气泡雾化细水雾灭火有效性模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细水雾作为哈龙替代品之一,由于灭火高效、无毒、价格低廉和环境友好等优良特性,在全球范围内受到普遍重视并得到广泛研究。传统的细水雾发生方法都有着或多或少的缺点和局限性,因此国内外的很多研究机构正致力于开发研究新型的细水雾发生方法,以充分发挥细水雾灭火技术的优越性,使其能在更广泛的领域内得到应用。气泡雾化技术作为一种新型的内混式双流体雾发生技术具有工作压力低、雾化效果好、用气量少以及简单可靠等众多优点,它已经在内燃机、燃气轮机、工业锅炉、废液焚化炉和制药等方面得到了广泛的应用,但在灭火方面的应用仍属于空白。
     本文根据气泡雾化技术的特点及有效灭火对细水雾雾场特性的要求,首先研究发展了基于气泡雾化的细水雾发生方法,并构建了气泡雾化细水雾发生的模拟实验系统。然后使用所设计的系统研究了气泡雾化喷嘴的流量特性,并通过拟合分析求出了液体流量与GLR(气液质量流量比)和气体注入压力之间的数学关系。实验中发现气泡雾化喷嘴的流量系数主要受到气液流量比、注入压力以及喷嘴结构等的影响。
     利用高速摄影的方法研究了气泡雾化喷嘴内部的两相流型和喷嘴外部的雾场结构及液相破碎过程,分析了气泡雾化的机理。结果表明,随着液体流量的减小和GLR的增大,气泡雾化喷嘴内部的两相流动从稳定的泡状流态变化到不稳定的过渡态,再到相对稳定的环状流态。选取合适的最大截面含气率α_(max)值,可用漂移流动模型来获得泡状流态和过渡态的转换标准。而基于漂移流动模型,使用截面含气率和流动的关系来模拟环状流动可以获得过渡态和环状流态的转换标准。对于我们的实验,泡状流态至过渡态的α_(max)=0.7,过渡态至环状流态的α_(max)=0.784。当喷嘴内部为泡状流动时,气泡爆破将周围液膜击碎成小液滴,而两层气泡之间的带状液膜则破碎为大液滴。当喷嘴内部为环状流动时,连续喷出的气体在喷口附近很短的距离内由于膨胀和剪切作用将液膜破碎成液丝和液滴。过渡态流动下,喷雾则间歇显示出泡状流态和环状流态下的模式。由于喷嘴内部流型的转变,气泡雾化细水雾存在不稳定的现象,其变化规律与两相流型是对应的。
     作为气泡雾化细水雾灭火性能研究的基础,测量了不同工况下气泡雾化细水雾的四个雾特性参数,其中应用激光多普勒分析仪测量细水雾的平均粒径和三维平均速度分布,应用激光片光和CCD成像法测量细水雾的雾化锥角,使用收集法测量雾通量的分布,讨论分析了工作压力、气液流量比和喷嘴结构对这四个雾特性参数的影响。根据气泡雾化喷嘴内部两相流型变化导致的雾滴形成机理的不同对Lund等人预测雾滴粒径的模型进行了改进,以能在更宽的GLR范围内对雾滴粒径进行预测,模型计算结果与实验数据的偏差在±20%内。
     使用自行设计的气泡雾化喷嘴进行了对防火保护对象的局部释放工况和全淹没工况下的灭火有效性实验,测量了灭火过程中火焰形态,火焰、油面、空间温度和O_2、CO_2、CO浓度的动态变化过程,研究了不同雾化气体与细水雾耦合作用下的灭火机理,并具体对喷嘴工作参数、燃料类型、喷嘴类型、通风状况以及雾化气体类型等因素对于气泡雾化细水雾抑制熄灭火灾有效性的影响规律和定量关系进行了分析,为气泡雾化技术在新一代灭火系统的推广应用提供理论指导。
     通过与压力式喷头产生的单流体细水雾的灭火有效性比较实验,表明了无论在局部释放工况还是全淹没工况下,气泡雾化细水雾均显示出比单流体细水雾更为高效的灭火性能,并且在有障碍物的场合使用卤烃气体和惰性气体辅助雾化会极大的改善灭火效果。因此,气泡雾化技术在清洁高效灭火系统中有着广阔的应用前景。
As one of Halon potential alternatives, water mist has been widely investigated around the world because of its high suppression effectiveness, non-toxicity, environmental friendliness and competitively price. The traditional water mist nozzle included pressure jet nozzles, impingement nozzles and twin-fluid nozzles. All of them have more or less disadvantages for fire suppression. Therefore, many research institutes and corporations are taking up with innovations in mist generation. Effervescent atomization is a method of twin-fluid atomization that involves bubbling a small amount of gas into the liquid before it is ejected from the atomizer. The technique of bubbling gas directly into the liquid stream inside the atomizer body is essentially different from other methods of twin-fluid atomization (either internal or external mixing) and leads to significant improvements in performance in terms of smaller drop sizes and/or lower injection pressures. Furthermore, the amount of atomizing gas required is considerably less than what is employed in all other twin-fluid atomization techniques. Effervescent atomization has been used successfully in a number of applications since its inception over ten years ago. Now it has been used in gas turbine combustors, consumer products, furnaces and boilers, internal combustion (IC) engines and incinerators, but has been rarely applied in fire suppression.
    First, two kinds of effervescent atomizers were designed for following atomization mechanism research and fire suppression experiments based on characteristics of effervescent atomization and requirements for good fire suppression effectiveness. Then water mist generation systems were developed. The flux characteristics of the effervescent atomizers were researched and the relationship of water flowrate with GLR and gas injection pressure was got. The liquid discharge coefficient are influenced by GLR, injection pressure and atomizer geometry.
    A set of experiments were conducted to visualize the two-phase flow pattern inside the atomizer and the flow structure outside the atomizer with a high speed camera. The results show that there are three regimes of the two-phase flows inside the discharge orifice, one is bubbly flow, another is annular flow while the other is the intermittent flow between them. A bubbly-intermittent flow transition criterion can be obtained by using the drift flux model with appropriate value for the maximum void fraction to take into account the entrance effect. The intermittent-annular flow transition criterion was predicted by modeling the annular flow along with the void fraction relationship, based on the drift flux model. In our experiments, the value of the maximum void fraction is 0.7 for bubbly-intermittent flow transition criterion and 0.784 for intermittent-annular flow transition criterion. In the bubbly flow regime, after discharging from the orifice the bubbles exploded and shattered the liquid sheath to small droplets, and the liquid ligaments between the bubbles would form relatively larger droplets. In the annular flow regime, a large amount of gas in discharged through the core portion of the nozzle exit orifice while the liquid is discharged in an annular shape. Hence, the liquid annulus is disintegrated into fine spray drops by the expansion of the gas and the shear stress. And the spray in the intermittent flow regime shows the mixed behavior of the bubbly and the annular flow regimes. Because of the transition of the flow regime inside the atomizer, the effervescent spray shows unsteadiness which corresponds with the flow regime.
    The spray characteristics (droplet size and velocity distribution, cone angle and flux density) of water mist produced by effervescent atomizer were measured under different conditions by a LDV/PDA (Laser Doppler Velocimetry/Phase Doppler Anemometry) system and other methods. The influence of injection pressure, GLR and atomizer geometry to the spray characteristics was analyzed. A SMD correlation encompassing all those internal flow regimes based on the Lund et al.'s primary atomization model was proposed, and the correlation represents the most of the measured data within ±20%.
    A series of fire suppression experiments were performed with the effervescent atomizer under local application and total flooding application. The flame shape, the temperature of the flame, fuel surface and the compartment, and the concentration of O_2, CO_2, CO were measured. Through the experiment results the fire extinguishing mechanisms of effervescent water mist with different kinds of atomizing gas were analyzed. And the influence of atomizer operation conditions, fuel type, ventilation conditions and atomizing gas type to fire suppression effectiveness were researched. The results can provide theoretic guidance for extending application of effervescent atomization in fire suppression technology.
    The comparative fire suppression experiments of water mist produced by pressure jet nozzles showed that the effervescent atomizers have the better effectiveness than the traditional ones under either local application or total compartment application. And the fire suppression effectiveness will greatly improved with the halocarbon fire extinguishing agent or inert gas as the atomizing gas when suppressing the fire which is sheltered from barrier. Therefore, it has a good future that applied effervescent atomizer in fire suppression technology.
引文
[1] 范维澄.香山科学会议第83次学术讨论会主题评述报告,火灾科学的新理论及洁净、智能防灭火技术,1997,10,28-31
    [2] Alpert R. L., Incentive for Use of Misting Spray as a Fire Suppression Flooding Agent, Proceedings of Water Mist Fire Suppression Workshop, 1993, pp.31-36.
    [3] Tewarson, A. and Khan M. M. Extinguishment of Diffusion Flames of Polymeric Materials by Halon-1301. Journal of Fire Sciences, 1993, 11(5): 407-420.
    [4] 国家环保总局.国家环保总局保护臭氧层项目完成工作目标并开拓新的领域.中国环保产业,1998.
    [5] Mizilolek, A. W., Tsang, W., Eds., Halon Replacements: Technology and Science, ACS Symposium Series No. 611, the American Chemical Society, Washington, D. C., 1995.
    [6] G. Grant, J. Breton and D. Drysdale. Fire Suppression by Water sprays. Progress in Energy and Combustion Science, 2000, 26(2): 79-130.
    [7] Mawhinney, J. R. and Back, G. G. Water Mist Fire Suppression Systems. SFPE Handbook, 3rd edition, 2000: 4-311.
    [8] NFPA 750, Standard for the Installation of Water Mist Fire Protection Systems. 1996 Edition, National Fire Protection Association, Quincy, MA, 1996.
    [9] Mawhinney JR, Solomon, R. Water mist fire suppression systems. In: Cote AE, editor-in-chief. Fire protection handbook, 18th ed., sect. 6/chap. 15. Quincy, MA: National Fire Protection Association, 1997: 6/216-6/248.
    [10] Rasbash, D. J., Extinction of Fire with Plain Water: A Review, Proceedings of the First International Symposium on Fire Safety Science, Hemisphere Publishing Corporation, 1986: 1145-1163.
    [11] Liu, Z., Kim, A. K. A Review of water mist fire suppression systems-fundamental studies, Journal of Fire Protection Engineering, 2000, 10(3): 32-50.
    [12] Back, G. G., DiNenno, P. J., Leonard, J. T. and Darwin, R. L., Full Scale Tests of Water Mist Fire Suppression Systems for Navy Shipboard Machinery Spaces: Part Ⅱ-Obstructed Spaces, Naval Research Laboratory, NRL/MR/6180-96-7831, 1996.
    [13] Adiga, K. C.; Williams, F. W., Ultra-Fine Water Mist as a Total Flooding Agent: A Feasibility Study, NIST Special Publication 984-2, 2004.
    [14] S. D. Sovani, P. E. Sojka, A. H. Lefebvre, Effervescent atomization, Progress in Energy and Combustion Science, 2001 (27): 483-521.
    [15] Lefebvre AH, Wang XF, Martin CA. Spray characteristics of aerated-liquid pressure atomizers. AIAA J Prop Power, 1988; 4(4): 293-298.
    [16] Wang XF, Chin JS, Lefebvre AH. Influence of gas injector geometry on atomization performance of aerated-liquid nozzles. Int J Turbo Jet Engines 1989; 6: 271-280.
    [17] Wade RA, Sojka PE, Gore JP. Effervescent atomization using high supply pressures. Proceedings of the 9th Annual Conference on Liquid Atomization and Spray Systems, San Francisco, CA, 1996: 263-270.
    [18] Wade RA, Weerts JM, Sojka PE, Gore JP, Eckerle WA. Effervescent atomization at injection pressures in MPa range. Atomization Sprays 1999, 9(6):651-667.
    [19] Roesler TC, Lefebvre AH. Studies on aerated-liquid atomization. Int J Turbo Jet Engines 1989, 6:221-230.
    [20] Roesler TC. An experimental study of aerated-liquid atomization. PhD thesis, Purdue University, 1988.
    [21] Li J, Lefebvre AH, Rollbuhler JR. Effervescent atomizers for small gas turbines. American Society of Mechanical Engineers, 94-GT-495, 1994:1-6.
    [22] Buckner HE, Sojka PE. Effervescent atomization of high viscosity fluids. Part 1: Newtonian liquids. Atomization Sprays, 1991, 1:239-252.
    
    [23] Buckner HN, Sojka PE, Lefebvre AH. Aerated atomization of high viscosity Newtonian liquids. Proceedings of the Third Annual Conference on Liquid Atomization and Spray Systems, Irvine, California, 1989: 98-102.
    [24] Lund MT, Sojka PE, Lefebvre AH, Gosselin PG. Effervescent atomization at low mass flow rates. Part 1: the influence of surface tension. Atomization Sprays 1993, 3:77-89.
    [25] Sutherland JJ, Sojka PE, Plesniak MW. Ligament controlled effervescent atomization. Atomization Sprays 1997, 7(4):383-406.
    
    [26] Sutherland JJ, Panchagnula MV, Sojka PE, Plesniak MW, Gore JP. Effervescent atomization at low air-liquid ratios. Proceedings of the Eighth Annual Conference on Liquid Atomization and Spray Systems, Troy, MI, 1995:74-77.
    
    [27] M. E. Ferreira, J. C. Teixeira, Detailed investigation of the influence of fluid viscosity on the performance characteristics of plain-orifice effervescent atomizers, Atomization and Sprays, 2001, 11: 107-124.
    
    [28] Lund MT, Jian CQ, Sojka PE, Gore JP, Panchagnula MV. The influence of atomizing gas molecular weight on low mass flow rate effervescent atomization. ASME J Fluids Engng, 1998, 120:750-754.
    [29] Chen SK, Lefebvre AH, Rollbuhler JR. Influence of ambient air pressure on effervescent atomization. J Propulsion Power, 1993, 9(1): 10-15.
    [30] Miroslav Jicha, Jan Jedelsky, Jan Otahal, Influence of some geometrical parameters on the characteristics of effervescent atomization, ILASS-Europe, Zaragoza, September, 2002.
    [31] Frederik Jacob Petersen, Ole Worts, Design and Atomization Properties for an Inside-Out Type Effervescent Atomizer, Drug Development and Industrial Pharmacy, 2004, 30(3): 319-326.
    [32] Chin JS, Lefebvre AH. A design procedure for effervescent atomizers. ASME J Engng Gas Turbines Power, 1995, 117:226-271.
    [33] Whitlow JD, Lefebvre AH. Effervescent atomizer operation and spray characteristics. Atomization Sprays, 1993,3:137-156.
    [34] Panchagnula MV, Sojka PE. Spatial droplet velocity and size profiles in effervescent atomizer-produced sprays. Fuel, 1999,78:729-741.
    
    [35] Lund MT, Sojka PE. Effervescent atomization at low mass flow-rates. Part 2: the structure of the spray. Proceedings of the Fifth Annual Conference on Liquid Atomization and Spray Systems, San Ramon, CA, 1992: 233-237.
    [36] Sankar SV, Robart DM, Bachalo WD. Swirl effervescent atomizer for spray combustion. ASME HTD 1995;317-312:175-182.
    [37] Chen SK, Lefebvre AH. Spray cone angles of effervescent atomizers. Atomization Sprays 1994,4(3):291-301.
    [38] Buckner HN, Sojka PE, Lefebvre AH. Effervescent atomization of coal-water slurries. ASMEPubl 1990;PD-30:105-108.
    [39] Bush SG, Bennett JB, Sojka PE, Panchagnula MV, Plesniak MW. Momentum rate probe for use with two-phase flows. Rev Sci Instrum, 1996, 67:1878-1885.
    
    [40] Sutherland JJ, Sojka PE, Plesniak MW, Gore JP. Entrainment by low air-liquid ratio effervescent atomizer produced sprays. Proceedings of the Ninth Annual Conference on Liquid Atomization and Spray Systems, San Francisco, CA, 1996.
    [41] Roesler TC, Lefebvre AH. Photographic studies on aerated liquid atomization, combustion fundamentals and applications. Proceedings of the Meeting of the Central States Section of the Combustion Institute, Indianapolis, Indiana, Paper 3,1988.
    [42] Chin JS, Lefebvre AH. Flow regimes in effervescent atomization. Atomization Sprays 1993, 3:463-475.
    
    [43] K.-C. Lin, P. J. Kennedy, T. A. Jackson, Structures of internal flow and the corresponding spray for aerated-liquid injectors, 37~(th) AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Salt Lake City, Utah, 2001.
    
    [44] Marc Lorcher, Dieter Mewes, Atomization of liquids by two-phase gas-liquid flow through a plain-orifice nozzle: flow regimes inside the nozzle. Chem. Eng. Technol. 2001(24): 167-172.
    [45] Marc Lorcher, Florian Schmidt, Dieter Mewes, Effervescent atomization of liquids. Atomization and Sprays, 2005(15): 145-168.
    
    [46] Clive A. Catlin, Jim Swithenbank, Physical processes influencing effervescent atomizer performance in the slug and annular flow regimes. Atomization and Sprays, 2001(11): 575-595.
    [47] Santangelo PJ, Sojka PE. A holographic investigation of the near nozzle structure of an effervescent atomizer produced spray. Atomization Sprays, 1995, 5:137-155.
    [48] Santangelo PJ, Sojka PE. Focused image holography as a dense spray diagnostic. Appl Opt 1994, 33(19):4132-4136.
    [49] K. A. Sallam, C. Aalburg, G. M. Faeth, Primary breakup of round aerated-liquid jets in supersonic crossflows. Atomization and Sprays, 2005.
    [50] Buckner HE, Sojka PE. Effervescent atomization of high viscosity fluids. Part 2: non-Newtonian liquids. Atomization Sprays 1993, 3: 157-170.
    [51] Sovani SD, Sojka PE, Sivathanu YR. Prediction of drop size distributions from first principles: the influence of fluctuations in relative velocity and liquid physical properties. Atomization Sprays 1999; 9(2): 133-152.
    [52] Sovani SD, Sojka PE, Sivathanu YR. Predictions of drop size distributions from first principles: joint-PDF effects. Atomization Sprays 2000; 10(6): 587-602.
    [53] Ming Tian, A Numerical Simulation of Internal Two-Phase Flow for Aerated-Liquid Injectors, North Carolina State University, MS thesis, 2002.
    [54] Renato Olaf Colantonio, Application of jet-shear-layer mixing and effervescent atomization to the development of a low-NO_x combustor, Purdue University, PhD thesis, 1993.
    [55] Sandeep D. Sovani, John D. Crofts, Paul E. Sojka, Structure and steady-state spray performance of an effervescent diesel injector, Fuel, 2005(84): 1503-1514.
    [56] Lawler A, Wade RA, Sojka PE, Gore JP. Flame length and pollutant emission characteristics of effervescent atomizer/burner stabilized jet flames, combustion fundamentals and applications. Proceedings of the Technical Meeting of the Central States Section of the Combustion Institute, 1996.
    [57] D. Loebker, H. J. Empie, High mass flowrate effervescent spraying of a high viscosity Newtonian liquid, IPST Technical Paper Series Number 637, 1997.
    [58] D. Loebker, H. J. Empie, Effervescent sparying: a new approach to spraying high solids black liquor, IPST Technical Paper Series Number 724, 1998.
    [59] D. Loebker, H. J. Empie, Independently controlled drop size in black liquor sprays to the kraft recovery boiler using effervescent atomization. IPST Technical Paper Series Number 823, 1999.
    [60] Charles Tricou, Keith F. Knasiak, Development of a high transfer efficiency painting technology using effervescent atomization. Spray Analysis and Research Services, A Service of Spraying Systems Co., 2005.
    [61] Frederik J. Petersen, Ole Wφrts, Torben Schaefer, Paul E. Sojka, Effervescent Atomization of Aqueous Polymer Solutions and Dispersions, Pharmaceutical Development and Technology, 2001, 6(2): 201-210.
    [62] Anne Flachs Nielsen, Poul Bertelsen, Henning Gjelstrup Kristensen, Investigation and Comparison of Performance of Effervescent and Standard Pneumatic Atomizer Intended for Soluble Aqueous Coating, Pharmaceutical Development and Technology, 2006, 11(2): 243-253.
    [63] 孟祥泰,马继华,气泡雾化喷嘴的试验研究,北京航空航天大学学报,1994,20(4):381-385.
    [64] 顾善建.范全林.气泡喷嘴下游雾化与流场特性的研究,燃烧科学与技术, 1996(4):365-371.
    [65] 郭志辉.徐行.梁雪苹,一种新型气泡雾化喷嘴水平喷射特性的研究,推进技术,1997(5):78-90.
    [66] 刘联胜.傅茂林.王海,气泡雾化喷嘴流量特性的实验研究,燃烧科学与技术,1999(3):297-303.
    [67] 刘联胜.傅茂林.吴晋湘.气泡雾化喷嘴喷雾平均直径在下游流场中的分布,工程热物理学报,2001(5):653-656.
    [68] 刘联胜.吴晋湘.韩振兴.气泡雾化喷嘴在不同液体物性下的喷雾特性研究,热科学与技术,2002(2):128-132.
    [69] 岳连捷.俞刚.气泡雾化喷嘴液雾特性,推进技术,2003(4):348-352.
    [70] 马培勇.仇性启.崔运静,气泡雾化喷嘴试验研究,石油化工设备,2006(1):12-15.
    [71] 于茂军.仇性启,气泡雾化喷嘴技术,工业加热,2006(4):38-41.
    [72] 李继保,气泡雾化喷嘴在小燃气轮机上的应用研究,燃气涡轮试验与研究,1995(1):24-38.
    [73] 卢勤.吴桂周.WDH气泡雾化喷嘴在陶瓷辊道窑上的应用,陶瓷,1996(4):29.
    [74] 何建军.许国庆.谢江.气泡雾化燃油燃烧技术的应用,华东电力,1998(4):21-23.
    [75] 韩明宇.郭忠志.KMY 新型气泡雾化烧嘴在本钢热带钢加热炉上的应用,冶金能源,1998(2):53-41.
    [76] 何建军.许国庆.谢江.气泡雾化燃油燃烧技术在火电厂锅炉上的应用,中国电力,1998(11):51-53.
    [77] 彭小峥.WDH 气泡雾化技术在分宜发电厂的试验与应用,江西电力,1998(4):1-5.
    [78] 米增春.苗兰香.KMY气泡雾化油枪在输油站锅炉上的应用,工业炉,1999(1):50.
    [79] 包国平.邓龙国.气泡雾化油枪在煤粉炉上的应用,能源技术,2000(4):215-218.
    [80] Rasbash, D. J. The extinction of fires by water sprays. Fire Res. Abstr & Rev, 4: 24-53, 1962.
    [81] Rasbash, D. J. The extinction of fire with plain water: A review, Proceedings of the first international symposium in fire safety science, pp. 1145-163, 1986.
    [82] 崔正心,廖光煊.细水雾抑制障碍物稳定火焰的实验研究.火灾科学,2001,10(3):174-177.
    [83] Gerard G. Back, Craig L. Beyler, Rich Hansen. The Capabilities and Limitations of Total Flooding Water Mist Fire Suppression Systems in Machinery Space Applications. Fire Technology, 2000, 36: 8-23.
    [84] Liu Jianghong, Huang Xin, Liao Guangxuan, Experiments on Wood Crib Fire Suppression with Water Mist in a Confined Space, Progress in safety science and technology, 2004(4): 1147-1152.
    [85] Richard, G. Gann. FY1999 Annual Report: Next Generation Fire Suppression Technology Program. Building and Fire Research Laboratory, NGP PP-1059, National Institute of Standards and Technology, Gaithersburg MD, 2000.
    [86] Gamerio, V. M., 1993, Fine Water Spray Fire Suppression Alternative to Halon 1301 in Machinery Spaces, International CFC and Halon Alternatives Conference, pp 830-839.
    [87] Hanauska, C. P., and Back, G. G., 1993, Halons: Alternative Fire Protection Systems, An Overview of Water Mist Suppression Systems Technoloby, International CFC and Halon Alternatives Conference, pp 820-829.
    [88] Hills, A. T., Simpson, T., and Smith, D. P., 1993, Water Mist Fire Protection Systems for Telecommication Switch Gear and Other Electronic Facilities, NISTIR 5207, Water Mist Fire Suppression Workshop: Proceedings, pp: 123-141.
    [89] Liu, Z., Kim, A. K., and Su, J. Z., 1998, The Effect of Air Convection on the Performance of Water Mist Fire Suppression Systems, AIAA/ASME Joint Thermophysics and Heat Transfer Conference Volume 1, pp 227-236.
    
    [90] J. R. Mawhinney, J. K. Richardson, A review of water mist fire suppression research and development, Fire Technology, 1997(1):54-90.
    [1] Liu, Z., Kim, A. K. A Review of water mist fire suppression systems-fundamental studies, Journal of Fire Protection Engineering, 2000, 10(3): 32-50.
    [2] Liao Guangxuan, Huang Xin, Cong Beihua, Qin Jun, Progress in water mist fire suppression technology, Journal of university of science and technology of China, 2006, 36(1): 9-19.
    [3] Lefebvre AH. Atomization and Sprays, Hemisphere Publishing Corporation, New York, 1989.
    [4] S. D. Sovani, P. E. Sojka, A. H. Lefebvre, Effervescent atomization, Progress in Energy and Combustion Science, 2001(27): 483-521.
    [5] D. Loebker, H. J. Empie, Independently controlled drop size in black liquor sprays to the kraft recovery boiler using effervescent atomization. IPST Technical Paper Series Number 823, 1999.
    [6] Charles Tricou, Keith F. Knasiak, Development of a high transfer efficiency painting technology using effervescent atomization. Spray Analysis and Research Services, A Service of Spraying Systems Co., 2005.
    [7] Frederik J. Petersen, Ole Wφrts, Torben Schaefer, Paul E. Sojka, Effervescent Atomization of Aqueous Polymer Solutions and Dispersions, Pharmaceutical Development and Technology, 2001, 6(2): 201-210.
    [8] Anne Flachs Nielsen, Poul Bertelsen, Henning Gjelstrup Kristensen, Investigation and Comparison of Performance of Effervescent and Standard Pneumatic Atomizer Intended for Soluble Aqueous Coating, Pharmaceutical Development and Technology, 2006, 11(2): 243-253.
    [9] Chin JS, Lefebvre AH. A design procedure for effervescent atomizers. ASME J Engng Gas Turbines Power, 1995, 117: 226-271.
    [10] 于茂军.仇性启,气泡雾化喷嘴技术,工业加热,2006(4):38-41.
    [11] Wang XF, Chin JS, Lefebvre AH. Influence of gas injector geometry on atomization performance of aerated-liquid nozzles. Int J Turbo Jet Engines 1989; 6: 271-280.
    [12] Roesler TC, Lefebvre AH. Studies on aerated-liquid atomization. Int J Turbo Jet Engines 1989, 6: 221-230.
    [13] Wade RA, Weerts JM, Sojka PE, Gore JP, Eckerle WA. Effervescent atomization at injection pressures in MPa range. Atomization Sprays 1999, 9(6): 651-667.
    [14] Miroslav Jicha, Jan Jedelsky, Jan Otahal, Influence of some geometrical parameters on the characteristics of effervescent atomization, ILASS-Europe, Zaragoza, September, 2002.
    [15] Frederik Jacob Petersen, Ole Worts, Design and Atomization Properties for an Inside-Out Type Effervescent Atomizer, Drug Development and Industrial Pharmacy, 2004, 30(3): 319-326.
    [16] 刘联胜.傅茂林.吴晋湘.气泡雾化喷嘴喷雾平均直径在下游流场中的分布,工程热物 理学报,2001(5):653-656.
    [17] 顾善建.范全林.气泡喷嘴下游雾化与流场特性的研究,燃烧科学与技术,1996(4):365-371.
    [18] 刘联胜.气泡雾化喷嘴的雾化特性及其喷雾两相流场的实验与理论研究.博士学位论文,天津大学,2001.
    [19] 吕崇德主编,热工参数测量与处理,清华大学出版社,2001.
    [20] 林宗虎.气液两相流和沸腾传热,西安交通大学出版社,1987.
    [21] 张远君,王慧玉,张振鹏,两相流体动力学,北京航空学院出版社,1987.
    [22] D. Chisholm, Two-Phase Flow in Pipelines and Heat Exchangers, The Institution of Chemical Engineers, 1983.
    [23] 刘联胜.傅茂林.王海,气泡雾化喷嘴流量特性的实验研究,燃烧科学与技术,1999(3):297-303.
    [24] 陈学俊.多相流热物理学,西安交通大学出版社,2005.
    [25] 吴道洪.WDH型气泡雾化喷嘴的流量特性研究,冶金能源,1998(6):37-45.
    [1] S. D. Sovani, P. E. Sojka, A. H. Lefebvre, Effervescent atomization, Progress in Energy and Combustion Science, 2001(27): 483-521.
    [2] Li J, Lefebvre AH, Rollbuhler JR. Effervescent atomizers for small gas turbines. American Society of Mechanical Engineers, 94-GT-495, 1994: 1-6.
    [3] Buckner HE, Sojka PE. Effervescent atomization of high viscosity fluids. Part 1: Newtonian liquids. Atomization Sprays, 1991, 1: 239-252.
    [4] K. -C. Lin, P. J. Kennedy, T. A. Jackson, Structures of internal flow and the corresponding spray for aerated-liquid injectors, 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Salt Lake City, Utah, 2001.
    [5] 孔珑,两相流体力学,高等教育出版社,2004.
    [6] L. Oalbiati, P. Andreini, Flow Pattern Transition for Horizontal Air-Water Flow in Capillary Tubes: A Microgravity "Equivalent System" Simulation, Int. Commun. Heat Mass Transfer, 1994, 21(4): 461-468,
    [7] J. L. Xu, P. Cheng, T. S. Zhao, Gas-Liquid Two-Phase Flow Regimes in Rectangular Channels with Mini/Micro Gaps, Int J Multiphase Flow, 1999(25): 411-432.
    [8] H. J. Lee, S. Y. Lee, An Experimental Study on the Horizontal Two-Phase Patterns within Rectangular Channels with Small Gap Height, Trans Korean Soc Mech Eng, 1999, 23(4): 492-501.
    [9] T. Wilmarth, M. Ishii, Two-Phase Flow Regimes in Narrow Rectangular Vertical and Horizontal Channels, Int J Heat Mass Transfer, 1994, 37(12): 1749-1758.
    [10] K. Mishima and M. Ishii, Flow Regime Transition Criteria for Upward Two-Phase Flow in Vertical Tubes, Int J Heat Mass Transfer, 1984, 27(5): 723-737.
    [11] M. Ishii, One-Dimensional Drift-Flux Model and Constitutive Equations for Relative Motion between Phase in Various Two-Phase Flow Regimes, Argonne Natl Lab. Rep, ANL-77-47, 1977.
    [12] P. Griffith, G. B. Wallis, Two-Phase Slug Flow, Trans ASME, J Heat Transfer, 1961(83): 307-320.
    [13] Y. Taitel, D. Bamea, A. E. Dukler, Modeling Flow Pattern Transitions for Steady Upward Gas-Liquid Flow in Vertical Tubes, AlchE J., 1980, 26(3): 345-354.
    [14] T. Wilmarth, M. Ishii, Interracial Area Concentration and Void Fraction in Narrow Rectangular Vertical Channels, Trans ASME, 1997(119): 916-922.
    [15] Whitlow JD, Lefebvre AH. Effervescent atomizer operation and spray characteristics. Atomization Sprays, 1993(3): 137-156.
    [16] J. P. Hartnett, M. Kostic, Heat Transfer to Newtonian and Non-Newtonian Fluids in Rectangular Ducts, Adv Heat Transfer, 1989(19): 247-356.
    [17] G. B. Wallis, One-Dimensional Two-Phase Flow, McGraw-Hill, New York, NY, 1969.
    [18] K. Mishima and T. Hibiki, Some Characteristics of Air-Water Two-Phase Flow in Small Diameter Vertical Tubes, Int. J. Multiphase Flow, 1996, 22(4): 703-712.
    [19] Lefebvre AH. Atomization and Sprays, Hemisphere Publishing Corporation, New York, 1989.
    [20] R. A., Jr. Castleman, The Mechanism of the Atomization of Liquids. Burean of Standards Journal of Research, 1930(6): 369-376.
    [21] R. P. Fraser, Liquid Fuel Atomization. Sixth Symposium(International) on Combustion, Rein-hold, New York, 1957: 687-701.
    [22] C. H. Lee, Rolf D. Reitz, An experimental study of the effect of gas density on the distortion and breakup mechanism of dropsin high speed gas stream, International Journal of Multiphase Flow 26(2000): 229-244.
    [23] Santangelo PJ, Sojka PE. A holographic investigation of the near nozzle structure of an effervescent atomizer produced spray. Atomization Sprays, 1995, 5: 137-155.
    [24] 刘振学,黄仁和,田爱民,实验设计与数据处理,化学工业出版社,2005.
    [1] 王喜世.基于数字粒子成像的细水雾全场诊断方法.博士学位论文中国科学技术大学,合肥,2001.
    [2] 姚斌.细水雾与扩散火焰相互作用的模拟研究.博士学位论文中国科学技术大学,合肥.1999.
    [3] G. Grant, J. Brenton, D. Drysdale. Fire Suppression by Water Sprays, Progress in Energy and Combustion Science, 2000, 26(2): 79-130.
    [4] B. Yao, W. K. Chow. A review of water mist fire suppression systems. Journal of Applied Fire Science, 2001, 10(3): 277-294.
    [5] X. S. Wang, G. X. Liao, J. Qin, et al. Experimental study on the effectiveness of the extinction of a pool fire with water mist. Journal of Fire Science, 2002, 20(4): 279-296.
    [6] 陆强,廖光煊,秦俊等.细水雾灭油池火时各种影响因素的相对重要度分析.火灾科学,2002,11(3):164-169.
    [7] E. Babinsky, P. E. Sojka. Modeling drop size distributions. Progress in Energy and Combustion Science, 2002, 28(3): 202-329.
    [8] 廖光煊,王喜世,秦俊.热灾害实验诊断方法.合肥中国科学技术大学出版社.2003.
    [9] 秦俊,姚斌,廖光煊等.APV 激光流场诊断系统及其应用.火灾科学,1999,8(2):37-42.
    [10] 姚斌,秦俊,廖光煊,三维LDV/APV系统测量大尺度雾场的硬件布局参数及应用,中国科技大学学报,1997,17(4):471-476
    [11] 秦俊,廖光煊,王喜世等.激光多普勒细水雾雾场特性实验研究.激光技术,2001,25(4):297-301.
    [12] 周华,朱畅,范明豪等.高压细水雾 灭火系统的雾滴直径测量与灭火试验.自然科学进展,2004,14(8):950-954.
    [13] 秦俊,廖光煊,王喜世等.细水雾流场三维LDV测量.量子电子学报,2001,18(3):281-284.
    [14] 鲁健,褚家如,秦俊.溶胶—电雾化系统雾滴速度场LDV测量的研究.微细加工技术,2004(3):24-28.
    [15] 秦俊,姚斌,廖光煊等.细水雾流场雾通量的APV测量研究.中国科学技术大学学报,1999,29(3):322-325.
    [16] Liu, Z., Kim, A. K. A Review of water mist fire suppression systems-fundamental studies, Journal of Fire Protection Engineering, 2000, 10(3): 32-50.
    [17] Mawhirmey, J. R. and Back, G. G., Bridging the Gap Between Theory & Practice: Protecting Flammable Liquid Hazards Using Water Mist Fire Suppression Systems, Fire Suppression and Detection Research Application Symposium, Orlando, Florida, Feb., 1998.
    [18] A. Jones and P. F. Nolan, Discussions on the use of fine water sprays or mists for fire suppression, J. Loss Prev. Process Ind, Vol.8, No.1, 1995, pp.17-22.
    [19] S. D. Sovani, P. E. Sojka, A. H. Lefebvre, Effervescent atomization, Progress in Energy and Combustion Science, 2001(27): 483-521.
    [20] W. K. Chow, Rumin Yin. Review of Droplet Size Distributions for a Water Spray, Applied Fire Science, 1997, 7(2): 181-194.
    [21] Lund MT, Sojka PE, Lefebvre AH, Gosselin PG. Effervescent atomization at low mass flow rates. Part 1: the influence of surface tension. Atomization Sprays 1993, 3: 77-89.
    [22] A. H. Lefebvre, Energy Considerations in Twin-Fluid Atomization, Trans. ASME, J. Eng. Gas Turbines Power, 1992(114): 89-96.
    [23] Weber, C., Disintegration of Liquid Jets, Z. Agnew. Math. Mech., 1931(11): 136-159.
    [24] Ishii, M., One-Dimensional Drift-Flux Model and Constitutive Equations for Relative Motion Between Phases in Various Two-Phase Flow Regimes. Argonne National Laboratory Rept. ANL 77-47.
    [25] N. E. Todreas, M. S. Kazimi, Nuclear Systems Ⅰ: Thermal Hydraulic Fundamentals, Hemisphere, New York, 1989.
    [26] B. P. Husted, The Physics behind Water Mist Systems, Proc. IWMA conference 2004, 6-8 October 2004, Rome, Italy.
    [1] Alpert R. L., Incentive for Use of Misting Spray as a Fire Suppression Flooding Agent, Proceedings of Water Mist Fire Suppression Workshop, 1993: 31-36.
    [2] G. Grant, J. Breton and D. Drysdale. Fire Suppression by Water sprays. Progress in Energy and Combustion Science, 2000, 26(2): 79-130.
    [3] Rasbash, D. J. The extinction of fires by water sprays. Fire Research Abstract & Review, 4: 24-53, 1962.
    [4] Rasbash, D. J. The extinction of fire with plain water: A review, Proceedings of the first international symposium in fire safety science, 1986: 1145-163,
    [5] J. R. Mawhinney, J. K. Richardson, A review of water mist fire suppression research and development, Fire Technology, 1997(1): 54-90.
    [6] Mawhinney, J. R. and Back, G. G. Water Mist Fire Suppression Systems. SFPE Handbook, 3rd edition. 2000: 4-311.
    [7] 陆强.细水雾与油火的相互作用研究.博士学位论文中国科学技术大学,合肥,2005.
    [8] Liu, Z., Kim, A. K. A Review of water mist fire suppression systems-fundamental studies, Journal of Fire Protection Engineering, 2000, 10(3): 32-50.
    [9] 范维澄等.火灾科学导论,湖北科学技术出版社,1993.
    [10] Liu Jianghong, Liao Guangxuan, Li Peide, Qin Jun, Experimental study on the interaction of fine water mist with solid pool fires, Science in China(Series E), 2003, 46(2): 218-224.
    [11] 姚斌.细水雾与扩散火焰相互作用的模拟研究.博士学位论文中国科学技术大学,合肥,1999.
    [12] Arvind Atreya, et al, Basic research on fire suppression, Annual Conference of Fire Research: Abstracts, NISTIR 5499. National Institute of Standards and Technology, Gaithersburgh, 1994, pp. 167-170.
    [13] Mawhinney, J. R., Dlugogorski,, B. Z., and Kim, A. K., A Closer Look at the Fire Extinguishing Properties of Water Mist, Fire Safety Science-Proceedings of the Fourth International Symposium, 1994: 47-60.
    [14] Lefebvre AH. Atomization and Sprays, Hemisphere Publishing Corporation, New York, 1989.
    [15] 丛北华.多组分细水雾与扩散火焰相互作用的模拟研究.博士学位论文中国科学技术大学,合肥,2006.
    [16] Zhigang Liu, Andrew K. Kim, A study of portable water mist fire extinguishers used for extinguishment of multiple fire types. Fire Safety Journal, 2007(42): 25-42.
    [17] Drysdale D. An introduction to fire dynamics. New York: Wiley; 1985.
    [18] Rasbash DJ. Relevance of firepoint theory to the assessment of fire behaviour of combustible materials. International symposium on fire safety of combustible materials, Edinburgh University, 1976: 169-178.
    [19] Beyler, C L. A Unified Model of Fire Suppression. Journal of Fire Protection Engineering, 1992, 4: 5-16.
    [20] 霍然,胡源.建筑火灾安全工程导论,中国科学技术大学出版社,1999.
    [21] NFPA 750. Standard for the installation of water mist fire suppression systems, 1996 Edition National Fire Protection Association, Quincy, 2000.
    [1] Liu, Z., Kim, A. K. A Review of water mist fire suppression systems-fundamental studies, Journal of Fire Protection Engineering, 2000, 10(3): 32-50.
    [2] 崔正心,廖光煊,秦俊.细水雾抑制障碍物稳定火焰的实验研究.火灾科学,200l,10(3):174-177.
    [3] 房玉东,刘江虹,廖光煊.细水雾抑制熄灭障碍物油池火的有效性研究,中国工程科学.2006,8(2):75-80.
    [4] 陆强.细水雾与油火的相互作用研究.博士学位论文中国科学技术大学,合肥,2005.
    [5] Liu Z, Andrew K, Kim. Review of Water Mist Fire Suppression Technology Part Two-Application Studies. Joumal of Fire Protection Engineering. 2001, 11: 16-43
    [6] 丛北华,毛涛,廖光煊.含添加剂的细水雾与油池火的相互作用.全国高校工程热物理会议.2002,677-685.
    [7] Richard, G Gann. Next Generation Fire Suppression Technology Program, National Institute of Standards and Technology. 2000, PP-1059
    [8] Dr Anthony, E Finnerty, Water-Based Fire-Extinguishing Agents. U. S. Army Research Labortory, 1995, 95-101.
    [9] Michelle, D King, Jiann C Wendy. Evaporation of a Small Water Droplet Containing an Additive. Proceedings of the ASME National Heat Transfer Conference. 1997, Baltimore
    [10] Anthony J, Hughes Bogdan, Z Dlugogorski. Extinguishingment of Small Scale Pool Fires with Ultrafine Particles. HOTWC.96, 1996.
    [11] Marc R. Nyden and Jiann C. Yang, Screening of candidate fire suppressants, In: Halon Options Technical Working Conference, Gaithersburg, MD, USA, 2-4 May 2000, 104~114.
    [12] Linteris G T, Truett L. Inhibition of premixed methane-air flames by fluoromethanes, Combustion and Flame, 1996, 105(1-2), 15~27.
    [13] Drew L'esperance, Williams B A, Fleming J W. Intermediate species profiles in low pressure premixed flames inhibited by fluoromethanes. Combust and Flame, 1999, 117(4), 709~731.
    [14] 张永丰.洁净高效混合气体灭火有效性模拟研究.博士学位论文中国科学技术大学,合肥,2006.
    [15] Williams B A, Drew L'esperance, Fleming J W. Intermediate species profiles in low-pressure methane-oxygen flames inhibited by 2-H heptafluoropropane: comparison of experimental data with kinetic modeling. Combust and Flame, 2000, 120(2), 160~172
    [16] Trees, D., Seshadri, K. and Hsmind, A., Experimental studies of diffusion flame extinction with Halogenated and inert fire suppressants, In: ACS Symp. (Halon replacement), American Chemical Society, Washington, D. C., USA, 1995, 190-203.
    [17] Zhubanov, T. B and Gibov, K. M., Oxygen index and minimum tasks of polymer combustion, Fire and Materials, 1988, 12, 169~172.
    [18] Mather J. D., Tapscott R. E., Tropodegradable halocarbons and main group element compounds, In: Proceedings of the Halon Options Technical Working Conference, Sheraton Old Town, Albuquerque, NM, April 1999, 132-141.
    [19] Tapscott R. E., Tropodegradable agents with low ozone depletion and global warming potentials to protect against fires and explosions, US 5759430, 1998.
    [20] Saso, Y., Ogawa, Y. and Saito, N., Binary CF3Br-and CHF3-inert suppressants: effect of temperature on the flame inhibition effectiveness of CF3Br and CHF3, Combustion and Flame, 1999, 118(3), 489~499.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700