R.G.Rehm. Three Dimensional Simulations of Fire Plume Dynamics, Fire Safety Science-Proceedings of the fifth international symposium: 511-522.
    13. Saito, K., Quintiere, J., and Williams, F. A., Upward turbulent flame spread. Fire Safety Science: Proceedings of the First International Symposium, editors: C. E. Grant and P. J. Pagni, Hemisphere Pub. Cop., Washington, 1991, p. 75-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700