1.Doxycycline诱导细胞凋亡及其机制 2.GDNF修饰的人羊膜上皮细胞在大鼠MCAO模型中的治疗作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强力霉素(Doxycycline, Dc)诱导肿瘤细胞凋亡及其在肿瘤动物模型中的治疗作用已有报道,其治疗作用主要是通过抑制细胞金属基质蛋白酶表达及细胞色素c氧化酶活力来抑制细胞转移、诱导细胞凋亡,但Dc诱导细胞凋亡的机制还不清楚。本章研究了线粒体,calpain和caspase在Dc诱导HeLa细胞凋亡过程中的作用。通过细胞形态学及DNA ladder分析证明Dc能够诱导HeLa细胞发生显著凋亡,并且这一过程具有药物浓度和时间依赖性。广泛性caspase(半胱氨酸天冬氨酸特异蛋白酶)抑制剂(zVAD-fmk)及caspase-8,-9特异抑制剂(zIETD-fmk, zLEHD-fmk)抑制分析表明,Dc诱导的凋亡具有caspase活力依赖性。Western blot检测到caspase-3,-9,-8及calpain I(钙依赖蛋白酶I)发生了活化,但caspase-2活化没有被检测到。在胞浆蛋白中可以检测到从线粒体中释放的细胞色素c(Cyt c)和Smac,并且这两种蛋白的释放不能被zVAD-fmk和zIETD-fmk所抑制。进一步通过使用各种蛋白酶抑制剂,结合Western blot和细胞凋亡分析证明,caspase-9可能作为起始caspase通过线粒体途径活化,而caspase-8主要通过caspase-9和calpain途径活化。Caspase-8和-9的特异抑制剂对caspase-3的活化都有抑制作用,但前者抑制作用更强,这一结果与凋亡抑制分析结果一致。抑制caspase-8活力后检测细胞凋亡率及caspase-3活化,结果证明在Dc诱导的HeLa细胞凋亡过程中caspase-8起重要的作用。
     滑膜成纤维细胞是类风湿关节炎(RA)发病过程中一种重要的炎症细胞。在RA病人关节中滑膜成纤维细胞(SFB)发生增生,分泌多种炎症因子并且参与了诱导软骨细胞凋亡和关节损伤。Doxycycline具有抑制细胞增殖,抑制金属基质蛋白酶表达及诱导细胞凋亡的功能。本章研究了Doxycycline诱导大鼠RA模型中膝关节SFB(RA-SFB)细胞凋亡的功能。流式细胞检测表明Dc诱导的RA-SFB细胞凋亡具有药物浓度和处理时间依赖性;Dc可以诱导RA-SFB细胞发生显著的凋亡并且产生DNA Ladder。透射电镜下观察到Dc处理后线粒体发生明显的膨胀,线粒体嵴消失,胞质出现大量的空泡;线粒体膜电位(MMP)在Dc处理48 h内发生显著降低,所以线粒体参与了Dc诱导的RA-SFB细胞凋亡。Western blot分析证明caspase-3和calpain I在Dc诱导后发生活化;抗凋亡蛋白XIAP在Dc处理后部分被降解。本章研究为Doxycycline诱导RA中SFB细胞凋亡提供一定的依据,并且Doxycycline联合其它药物或基因通过凋亡的途径来治疗RA具有潜在的可能性。
     人羊膜上皮细胞(hAECs)具有胚胎干细胞及多能干细胞的特征,在一定条件下能够分化成不同组织的细胞,GDNF具有抗缺血后神经元凋亡的功能。本章中以慢病毒为载体,分别将GDNF和EGFP转染到hAECs中,得到稳定表达EGFP和GDNF的hAECs-EGFP和hAECs-GDNF细胞。分别将这两种细胞移植到脑中动脉阻塞(MCAO)缺血损伤的大鼠脑内。移植后第7天可以检测到GFAP(体外培养的hAECs表达的胶质细胞标志蛋白)的表达;移植后第21天仍可以检测到植入区EGFP的高表达;并且移植到体内以后,少部分hAECs可以被诱导表达神经元标志蛋白MAP2。两种细胞对脑缺血后大鼠行为学指标都有显著的改善作用,并且在移植后早期hAECs-GDNF治疗组比hAECs-EGFP治疗组恢复更明显。Western blot检测证明:在靠近hAECs移植部位的缺血区组织内,caspase-3活化基本被抑制。此外hAECs治疗后,缺血损伤区体积也明显减小。由于hAECs来源广泛,道德和伦理学问题较少,且免疫原性低,因此以hAECs为载体进行细胞基因治疗是一种潜在的、具有广阔应用前景的生物治疗方法。
Doxycycline (Dc) has been demonstrated to inhibit cell growth and induce apoptosis in tumor cells, although its mechanism of action is not fully understood. The present study demonstrates that apoptosis can be induced in HeLa cells by Dc, and that process was concentration and time dependent. Western blot data demonstrated that cytochrome c (Cyt c), Smac (the second mitochondria-derived activator of caspase), calpain I, caspase-9, -3 and -8 were all involved in the apoptotic process, while the pan caspase inhibitor zVAD-fmk almost completely inhibited Dc-induced apoptosis. We further demonstrated that the release of mitochondrial proteins and the activation of calpain occurred upstream of the caspase cascade, in which caspase-9 was activated in response to the release of Cyt c, caspase-8 activation was caspase- and calpain-dependent, and caspase-3 was activated mainly by caspase-8 and -9. Caspase-8 played important roles in the activation of caspase-3 and induction of apoptosis, while the role of the caspase-9 was limited.
     Synovial fibroblast cell (SFB cell) is one of the most important inflammatory cells in rheumatoid arthritis (RA) and its hyperplasia could induce joints damage. Recent works have shown that Doxycycline (Dc) is a pluripotent drug that affects many mammalian cell functions including proliferation, apoptosis, and matrix remodeling. It has been reported that Dc has therapeutic function on rheumatoid arthritis. In this paper we focus our interest on the functions of Dc to induce SFB cells apoptosis. SFB cells separated from knee joints of male Lewis rats having RA (RA-SFB cells) were used. The apoptosis rate of Dc-induced RA-SFB cells is concentration- and time- dependent. Its apoptosis rate was significantly increased after treatment with Dc (45μg/ml) for 3 days. Transmission electron microscope observation showed that mitochondria were swelled and the critaes were dispeared, compared with control. More over, mitochiodria membrane potential was decreased significantly after treatement with Dc for 48 h. Western blot analysis showed that caspase-3, calpain I were activated and XIAP was partially degraded, during treatment with Dc.
     Human amniotic epithelial cells (hAECs), with the characteristics of both embryonic stem cell and pluripotent stem cell, have the potential to differentiate into various tissues. EGFP and GDNF were transferred into the hAECs by using lentivirus vector, respectively. Intracerebral graft of hAECs-EGFP and hAECs-GDNF into ischemic rats prepared by middle cerebral artery occlusion (MCAO) could significantly ameliorate behavioral dysfunction, and reduce the infarct volume. Furthermore, neuronal marker MAP2 and astrocytic marker GFAP were detected in the transplanted hAECs. Meanwhile, the activation of caspase-3 was prevented in the vicinity of graft area. In addition, the low antigenic nature of hAECs and the immuno-privileged characteristic of brain favor no immunosuppressor treatment during the transplantation therapy. Being easily obtained with less ethical arguments gives hAECs the advantage for cell therapy. As both hAECs and lentiviral vectors are low antigenic, lentiviral transfected hAECs can be used as an effective transfer vehicle for GDNF in ischemia treatment. Moreover, lentivirus modified hAECs may have the potential to be used for cell-mediated gene therapy in the future.
引文
1. Boldin MP, Varfolomeev EE, Pancer Z, Mett IL, Camonis JH, Wallach D. A novel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain. J Biol Chem. Apr 7 1995;270(14):7795-7798.
    2. Chinnaiyan AM, O'Rourke K, Tewari M, Dixit VM. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell. May 19 1995;81(4):505-512.
    3. Chinnaiyan AM, Tepper CG, Seldin MF, O'Rourke K, Kischkel FC, Hellbardt S, et al. FADD/MORT1 is a common mediator of CD95 (Fas/APO-1) and tumor necrosis factor receptor-induced apoptosis. J Biol Chem. Mar 1 1996;271(9):4961-4965.
    4. Boldin MP, Goncharov TM, Goltsev YV, Wallach D. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell. Jun 14 1996;85(6):803-815.
    5. Fernandes-Alnemri T, Armstrong RC, Krebs J, Srinivasula SM, Wang L, Bullrich F, et al. In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteineprotease containing two FADD-like domains. Proc Natl Acad Sci U S A. Jul 23 1996;93(15):7464-7469.
    6. Martin DA, Siegel RM, Zheng L, Lenardo MJ. Membrane oligomerization and cleavage activates the caspase-8 (FLICE/MACHalpha1) death signal. J Biol Chem. Feb 20 1998;273(8):4345-4349.
    7. Enari M, Talanian RV, Wong WW, Nagata S. Sequential activation of ICE-like and CPP32-like proteases during Fas-mediated apoptosis. Nature. Apr 25 1996;380(6576): 723-726.
    8. Hasegawa J, Kamada S, Kamiike W, Shimizu S, Imazu T, Matsuda H, et al. Involvement of CPP32/Yama(-like) proteases in Fas-mediated apoptosis. Cancer Res. Apr 15 1996;56(8):1713-1718.
    9. Muzio M, Salvesen GS, Dixit VM. FLICE induced apoptosis in a cell-free system. Cleavage of caspase zymogens. J Biol Chem. Jan 31 1997;272(5):2952-2956.
    10. Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. Jul 12 1996;86(1):147-157.
    11. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell. Nov 14 1997;91(4):479-489.
    12. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell. Aug 8 1997;90(3):405-413.
    13. Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Alnemri ES. Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell. Jun 1998;1(7):949-957.
    14. Bettany JT, Wolowacz RG. Tetracycline derivatives induce apoptosis selectively in cultured monocytes and macrophages but not in mesenchymal cells. Adv Dent Res. Nov 1998;12(2):136-143.
    15. Fife RS, Rougraff BT, Proctor C, Sledge GW, Jr. Inhibition of proliferation and induction of apoptosis by doxycycline in cultured human osteosarcoma cells. J Lab ClinMed. Nov 1997;130(5):530-534.
    16. Fife RS, Sledge GW, Jr., Roth BJ, Proctor C. Effects of doxycycline on human prostate cancer cells in vitro. Cancer Lett. May 15 1998;127(1-2):37-41.
    17. Onoda T, Ono T, Dhar DK, Yamanoi A, Fujii T, Nagasue N. Doxycycline inhibits cell proliferation and invasive potential: combination therapy with cyclooxygenase-2 inhibitor in human colorectal cancer cells. J Lab Clin Med. Apr 2004;143(4):207-216.
    18. Iwasaki H, Inoue H, Mitsuke Y, Badran A, Ikegaya S, Ueda T. Doxycycline induces apoptosis by way of caspase-3 activation with inhibition of matrix metalloproteinase in human T-lymphoblastic leukemia CCRF-CEM cells. J Lab Clin Med. Dec 2002;140(6):382-386.
    19. Lokeshwar BL, Escatel E, Zhu B. Cytotoxic activity and inhibition of tumor cell invasion by derivatives of a chemically modified tetracycline CMT-3 (COL-3). Curr Med Chem. Feb 2001;8(3):271-279.
    20. Onoda T, Ono T, Dhar DK, Yamanoi A, Nagasue N. Tetracycline analogues (doxycycline and COL-3) induce caspase-dependent and -independent apoptosis in human colon cancer cells. Int J Cancer. Sep 8 2005.
    21. Scherer WF, Syverton JT, Gey GO. Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J Exp Med. May 1953;97(5):695-710.
    22. Mark RJ, Keller JN, Kruman I, Mattson MP. Basic FGF attenuates amyloid beta-peptide-induced oxidative stress, mitochondrial dysfunction, and impairment of Na+/K+-ATPase activity in hippocampal neurons. Brain Res. May 9 1997;756(1-2):205-214.
    23. Herrmann M, Lorenz HM, Voll R, Grunke M, Woith W, Kalden JR. A rapid and simple method for the isolation of apoptotic DNA fragments. Nucleic Acids Res. Dec 11 1994;22(24):5506-5507.
    24. Verhagen AM, Silke J, Ekert PG, Pakusch M, Kaufmann H, Connolly LM, et al. HtrA2 promotes cell death through its serine protease activity and its ability to antagonizeDoxycycline 诱导 HeLa 细胞凋亡机制 inhibitor of apoptosis proteins. J Biol Chem. Jan 4 2002;277(1):445-454.
    25. Jin QH, Zhao B, Zhang XJ. Cytochrome c release and endoplasmic reticulum stress are involved in caspase-dependent apoptosis induced by G418. Cell Mol Life Sci. Jul 2004;61(14):1816-1825.
    26. Kang YH, Yi MJ, Kim MJ, Park MT, Bae S, Kang CM, et al. Caspase-independent cell death by arsenic trioxide in human cervical cancer cells: reactive oxygen species-mediated poly(ADP-ribose) polymerase-1 activation signals apoptosis-inducing factor release from mitochondria. Cancer Res. Dec 15 2004;64(24):8960-8967.
    27. Bizat N, Galas MC, Jacquard C, Boyer F, Hermel JM, Schiffmann SN, et al. Neuroprotective effect of zVAD against the neurotoxin 3-nitropropionic acid involves inhibition of calpain. Neuropharmacology. Oct 2005;49(5):695-702.
    28. Cowling V, Downward J. Caspase-6 is the direct activator of caspase-8 in the cytochrome c-induced apoptosis pathway: absolute requirement for removal of caspase-6 prodomain. Cell Death Differ. Oct 2002;9(10):1046-1056.
    29. Chua BT, Guo K, Li P. Direct cleavage by the calcium-activated protease calpain can lead to inactivation of caspases. J Biol Chem. Feb 18 2000;275(7):5131-5135.
    30. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature. Jan 1 1998;391(6662):43-50.
    31. Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, et al. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol. Jan 25 1999;144(2): 281-292.
    32. Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell. Jul 7 2000;102(1):33-42.
    33. Hegde R, Srinivasula SM, Zhang Z, Wassell R, Mukattash R, Cilenti L, et al. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts inhibitor of apoptosis protein-caspase interaction. J Biol Chem. Jan 4 2002;277(1):432-438.
    34. Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell. Sep 2001;8(3):613-621.
    35. Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE, et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell. Jul 7 2000;102(1):43-53.
    36. Deshmukh M, Du C, Wang X, Johnson EM, Jr. Exogenous smac induces competence and permits caspase activation in sympathetic neurons. J Neurosci. Sep 15 2002;22 (18):8018-8027.
    37. Fulda S, Wick W, Weller M, Debatin KM. Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Nat Med. Aug 2002;8(8):808-815.
    38. Sorimachi H, Ishiura S, Suzuki K. Structure and physiological function of calpains. Biochem J. Dec 15 1997;328 ( Pt 3):721-732.
    39. Glading A, Lauffenburger DA, Wells A. Cutting to the chase: calpain proteases in cell motility. Trends Cell Biol. Jan 2002;12(1):46-54.
    1. Firestein GS. Invasive fibroblast-like synoviocytes in rheumatoid arthritis. Passive responders or transformed aggressors? Arthritis Rheum. Nov 1996;39(11):1781-1790.
    2. Perlman H, Georganas C, Pagliari LJ, Koch AE, Haines K, 3rd, Pope RM. Bcl-2 expression in synovial fibroblasts is essential for maintaining mitochondrial homeostasis and cell viability. J Immunol. May 15 2000;164(10):5227-5235.
    3. Nakajima T, Aono H, Hasunuma T, Yamamoto K, Shirai T, Hirohata K, et al. Apoptosis and functional Fas antigen in rheumatoid arthritis synoviocytes. Arthritis Rheum. Apr 1995;38(4):485-491.
    4. Kobayashi T, Okamoto K, Kobata T, Hasunuma T, Kato T, Hamada H, et al. Differential regulation of Fas-mediated apoptosis of rheumatoid synoviocytes by tumor necrosis factor alpha and basic fibroblast growth factor is associated with the expression of apoptosis-related molecules. Arthritis Rheum. May 2000;43(5):1106-1114.
    5. Franz JK, Pap T, Hummel KM, Nawrath M, Aicher WK, Shigeyama Y, et al. Expressionof sentrin, a novel antiapoptotic molecule, at sites of synovial invasion in rheumatoid arthritis. Arthritis Rheum. Mar 2000;43(3):599-607.
    6. Sugiyama M, Tsukazaki T, Yonekura A, Matsuzaki S, Yamashita S, Iwasaki K. Localisation of apoptosis and expression of apoptosis related proteins in the synovium of patients with rheumatoid arthritis. Ann Rheum Dis. Jul 1996;55(7):442-449.
    7. Kobayashi T, Okamoto K, Kobata T, Hasunuma T, Sumida T, Nishioka K. Tumor necrosis factor alpha regulation of the FAS-mediated apoptosis-signaling pathway in synovial cells. Arthritis Rheum. Mar 1999;42(3):519-526.
    8. Zhang HG, Huang N, Liu D, Bilbao L, Zhang X, Yang P, et al. Gene therapy that inhibits nuclear translocation of nuclear factor kappaB results in tumor necrosis factor alpha-induced apoptosis of human synovial fibroblasts. Arthritis Rheum. May 2000;43(5):1094-1105.
    9. van den Bogert C, Dontje BH, Holtrop M, Melis TE, Romijn JC, van Dongen JW, et al. Arrest of the proliferation of renal and prostate carcinomas of human origin by inhibition of mitochondrial protein synthesis. Cancer Res. Jul 1986;46(7):3283-3289.
    10. Iwasaki H, Inoue H, Mitsuke Y, Badran A, Ikegaya S, Ueda T. Doxycycline induces apoptosis by way of caspase-3 activation with inhibition of matrix metalloproteinase in human T-lymphoblastic leukemia CCRF-CEM cells. J Lab Clin Med. Dec 2002;140(6):382-386.
    11. Lokeshwar BL, Escatel E, Zhu B. Cytotoxic activity and inhibition of tumor cell invasion by derivatives of a chemically modified tetracycline CMT-3 (COL-3). Curr Med Chem. Feb 2001;8(3):271-279.
    12. Hanemaaijer R, Sorsa T, Konttinen YT, Ding Y, Sutinen M, Visser H, et al. Matrix metalloproteinase-8 is expressed in rheumatoid synovial fibroblasts and endothelial cells. Regulation by tumor necrosis factor-alpha and doxycycline. J Biol Chem. Dec 12 1997;272(50):31504-31509.
    13. Campo GM, Avenoso A, Campo S, Ferlazzo AM, Altavilla D, Calatroni A. Efficacy of treatment with glycosaminoglycans on experimental collagen-induced arthritis in rats. Arthritis Res Ther. 2003;5(3):R122-131.
    14. Fujisawa K, Aono H, Hasunuma T, Yamamoto K, Mita S, Nishioka K. Activation of transcription factor NF-kappa B in human synovial cells in response to tumor necrosis factor alpha. Arthritis Rheum. Feb 1996;39(2):197-203.
    15. Mark RJ, Keller JN, Kruman I, Mattson MP. Basic FGF attenuates amyloid beta-peptide-induced oxidative stress, mitochondrial dysfunction, and impairment of Na+/K+-ATPase activity in hippocampal neurons. Brain Res. May 9 1997;756(1-2):205-214.
    16. Miller LK. An exegesis of IAPs: salvation and surprises from BIR motifs. Trends Cell Biol. Aug 1999;9(8):323-328.
    17. Deveraux QL, Reed JC. IAP family proteins-suppressors of apoptosis. Genes Dev. Feb 1 1999;13(3):239-252.
    18. Srinivasula SM, Gupta S, Datta P, Zhang Z, Hegde R, Cheong N, et al. Inhibitor of apoptosis proteins are substrates for the mitochondrial serine protease Omi/HtrA2. J Biol Chem. Aug 22 2003;278(34):31469-31472.
    19. Suzuki Y, Takahashi-Niki K, Akagi T, Hashikawa T, Takahashi R. Mitochondrial protease Omi/HtrA2 enhances caspase activation through multiple pathways. Cell Death Differ. Feb 2004;11(2):208-216.
    1 Beck KD, Valverde J, Alexi T, Poulsen K, Moffat B, Vandlen RA et al. Mesencephalic dopaminergic neurons protected by GDNF from axotomy-induced degeneration in the adult brain. Nature 1995; 373: 339-341.
    2 Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 1993; 260: 1130-1132.
    3 Henderson CE, Phillips HS, Pollock RA, Davies AM, Lemeulle C, Armanini M et al. GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle. Science 1994; 266: 1062-1064.
    4 Tomac A, Lindqvist E, Lin LF, Ogren SO, Young D, Hoffer BJ et al. Protection and repair of the nigrostriatal dopaminergic system by GDNF in vivo. Nature 1995; 373: 335-339.
    5 Kitagawa H, Hayashi T, Mitsumoto Y, Koga N, Itoyama Y, Abe K. Reduction of ischemic brain injury by topical application of glial cell line-derived neurotrophic factor after permanent middle cerebral artery occlusion in rats. Stroke 1998; 29: 1417-1422.
    6 Wang Y, Lin SZ, Chiou AL, Williams LR, Hoffer BJ. Glial cell line-derivedneurotrophic factor protects against ischemia-induced injury in the cerebral cortex. J Neurosci 1997; 17: 4341-4348.
    7 Kordower JH, Freeman TB, Snow BJ, Vingerhoets FJ, Mufson EJ, Sanberg PR et al. Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson's disease. N Engl J Med 1995; 332: 1118-1124.
    8 Barinaga M. Fetal neuron grafts pave the way for stem cell therapies. Science 2000; 287: 1421-1422.
    9 Le Belle JE, Svendsen CN. Stem cells for neurodegenerative disorders: where can we go from here? BioDrugs 2002; 16: 389-401.
    10 Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 2001; 32: 2682-2688.
    11 Akle CA, Adinolfi M, Welsh KI, Leibowitz S, McColl I. Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. Lancet 1981; 2: 1003-1005.
    12 Sadler TW, Langman J. Langman's medical embryology. Lippincott Williams & Wilkins: Philadelphia, 2000.
    13 Sionov RV, Yagel S, Har-Nir R, Gallily R. Trophoblasts protect the inner cell mass from macrophage destruction. Biol Reprod 1993; 49: 588-595.
    14 Trelford JD, Trelford-Sauder M. The amnion in surgery, past and present. Am J Obstet Gynecol 1979; 134: 833-845.
    15 Prasad JK, Feller I, Thomson PD. Use of amnion for the treatment of Stevens-Johnson syndrome. J Trauma 1986; 26: 945-946.
    16 Subrahmanyam M. Amniotic membrane as a cover for microskin grafts. Br J Plast Surg 1995; 48: 477-478.
    17 Hebertson RM, Hammond ME, Bryson MJ. Amniotic epithelial ultrastructure in normal, polyhydramnic, and oligohydramnic pregnancies. Obstet Gynecol 1986; 68: 74-79.
    18 Iwasaki R, Matsubara S, Takizawa T, Takayama T, Yashiro T, Suzuki M. Humanamniotic epithelial cells are morphologically homogeneous: enzymehistochemical, tracer, and freeze-substitution fixation study. Eur J Histochem 2003; 47: 223-232.
    19 Miki T, Lehmann T, Cai H, Stolz DB, Strom SC. Stem Cell Characteristics of Amniotic Epithelial Cells. Stem Cells 2005; 23:1549-59.
    20 Knezevic V. Differentiation potential of rat amnion. J Anat 1996; 189 ( Pt 1): 1-7.
    21 Yuge I, Takumi Y, Koyabu K, Hashimoto S, Takashima S, Fukuyama T et al. Transplanted human amniotic epithelial cells express connexin 26 and Na-K-adenosine triphosphatase in the inner ear. Transplantation 2004; 77: 1452-1454.
    22 Takashima S, Ise H, Zhao P, Akaike T, Nikaido T. Human amniotic epithelial cells possess hepatocyte-like characteristics and functions. Cell Struct Funct 2004; 29: 73-84.
    23 Sakuragawa N, Thangavel R, Mizuguchi M, Hirasawa M, Kamo I. Expression of markers for both neuronal and glial cells in human amniotic epithelial cells. Neurosci Lett 1996; 209: 9-12.
    24 Wei JP, Zhang TS, Kawa S, Aizawa T, Ota M, Akaike T et al. Human amnion-isolated cells normalize blood glucose in streptozotocin-induced diabetic mice. Cell Transplant 2003; 12: 545-552.
    25 Adinolfi M, Akle CA, McColl I, Fensom AH, Tansley L, Connolly P et al. Expression of HLA antigens, beta 2-microglobulin and enzymes by human amniotic epithelial cells. Nature 1982; 295: 325-327.
    26 Kosuga M, Sasaki K, Tanabe A, Li XK, Okawa H, Ogino I et al. Engraftment of genetically engineered amniotic epithelial cells corrects lysosomal storage in multiple areas of the brain in mucopolysaccharidosis type VII mice. Mol Ther 2001; 3: 139-148.
    27 Kakishita K, Elwan MA, Nakao N, Itakura T, Sakuragawa N. Human amniotic epithelial cells produce dopamine and survive after implantation into the striatum of a rat model of Parkinson's disease: a potential source of donor for transplantation therapy. Exp Neurol 2000; 165: 27-34.
    28 Sankar V, Muthusamy R. Role of human amniotic epithelial cell transplantation in spinal cord injury repair research. Neuroscience 2003; 118: 11-17.
    29 Sakuragawa N, Enosawa S, Ishii T, Thangavel R, Tashiro T, Okuyama T et al. Humanamniotic epithelial cells are promising transgene carriers for allogeneic cell transplantation into liver. J Hum Genet 2000; 45: 171-176.
    30 Nakajima T, Enosawa S, Mitani T, Li XK, Suzuki S, Amemiya H et al. Cytological examination of rat amniotic epithelial cells and cell transplantation to the liver. Cell Transplant 2001; 10: 423-427.
    31 Takahashi S, Ohsugi K, Yamamoto T, Shiomi M, Sakuragawa N. A novel approach to ex vivo gene therapy for familial hypercholesterolemia using human amniotic epithelial cells as a transgene carrier. Tohoku J Exp Med 2001; 193: 279-292.
    32 Naldini L. Lentiviruses as gene transfer agents for delivery to non-dividing cells. Curr Opin Biotechnol 1998; 9: 457-463.
    33 Kafri T, Blomer U, Peterson DA, Gage FH, Verma IM. Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nat Genet 1997; 17: 314-317.
    34 Blomer U, Naldini L, Kafri T, Trono D, Verma IM, Gage FH. Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J Virol 1997; 71: 6641-6649.
    35 Imren S, Fabry ME, Westerman KA, Pawliuk R, Tang P, Rosten PM et al. High-level beta-globin expression and preferred intragenic integration after lentiviral transduction of human cord blood stem cells. J Clin Invest 2004; 114: 953-962.
    36 Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996; 272: 263-267.
    37 Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 1997; 15: 871-875.
    38 Apte RS, Sinha D, Mayhew E, Wistow GJ, Niederkorn JY. Cutting edge: role of macrophage migration inhibitory factor in inhibiting NK cell activity and preserving immune privilege. J Immunol. Jun 15 1998;160(12):5693-5696.
    39 Le Bouteiller P, Blaschitz A. The functionality of HLA-G is emerging. Immunol Rev. Feb 1999;167:233-244.
    1. Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol. Sep 2003;3(9):745-756.
    2. Sheikh MS, Fornace AJ, Jr. Death and decoy receptors and p53-mediated apoptosis. Leukemia. Aug 2000;14(8):1509-1513.
    3. Sprick MR, Rieser E, Stahl H, Grosse-Wilde A, Weigand MA, Walczak H. Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signalling complexes in a FADD-dependent manner but can not functionally substitute caspase-8. Embo J. Sep 2 2002;21(17):4520-4530.
    4. Gross A, Yin XM, Wang K, Wei MC, Jockel J, Milliman C, et al. Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J Biol Chem. Jan 8 1999;274(2):1156-1163.
    5. Wang K, Yin XM, Chao DT, Milliman CL, Korsmeyer SJ. BID: a novel BH3 domain-only death agonist. Genes Dev. Nov 15 1996;10(22):2859-2869.
    6. Scaffidi C, Schmitz I, Zha J, Korsmeyer SJ, Krammer PH, Peter ME. Differential modulation of apoptosis sensitivity in CD95 type I and type II cells. J Biol Chem. Aug 6 1999;274(32):22532-22538.
    7. Kim PK, Wang Y, Gambotto A, Kim YM, Weller R, Zuckerbraun BS, et al. Hepatocyte Fas-associating death domain protein/mediator of receptor-induced toxicity (FADD/MORT1) levels increase in response to pro-apoptotic stimuli. J Biol Chem. Oct 11 2002;277(41):38855-38862.
    8. de Thonel A, Bettaieb A, Jean C, Laurent G, Quillet-Mary A. Role of protein kinase C zeta isoform in Fas resistance of immature myeloid KG1a leukemic cells. Blood. Dec 15 2001;98(13):3770-3777.
    9. Langzam L, Koren R, Gal R, Kugel V, Paz A, Farkas A, et al. Patterns of protein kinase C isoenzyme expression in transitional cell carcinoma of bladder. Relation to degree of malignancy. Am J Clin Pathol. Sep 2001;116(3):377-385.
    10. Rochat-Steiner V, Becker K, Micheau O, Schneider P, Burns K, Tschopp J.FIST/HIPK3: a Fas/FADD-interacting serine/threonine kinase that induces FADD phosphorylation and inhibits fas-mediated Jun NH(2)-terminal kinase activation. J Exp Med. Oct 16 2000;192(8):1165-1174.
    11. Li X, Wang Y, Debatin KM, Hug H. The serine/threonine kinase HIPK2 interacts with TRADD, but not with CD95 or TNF-R1 in 293T cells. Biochem Biophys Res Commun. Oct 22 2000;277(2):513-517.
    12. Himeji D, Horiuchi T, Tsukamoto H, Hayashi K, Watanabe T, Harada M. Characterization of caspase-8L: a novel isoform of caspase-8 that behaves as an inhibitor of the caspase cascade. Blood. Jun 1 2002;99(11):4070-4078.
    13. Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, et al. Inhibition of death receptor signals by cellular FLIP. Nature. Jul 10 1997;388(6638):190-195.
    14. Scaffidi C, Schmitz I, Krammer PH, Peter ME. The role of c-FLIP in modulation of CD95-induced apoptosis. J Biol Chem. Jan 15 1999;274(3):1541-1548.
    15. Kreuz S, Siegmund D, Scheurich P, Wajant H. NF-kappaB inducers upregulate cFLIP, a cycloheximide-sensitive inhibitor of death receptor signaling. Mol Cell Biol. Jun 2001;21(12):3964-3973.
    16. Micheau O, Thome M, Schneider P, Holler N, Tschopp J, Nicholson DW, et al. The long form of FLIP is an activator of caspase-8 at the Fas death-inducing signaling complex. J Biol Chem. Nov 22 2002;277(47):45162-45171.
    17. Kim JW, Choi EJ, Joe CO. Activation of death-inducing signaling complex (DISC) by pro-apoptotic C-terminal fragment of RIP. Oncogene. Sep 14 2000;19(39):4491-4499.
    18. Chin AI, Dempsey PW, Bruhn K, Miller JF, Xu Y, Cheng G. Involvement of receptor-interacting protein 2 in innate and adaptive immune responses. Nature. Mar 14 2002;416(6877):190-194.
    19. Torii S, Egan DA, Evans RA, Reed JC. Human Daxx regulates Fas-induced apoptosis from nuclear PML oncogenic domains (PODs). Embo J. Nov 1 1999;18(21):6037-6049.
    20. Charette SJ, Lavoie JN, Lambert H, Landry J. Inhibition of Daxx-mediated apoptosis by heat shock protein 27. Mol Cell Biol. Oct 2000;20(20):7602-7612.
    21. Kim YH, Choi CY, Kim Y. Covalent modification of the homeodomain-interacting protein kinase 2 (HIPK2) by the ubiquitin-like protein SUMO-1. Proc Natl Acad Sci U S A. Oct 26 1999;96(22):12350-12355.
    22. Mattson MP, Kroemer G. Mitochondria in cell death: novel targets for neuroprotection and cardioprotection. Trends Mol Med. May 2003;9(5):196-205.
    23. Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP, et al. The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature. Jan 29 2004;427(6973):461-465.
    24. He L, Lemasters JJ. Regulated and unregulated mitochondrial permeability transition pores: a new paradigm of pore structure and function? FEBS Lett. Feb 13 2002;512(1-3):1-7.
    25. Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science. Aug 28 1998;281(5381):1322-1326.
    26. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science. Apr 27 2001;292(5517):727-730.
    27. Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell. Sep 2002;2(3):183-192.
    28. Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R, et al. Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell. Nov 1 2002;111(3):331-342.
    29. Suzuki M, Youle RJ, Tjandra N. Structure of Bax: coregulation of dimer formation and intracellular localization. Cell. Nov 10 2000;103(4):645-654.
    30. Liu X, Dai S, Zhu Y, Marrack P, Kappler JW. The structure of a Bcl-xL/Bim fragment complex: implications for Bim function. Immunity. Sep 2003;19(3):341-352.
    31. Yethon JA, Epand RF, Leber B, Epand RM, Andrews DW. Interaction with a membrane surface triggers a reversible conformational change in Bax normally associated with induction of apoptosis. J Biol Chem. Dec 52003;278(49):48935-48941.
    32. Tsuruta F, Sunayama J, Mori Y, Hattori S, Shimizu S, Tsujimoto Y, et al. JNK promotes Bax translocation to mitochondria through phosphorylation of 14-3-3 proteins. Embo J. Apr 21 2004;23(8):1889-1899.
    33. Sawada M, Sun W, Hayes P, Leskov K, Boothman DA, Matsuyama S. Ku70 suppresses the apoptotic translocation of Bax to mitochondria. Nat Cell Biol. Apr 2003;5(4):320-329.
    34. Lin B, Kolluri SK, Lin F, Liu W, Han YH, Cao X, et al. Conversion of Bcl-2 from protector to killer by interaction with nuclear orphan receptor Nur77/TR3. Cell. Feb 20 2004;116(4):527-540.
    35. Konishi A, Shimizu S, Hirota J, Takao T, Fan Y, Matsuoka Y, et al. Involvement of histone H1.2 in apoptosis induced by DNA double-strand breaks. Cell. Sep 19 2003;114(6):673-688.
    36. Majewski N, Nogueira V, Robey RB, Hay N. Akt inhibits apoptosis downstream of BID cleavage via a glucose-dependent mechanism involving mitochondrial hexokinases. Mol Cell Biol. Jan 2004;24(2):730-740.
    37. Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, et al. Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science. Feb 13 2004;303(5660):1010-1014.
    38. Jeffers JR, Parganas E, Lee Y, Yang C, Wang J, Brennan J, et al. Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell. Oct 2003;4(4):321-328.
    39. Yu J, Wang Z, Kinzler KW, Vogelstein B, Zhang L. PUMA mediates the apoptotic response to p53 in colorectal cancer cells. Proc Natl Acad Sci U S A. Feb 18 2003;100(4):1931-1936.
    40. Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert EG, Catez F, et al. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell. Oct 2001;1(4):515-525.
    41. Karbowski M, Lee YJ, Gaume B, Jeong SY, Frank S, Nechushtan A, et al. Spatial andtemporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J Cell Biol. Dec 23 2002;159(6):931-938.
    42. Karbowski M, Youle RJ. Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ. Aug 2003;10(8):870-880.
    43. Lee YJ, Jeong SY, Karbowski M, Smith CL, Youle RJ. Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell. Nov 2004;15(11):5001-5011.
    44. Cuddeback SM, Yamaguchi H, Komatsu K, Miyashita T, Yamada M, Wu C, et al. Molecular cloning and characterization of Bif-1. A novel Src homology 3 domain-containing protein that associates with Bax. J Biol Chem. Jun 8 2001;276(23):20559-20565.
    45. Takahashi Y, Karbowski M, Yamaguchi H, Kazi A, Wu J, Sebti SM, et al. Loss of Bif-1 suppresses Bax/Bak conformational change and mitochondrial apoptosis. Mol Cell Biol. Nov 2005;25(21):9369-9382.
    46. Mukamel Z, Kimchi A. Death-associated protein 3 localizes to the mitochondria and is involved in the process of mitochondrial fragmentation during cell death. J Biol Chem. Aug 27 2004;279(35):36732-36738.
    47. Okamoto K, Shaw JM. Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu Rev Genet. 2005;39:503-536.
    48. Karbowski M, Arnoult D, Chen H, Chan DC, Smith CL, Youle RJ. Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of apoptosis. J Cell Biol. Feb 16 2004;164(4):493-499.
    49. Sugioka R, Shimizu S, Tsujimoto Y. Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. J Biol Chem. Dec 10 2004;279(50):52726-52734.
    50. Neuspiel M, Zunino R, Gangaraju S, Rippstein P, McBride H. Activated mitofusin 2 signals mitochondrial fusion, interferes with Bax activation, and reduces susceptibility to radical induced depolarization. J Biol Chem. Jul 1 2005;280(26):25060-25070.
    51. Olichon A, Baricault L, Gas N, Guillou E, Valette A, Belenguer P, et al. Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem. Mar 7 2003;278(10):7743-7746.
    52. Tan Y, Dourdin N, Wu C, De Veyra T, Elce JS, Greer PA. Ubiquitous calpains promote caspase-12 and Jnk activation during ER stress-induced apoptosis. J Biol Chem. Apr 5 2006.
    53. Rao RV, Castro-Obregon S, Frankowski H, Schuler M, Stoka V, del Rio G, et al. Coupling endoplasmic reticulum stress to the cell death program. An Apaf-1-independent intrinsic pathway. J Biol Chem. Jun 14 2002;277(24):21836-21842.
    54. Fischer H, Koenig U, Eckhart L, Tschachler E. Human caspase 12 has acquired deleterious mutations. Biochem Biophys Res Commun. May 3 2002;293(2):722-726.
    55. Hitomi J, Katayama T, Eguchi Y, Kudo T, Taniguchi M, Koyama Y, et al. Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. J Cell Biol. May 10 2004;165(3):347-356.
    56. Breckenridge DG, Nguyen M, Kuppig S, Reth M, Shore GC. The procaspase-8 isoform, procaspase-8L, recruited to the BAP31 complex at the endoplasmic reticulum. Proc Natl Acad Sci U S A. Apr 2 2002;99(7):4331-4336.
    57. Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T, et al. BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science. Apr 4 2003;300(5616):135-139.
    58. Nutt LK, Chandra J, Pataer A, Fang B, Roth JA, Swisher SG, et al. Bax-mediated Ca2+ mobilization promotes cytochrome c release during apoptosis. J Biol Chem. Jun 7 2002;277(23):20301-20308.
    59. Kaufman RJ. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. May 15 1999;13(10):1211-1233.
    60. Barone MV, Crozat A, Tabaee A, Philipson L, Ron D. CHOP (GADD153) and its oncogenic variant, TLS-CHOP, have opposing effects on the induction of G1/S arrest.Genes Dev. Feb 15 1994;8(4):453-464.
    61. McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol. Feb 2001;21(4):1249-1259.
    62. Kobayashi T, Tanaka K, Inoue K, Kakizuka A. Functional ATPase activity of p97/valosin-containing protein (VCP) is required for the quality control of endoplasmic reticulum in neuronally differentiated mammalian PC12 cells. J Biol Chem. Dec 6 2002;277(49):47358-47365.
    63. Vito P, Lacana E, D'Adamio L. Interfering with apoptosis: Ca(2+)-binding protein ALG-2 and Alzheimer's disease gene ALG-3. Science. Jan 26 1996;271(5248):521-525.
    64. Vito P, Pellegrini L, Guiet C, D'Adamio L. Cloning of AIP1, a novel protein that associates with the apoptosis-linked gene ALG-2 in a Ca2+-dependent reaction. J Biol Chem. Jan 15 1999;274(3):1533-1540.
    65. Lacana E, Ganjei JK, Vito P, D'Adamio L. Dissociation of apoptosis and activation of IL-1beta-converting enzyme/Ced-3 proteases by ALG-2 and the truncated Alzheimer's gene ALG-3. J Immunol. Jun 1 1997;158(11):5129-5135.
    66. Rao RV, Poksay KS, Castro-Obregon S, Schilling B, Row RH, del Rio G, et al. Molecular components of a cell death pathway activated by endoplasmic reticulum stress. J Biol Chem. Jan 2 2004;279(1):177-187.
    1. Sakuragawa N, Elwan MA, Uchida S, Fujii T, Kawashima K. Non-neuronal neurotransmitters and neurotrophic factors in amniotic epithelial cells: expression and function in humans and monkey. Jpn J Pharmacol. Jan 2001;85(1):20-23.
    2. Diwan SB, Stevens LC. Development of teratomas from the ectoderm of mouse egg cylinders. J Natl Cancer Inst. Oct 1976;57(4):937-942.
    3. Adinolfi M, Akle CA, McColl I, Fensom AH, Tansley L, Connolly P, et al. Expression of HLA antigens, beta 2-microglobulin and enzymes by human amniotic epithelial cells. Nature. Jan 28 1982;295(5847):325-327.
    4. Brivanlou AH, Gage FH, Jaenisch R, Jessell T, Melton D, Rossant J. Stem cells. Setting standards for human embryonic stem cells. Science. May 9 2003;300(5621):913-916.
    5. Miki T, Lehmann T, Cai H, Stolz DB, Strom SC. Stem Cell Characteristics of Amniotic Epithelial Cells. Stem Cells. Aug 9 2005.
    6. Wei JP, Zhang TS, Kawa S, Aizawa T, Ota M, Akaike T, et al. Human amnion-isolated cells normalize blood glucose in streptozotocin-induced diabetic mice. Cell Transplant. 2003;12(5):545-552.
    7. Ishii T, Ohsugi K, Nakamura S, Sato K, Hashimoto M, Mikoshiba K, et al. Gene expression of oligodendrocyte markers in human amniotic epithelial cells using neural cell-type-specific expression system. Neurosci Lett. Jun 25 1999;268(3):131-134.
    8. Sakuragawa N, Misawa H, Ohsugi K, Kakishita K, Ishii T, Thangavel R, et al. Evidence for active acetylcholine metabolism in human amniotic epithelial cells: applicable to intracerebral allografting for neurologic disease. Neurosci Lett. Aug 22 1997;232(1):53-56.
    9. Elwan MA, Sakuragawa N. Evidence for synthesis and release of catecholamines by human amniotic epithelial cells. Neuroreport. Nov 10 1997;8(16):3435-3438.
    10. Elwan MA, Thangavel R, Ono F, Sakuragawa N. Synthesis and release of catecholamines by cultured monkey amniotic epithelial cells. J Neurosci Res. Jul 1 1998;53(1):107-113.
    11. Wessler I, Kirkpatrick CJ, Racke K. Non-neuronal acetylcholine, a locally acting molecule, widely distributed in biological systems: expression and function in humans. Pharmacol Ther. Jan 1998;77(1):59-79.
    12. Mezey E, Eisenhofer G, Hansson S, Harta G, Hoffman BJ, Gallatz K, et al.Non-neuronal dopamine in the gastrointestinal system. Clin Exp Pharmacol Physiol Suppl. Apr 1999;26:S14-22.
    13. Soares-da-Silva P. A study of the neuronal and non-neuronal stores of dopamine in rat and rabbit kidney. Pharmacol Res. Sep 1992;26(2):161-171.
    14. Sakuragawa N, Elwan MA, Fujii T, Kawashima K. Possible dynamic neurotransmitter metabolism surrounding the fetus. J Child Neurol. Apr 1999;14(4):265-266.
    15. Kakishita K, Elwan MA, Nakao N, Itakura T, Sakuragawa N. Human amniotic epithelial cells produce dopamine and survive after implantation into the striatum of a rat model of Parkinson's disease: a potential source of donor for transplantation therapy. Exp Neurol. Sep 2000;165(1):27-34.
    16. Elwan MA. Synthesis of dopamine from L-3,4-dihydroxyphenylalanine by human amniotic epithelial cells. Eur J Pharmacol. Jul 31 1998;354(1):R1-2.
    17. Elwan MA, Ishii T, Sakuragawa N. Characterization of dopamine D2 receptor gene expression and binding sites in human placenta amniotic epithelial cells. Placenta. Jul 2003;24(6):658-663.
    18. Elwan MA, Ishii T, Sakuragawa N. Characterization of the dopamine transporter gene expression and binding sites in cultured human amniotic epithelial cells. Neurosci Lett. May 15 2003;342(1-2):61-64.
    19. Uchida S, Inanaga Y, Kobayashi M, Hurukawa S, Araie M, Sakuragawa N. Neurotrophic function of conditioned medium from human amniotic epithelial cells. J Neurosci Res. Nov 15 2000;62(4):585-590.
    20. Koyano S, Fukui A, Uchida S, Yamada K, Asashima M, Sakuragawa N. Synthesis and release of activin and noggin by cultured human amniotic epithelial cells. Dev Growth Differ. Apr 2002;44(2):103-112.
    21. Kordower JH, Freeman TB, Snow BJ, Vingerhoets FJ, Mufson EJ, Sanberg PR, et al. Neuropathological evidence of graft survival and striatal reinnervation after the transplantation of fetal mesencephalic tissue in a patient with Parkinson's disease. N Engl J Med. Apr 27 1995;332(17):1118-1124.
    22. Schubert D, Kimura H, LaCorbiere M, Vaughan J, Karr D, Fischer WH. Activin is anerve cell survival molecule. Nature. Apr 26 1990;344(6269):868-870.
    23. Tretter YP, Hertel M, Munz B, ten Bruggencate G, Werner S, Alzheimer C. Induction of activin A is essential for the neuroprotective action of basic fibroblast growth factor in vivo. Nat Med. Jul 2000;6(7):812-815.
    24. Van L. The Incidence of Sex Chromatin in the Nuclei of Amniotic Epithelial Cells in Chick and Duck Embryos. Acta Morphol Neerl Scand. 1964;17:366-372.
    25. Takashima S, Ise H, Zhao P, Akaike T, Nikaido T. Human amniotic epithelial cells possess hepatocyte-like characteristics and functions. Cell Struct Funct. Jun 2004;29(3):73-84.
    26. Sakuragawa N, Enosawa S, Ishii T, Thangavel R, Tashiro T, Okuyama T, et al. Human amniotic epithelial cells are promising transgene carriers for allogeneic cell transplantation into liver. J Hum Genet. 2000;45(3):171-176.
    27. Le Bouteiller P, Blaschitz A. The functionality of HLA-G is emerging. Immunol Rev. Feb 1999;167:233-244.
    28. Onno M, Pangault C, Le Friec G, Guilloux V, Andre P, Fauchet R. Modulation of HLA-G antigens expression by human cytomegalovirus: specific induction in activated macrophages harboring human cytomegalovirus infection. J Immunol. Jun 15 2000;164(12):6426-6434.
    29. Schust DJ, Hill AB, Ploegh HL. Herpes simplex virus blocks intracellular transport of HLA-G in placentally derived human cells. J Immunol. Oct 15 1996;157(8):3375-3380.
    30. Schust DJ, Tortorella D, Seebach J, Phan C, Ploegh HL. Trophoblast class I major histocompatibility complex (MHC) products are resistant to rapid degradation imposed by the human cytomegalovirus (HCMV) gene products US2 and US11. J Exp Med. Aug 3 1998;188(3):497-503.
    31. Jun Y, Kim E, Jin M, Sung HC, Han H, Geraghty DE, et al. Human cytomegalovirus gene products US3 and US6 down-regulate trophoblast class I MHC molecules. J Immunol. Jan 15 2000;164(2):805-811.
    32. Fournel S, Aguerre-Girr M, Huc X, Lenfant F, Alam A, Toubert A, et al. Cutting edge: soluble HLA-G1 triggers CD95/CD95 ligand-mediated apoptosis in activated CD8+cells by interacting with CD8. J Immunol. Jun 15 2000;164(12):6100-6104.
    33. Dorling A, Monk NJ, Lechler RI. HLA-G inhibits the transendothelial migration of human NK cells. Eur J Immunol. Feb 2000;30(2):586-593.
    34. Hara N, Fujii T, Yamashita T, Kozuma S, Okai T, Taketani Y. Altered expression of human leukocyte antigen G (HLA-G) on extravillous trophoblasts in preeclampsia: immunohistological demonstration with anti-HLA-G specific antibody "87G" and anti-cytokeratin antibody "CAM5.2". Am J Reprod Immunol. Dec 1996;36(6):349-358.
    35. Kovats S, Main EK, Librach C, Stubblebine M, Fisher SJ, DeMars R. A class I antigen, HLA-G, expressed in human trophoblasts. Science. Apr 13 1990;248(4952):220-223.
    36. Lila N, Carpentier A, Amrein C, Khalil-Daher I, Dausset J, Carosella ED. Implication of HLA-G molecule in heart-graft acceptance. Lancet. Jun 17 2000;355(9221):2138.
    37. Paul P, Rouas-Freiss N, Khalil-Daher I, Moreau P, Riteau B, Le Gal FA, et al. HLA-G expression in melanoma: a way for tumor cells to escape from immunosurveillance. Proc Natl Acad Sci U S A. Apr 14 1998;95(8):4510-4515.
    38. Geraghty DE, Koller BH, Orr HT. A human major histocompatibility complex class I gene that encodes a protein with a shortened cytoplasmic segment. Proc Natl Acad Sci U S A. Dec 1987;84(24):9145-9149.
    39. Yang Y, Geraghty DE, Hunt JS. Cytokine regulation of HLA-G expression in human trophoblast cell lines. J Reprod Immunol. Oct 1995;29(3):179-195.
    40. Lefebvre S, Adrian F, Moreau P, Gourand L, Dausset J, Berrih-Aknin S, et al. Modulation of HLA-G expression in human thymic and amniotic epithelial cells. Hum Immunol. Nov 2000;61(11):1095-1101.
    41. Apte RS, Sinha D, Mayhew E, Wistow GJ, Niederkorn JY. Cutting edge: role of macrophage migration inhibitory factor in inhibiting NK cell activity and preserving immune privilege. J Immunol. Jun 15 1998;160(12):5693-5696.
    42. Mor G, Gutierrez LS, Eliza M, Kahyaoglu F, Arici A. Fas-fas ligand system-induced apoptosis in human placenta and gestational trophoblastic disease. Am J Reprod Immunol. Aug 1998;40(2):89-94.
    43. Griffith TS, Brunner T, Fletcher SM, Green DR, Ferguson TA. Fas ligand-inducedapoptosis as a mechanism of immune privilege. Science. Nov 17 1995;270(5239):1189-1192.
    44. Xu JP, Li X, Mori E, Guo MW, Matsuda I, Takaichi H, et al. Expression of Fas-Fas ligand in murine testis. Am J Reprod Immunol. Dec 1999;42(6):381-388.
    45. Ljunggren HG, Karre K. In search of the 'missing self': MHC molecules and NK cell recognition. Immunol Today. Jul 1990;11(7):237-244.
    46. Runic R, Lockwood CJ, LaChapelle L, Dipasquale B, Demopoulos RI, Kumar A, et al. Apoptosis and Fas expression in human fetal membranes. J Clin Endocrinol Metab. Feb 1998;83(2):660-666.
    47. Surendran S. Possible role of prostaglandin E2 in human amniotic epithelial cell death: an in vitro study. Inflamm Res. Oct 2001;50(10):483-485.
    48. Akle CA, Adinolfi M, Welsh KI, Leibowitz S, McColl I. Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. Lancet. Nov 7 1981;2(8254):1003-1005.
    49. He YG, Alizadeh H, Kinoshita K, McCulley JP. Experimental transplantation of cultured human limbal and amniotic epithelial cells onto the corneal surface. Cornea. Sep 1999;18(5):570-579.
    50. Kakishita K, Nakao N, Sakuragawa N, Itakura T. Implantation of human amniotic epithelial cells prevents the degeneration of nigral dopamine neurons in rats with 6-hydroxydopamine lesions. Brain Res. Aug 1 2003;980(1):48-56.
    51. Kosuga M, Sasaki K, Tanabe A, Li XK, Okawa H, Ogino I, et al. Engraftment of genetically engineered amniotic epithelial cells corrects lysosomal storage in multiple areas of the brain in mucopolysaccharidosis type VII mice. Mol Ther. Feb 2001;3(2):139-148.
    52. Takahashi S, Ohsugi K, Yamamoto T, Shiomi M, Sakuragawa N. A novel approach to ex vivo gene therapy for familial hypercholesterolemia using human amniotic epithelial cells as a transgene carrier. Tohoku J Exp Med. Apr 2001;193(4):279-292.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700