稀土共发光反应的研究及其纳米材料的相转移法制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土元素原子结构特殊,内层4f轨道未成对电子多、原子磁矩高、电子能级极其丰富,几乎可以与所有元素发生反应,形成多价态、多配位数(3~12个)的化合物,具有许多优异的光、电、磁、核等特性,被称为“现代工业的维生素”和神奇的“新材料宝库”。稀土材料纳米化后,具有许多特性,如小尺寸效应、高比表面效应、量子效应、极强的光、电、磁性质、超导性、高化学活性等,能大大提高材料的性能和功能,可用于新材料的开发,在光学材料、发光材料、晶体材料、磁性材料、电池材料、电子陶瓷、工程陶瓷、催化剂等领域,将发挥重要的作用。本文主要从以下四个方面对稀土进行了研究:
     1.通过体系Dy~(3+)-Gd~(3+)-SSA研究了共发光离子Gd~(3+)对发光离子Dy~(3+)的共发光反应,综合运用紫外可见光谱、荧光光谱、同步散射光谱对共发光反应进行表征,证明了共发光反应的机理。发光中心离子Dy3+属于M*-M型发光,其激发能量既来自于分子内的能量传递也来自于分子间的能量传递;在体系中加入不同离子型的表面活性剂,研究表明,阳离子表面活性剂CTMAB的加入对体系起到了增溶、增敏的作用;考察了Gd~(3+)浓度、SSA浓度、pH值对体系荧光、散射光强度的影响,结果表明对于体系Dy~(3+)-Gd~(3+)-SSA来说,Gd~(3+)、SSA最佳浓度分别为3.0×10-4 mol·L~(-1)、2.0×10-3 mol·L~(-1),最佳pH值为8.0。
     2.应用散射光谱法研究稀土元素La~(3+)对Sm~(3+)-TFA-TOPO体系的荧光猝灭机理。经分析可推测荧光猝灭主要有三方面原因:(1)胶束是靠表面分子的憎水基的相互吸引缔合而形成的,加入La~(3+)后,胶束表面电荷的静电排斥作用不利于胶束形成,络合合物的有机环境被破坏,使荧光减弱;(2)配体竞争减少Sm~(3+)的络合物的生成;(3)新的聚集体生成。TFA的跃迁能级与La~(3+)的更接近一些,致使由配体向Sm~(3+)的能量传递减弱,使荧光减弱产生荧光猝灭。探索了各体系中相关条件对荧光强度的影响,进而找出各体系的最佳形成条件。对于体系Sm~(3+)-TFA-TOPO来说,对应荧光强度最强处,Sm~(3+)、TFA、TOPO的最佳浓度分别为2.0×10~(-5) mol·L~(-1)、2.0×10-4 mol·L~(-1)、1.5×10~(-4) mol·L~(-1) , pH _(最佳) =6.4。而体系Sm~(3+)-La~(3+)-TFA-TOPO,Sm~(3+)、TFA、TOPO的最佳浓度分别为2.0×10-5mol·L~(-1),3.0×10~(-4) mol·L~(-1),1.5×10-4 mol·L~(-1),pH _(最佳)=5.8。
     3.以TTA、phen为相转移剂,DMF为增溶剂高效的将稀土Sm~(3+)从水相转移到有机相氯仿中,以硫代乙酰胺的乙醇溶液为硫源成功得到了硫化钐的稀土纳米材料,通过透射电镜、紫外可见光谱、荧光光谱、同步散射光谱等手段对生成的纳米粒子进行了表征,并探索出纳米粒子形成的最佳条件。结果表明,制备的硫化钐纳米材料粒度较小,平均粒度在40~50 nm左右,且粒度分布集中,性能稳定。实验证明其形成的最佳条件为Sm~(3+)、TTA、phen最佳配比为1:7.5:1.25,相转移过程中有机相与水相最佳体积比为2:1;络合物形成、稀土纳米材料生成的最佳pH值分别为5.46与6.27;络合物相转移、稀土纳米材料形成最佳时间分别为45 min与60 min。
     4.采用与制备纳米硫化钐相同的相转移法成功制备了硫化铕的纳米材料,通过透射电镜、紫外可见光谱、荧光光谱、同步散射光谱等手段对纳米粒子的生成过程进行了表征,并探索出该纳米材料生成的最佳条件。结果表明,硫化铕纳米材料平均粒度大约在50 nm左右,分布比较分散。其形成的最佳条件为Eu~(3+)、TTA、phen最佳配比为1:2.7:1,有机相与水相体积比为2.5:1;络合物生成、稀土纳米材料形成的最佳pH值分别为7.10与7.30;络合物相转移、稀土纳米材料形成最佳时间分别为30 min与120 min。
Rare earth elements were praised as“the vitamin of modern industry”, and many rare earth complexes of different valences and coordination number(3~12) have been prepared , which were of good optical、electric、magnetic properties arising from their many unpaired electrons、high atomic magnetic moment and rich electronic energy levels. Rare earth materials of nano structure were of new properties, such as small size effect、high specific surface、quantum effect、superconductivity, and have been extensively applied in a variety of different areas including luminescent materials、crystal materials、magnetic materials、battery materials、electronic ceramics、engineering ceramics、and catalysts et al. The content of this paper consist of four parts as follows:
     1. The fluorescence enhancement mechanism of Dy~(3+)-SSA system by adding Gd~(3+) was studied by the resonance light scattering and fluorescence spectrum. In this paper, the influencing factors including the concentration of Gd~(3+)、SSA, pH value as well as surfactants were studied. As a result, the fluorescence and scattering-light intensity of the system Dy~(3+)-Gd~(3+)-SSA was increased by the surfactant CTMAB, and the optimal experimental conditions were Gd~(3+)3.0×10~(-4) mol·L~(-1)、SSA 2.0×10~(-3) mol·L~(-1)、pH 8.0.
     2. The fluorescence quenching mechanism of Sm~(3+)-TFA-TOPO system was studied in the presence of La3+. Resonance scattering-light spectrum indicated that there were three factors: the destroying of micelle, the competition of ligand and the form of new congeries. It analyzed the influence of scattering-light and fluorescence which was caused by different conditions. Then the optimal experimental conditions were studied. Without of La~(3+), the optimal experimental conditions of Sm~(3+)-TFA-TOPO system were Sm~(3+) 2.0×10-5 mol·L~(-1), TFA 2.0×10-4 mol·L~(-1), TOPO 1.5×10~(-4) mol·L~(-1), pH=6.4 respectively. In the presence of La~(3+), The fluorescence intensity of the Sm~(3+)-TFA-TOPO system was maximal on the optimal experimental conditions of Sm~(3+) 2.0×10~(-5) mol·L~(-1), TFA 3.0×10~(-4) mol·L~(-1), TOPO 1.5×10~(-4) mol·L~(-1), pH=5.8.
     3. Samarium sulfide of nano structure was prepared successfully. Sm~(3+) was transferred from water phase to organic phase by the term of the phase transfer agent of TTA、phen and the solubilizer of DMF, and the samarium sulfide of nano structure developed when the TAA was added as source of S2-. The preparation of nano-particles was characterized by transmission electron microscopy (TEM) and UV-vis spectroscopy、fluorescence and scattering-light spectroscopy. With the aim to attain better samarium sulfide nanoparticles, all kinds of factors were studied. The particle size of samarium sulfide nanoparticles was 40~50 nm or so, more uniform, character stability. The optimum conditions was: cSm:cTTA:cphen=1:7.5:1.25, Vorganic phase:Vwater phase =2:1; the optimum pH of the complex and the nanoparticles preparation was 5.46 and 6.27, respectively; the optimum time of phase transferring and nanoparticle generation process was 45 min and 60 min.
     4. Europium sulfide of nano structure was prepared by the same method as samarium sulfide of nano structure. The preparation of nano-particles was characterized by transmission electron microscopy (TEM) and UV-vis spectroscopy、fluorescence and scattering-light spectroscopy. The particle size of europium sulfide nanoparticles was 50 nm or so, the distribution was dispersed. The optimum conditions was: cEu:cTTA:cphen=1:2.7:1, Vorganic phase:Vwater phase =2.5:1; the optimum pH of complex and the nanoparticles preparation was 7.10 and 7.3, respectively; the optimital time of phase transferring and nanoparticle generation process was 30 min and 120 min.
引文
陈野,蔡伟民,于英宁,等.铕铽柠檬酸-1, 10-菲咯啉配合物的合成及荧光性质研究[J].发光学报. 2002, 23: 580-584.
    邓庚凤,钟淑梅,陈辉煌,等.溶胶-凝胶法制备超微氧化钐的工艺研究[J].稀土. 2007, 28: 40-42.
    高界铭,张喜燕,周红萍,等.稀土化合物纳米粉的研究进展[J].材料导报. 2002, 16(11): 39-41.
    何捍卫,胡岳华,黄河龙,等.影响均相沉淀法制备高纯纳米氧化铒的因素与机理研究[J].稀土. 2000: 2-48.
    何则强,熊利芝,肖卓炳,等.纳米SnO的溶胶-凝胶法制备与电化学性能[J].无机化学学报. 2006, 22: 253-257.
    洪广言.稀土产业与纳米科技[J].稀土信息. 2002, 5: 5-9.
    洪维民,田蓉屏.稀土超微粉末的制备方法及应用[J].稀有金属. 1995, 19: 384-400.
    胡继明,陈观铨,曾云鄂.协同发光效应及机理探讨[J].发光学报. 1993, 14: 74-80.
    胡林学,李建平,宋功武,等.铕(Ⅲ)-钆(Ⅲ)-二苯甲酰甲烷-三乙醇胺-氯化十六烷基吡啶荧光体系及其应用[J].分析化学, 1996, 24: 1237-1242.
    黄承志,李原芳,李克安,等.稀土-8-羟基喹啉-核酸体系的荧光特性[J]. 中国稀土学报. 1998, 16: 84-87.
    江祖成,蔡汝秀,张华山.稀土元素分析化学[M].科学出版社. 2000: 239.
    景晓燕,洪广言,李有谟.醇盐法制备氢氧化铷氧化铷超微粉末[J].中国稀土学报. 1989, 7: 47-50.
    李金龙,隋国哲,刘青鑫.纳米氧化镧粉的制备及其表征[J].化工时刊. 2005, 19: 28-29.
    李铁津. LB膜的制备[J].中国致公出版社. 1997.
    李维丽,李文莲,杨玉华,等.钇对铕-β-二酮螯合物的荧光增强作用[J]. 中国稀土学报. 1989, 4: 27.
    Lu J., Tinkhan M.单电子晶体管.物理. 1998, 27(3): 137-140.
    李玮捷,石士考. Y_2O_3:Eu荧光粉的制备方法及性质研究进展[J].稀土. 2000, 21(5): 61-63.
    林映霞,曹立新.纳米发光材料的发展及研究综述[J].山东化工. 2004, 33: 12-15.
    刘建群,王旭,赵慧春.铕敏化荧光法测定人体血清和尿液中的血清蛋白[J].分析实验室. 2001, 20: 79-82.
    刘锦淮,刘伟,焦正,等.纳米二氧化铈化学共沉淀法制备与结构表征[J].电子元件与材料. 2003, 22: 1-2.
    刘晓瑭,刘华鼐,石春山.稀土发光材料的合成方法[J].合成化学. 2005, 13(3): 216-218 .
    邱关明,耿秀娟,陈永杰,等.纳米稀土发光材料的光学特性及软化学制备[J].中国稀土学报. 2003, 21(3): 109 - 113.
    饶海波,成建波,黄宗琳. Tb~(3+):YAG单晶荧光层中掺杂Ga~(3+)的荧光敏化作用[J].发光学报. 2004, 24: 264-267.
    苏品书.超微粒子材料技术[M].武汉出版社. 1989.
    莎仁,王喜贵,吴红英,等.球形La_2O_3:Eu纳米晶的制备及其发光特性[J].无机化学学报. 2008, 24: 981-985.
    绍光杰,马焕明,王海燕.离心高速电镀镍工艺研究[J].电镀与涂饰. 2000, 19: 10-12.
    沈兴海,高宏成.纳米微粒的微乳液制备法[J].化学通报. 1995, 11: 6-11.
    孙家跃,夏志国,杜海燕,等.稀土红色长余辉发光材料研究进展[J].中国稀土报. 2005, (6): 257-265 .
    王浩,丁瑞钦,杨恢东.高密度磁记录读磁头用巨磁电阻薄膜研究进展[J].材料导报. 12: 20-23.
    王齐,刘忠芳,孔玲.米微粒与维生素B_1相互作用的吸收光谱和共振瑞利散射光谱研究[J].分析化学. 2007, 35: 56-60.
    王庆禄,张志刚.纳米磁性材料的制备方法比较与应用[J].唐山师范学院学报. 2008, 30: 58-60.
    尾崎又治,架集诚一郎,赵健泽,等.纳米微粒导论[M].武汉工业大学出版社. 1991.
    吴宗斌,王丽萍,洪广言.反相胶束微乳液法制备氧化钇纳米微晶[J]. 应用化学. 1999, 16: 9-12.
    徐华蕊,高玮,何斌,等.喷雾热分解法制备Yb_2O_3超细粉[J].稀土. 2000, 21: 8-10.
    徐华蕊,李凤生.国内外制备纳米材料研究情况综述[J].仪器仪表学报. 2003, 17:36-39.
    徐小龙,刘清亮,解永树.尖吻蝮蛇毒抗凝血因子Ⅱ的稀土离子荧光探针研究[J].高等学校化学学报. 2001, 22(11): 1807-1812.
    杨继东,邓世星,周尚.血清白蛋白-氯化铜-壳聚糖体系共振瑞利散射法测定壳聚糖[J].分析化学. 2007, 35: 1619-1624.
    杨景和,葛红梅,周光军.镝-钆-BPMPHD-CTMAB共发光体系的研究及其分析应用[J].山东大学学报, 1995, 30: 354-360.
    杨应国,胡小华.纳米稀土发光材料的研究与展望[J].矿产保护与利用.2005, 5: 45-47.
    姚超,马江权,林西平,等.纳米氧化镧的制备[J].高校化学工程学报. 2003, 17: 685-688.
    尹洪宗,崔彦,曲祥金,等.镧、轧、镥、钇和钪与铽-乙酰水杨酸共发荧光体系的研究和应用[J].分析化学研究简报. 1998, 26: 985-988.
    尹洪宗,崔彦,孙衍华,等.表面活性剂存在下铽-钪-乙酰水杨酸共发光荧光体系的研究[J].理化检验(化学分册). 1998, 34: 551-552.
    尹洪宗,崔彦,孙衍华,等.表面活性剂存在下铽-镥(钆、钇)-乙酰水杨酸共发荧光体系的研究[J].感光化学与光化学. 1998, 16: 224-229.
    尹洪宗,周杰,曲祥金,等.表面活性剂存在下的铽-镧-乙酰水杨酸共发光体系的研究[J].分析科学学报. 1998, 14: 208-211.
    张斌,孙照勇,朱贵云.镝-镧-邻氟苯甲酸-乙二胺体系荧光增敏效应[J]. 山东大学学报. 1998, 33: 63-67.
    张梅,杨绪杰,陆路德,等. La_2O_3纳米晶的制备与表征[J].宇航材料工艺. 1999, 29: 38-40.
    张吉林,洪广言.稀土纳米发光材料的研究进展[J].发光学报. 2005, 26(3): 285-293.
    张立德.纳米材料与纳米结构[M].化学工业出版社. 2000.
    张立德.纳米材料研究的新进展及在21世纪的战略地位[J].中国粉体技术. 2000: 421.
    张立德,牟季美.纳米材料和纳米结构[M].科学出版社. 2001.
    张立德,牟季美.物理[M]. 1992, 176: 21.
    张立德.跨世纪的新领域:纳米材料科学[J].科学. 1993, 45: 13-17.
    张立德.纳米材料科学[M].沈阳,辽宁科技出版社. 1994.
    张鹏珍,雷红,张剑平,等.纳米氧化铈的制备及抛光性能的研究[J].光学技术. 2006, 32: 682-684.
    张卫民,孙思修,俞海云,等.水热-固相热解法制备不同形貌的四氧化三钴纳米微粉[J].高等学校化学学报. 2003, 24: 2151-2154.
    张玉龙,李长德.纳米材料与纳米塑料[M].中国轻工业出版社. 2002.
    赵慧春,冯瑞琴,王晓斌,等.铽-敏化荧光法测定妥舒沙星[J].分析实验室. 2002, 21: 2-4.
    郑忠.胶体科学导论[M].北京:高等教育出版社. 1989, 13-48.
    钟俊辉.纳米粉末的制取方法[J].粉末冶金技术. 1995, 13: 481.
    钟莹,王成云.稀土纳米材料进展[J].深圳大学学报(理工版). 2000, 17: 68-73.
    周建国,李振泉,赵凤英,等.纳米Y_2O_3:Eu~(3+)发光材料的研究综述[J]. 化工进展. 2003, 22: 573-577.
    朱贵云,杨景和,王磊.共发光现象的研究钇存在下Sm-TTA-Phen-TritonX-100体系的荧光光谱[J].稀土学报. 1987, 5(2): 73-74.
    朱贵云,杨景和,司志坤.稀土元素共发光效应机理探讨[J].稀土学报. 1989, 7(2): 73-78.
    朱贵云,司志坤,尹洪宗,等.一种新的共发光体系-铽-钆(钪)-均苯四甲酸体系的研究和应用[J].光谱学与光谱分析. 1995, 15: 109-114.
    严军,刘忠芳,刘邵璞.汞(Ⅱ)-槲皮素螯合物共振瑞利散射光谱法测定槲皮素.分析化学[J]. 2007, 35: 123-126.
    Abi-akar H., Riley C., Maybee G.. Electrodeposition of Ni and Co in lowgravity[J]. Mater, Sci. 1996, 31: 1767-1778.
    Bakonyi I., Toth-KaKar E., Pogany L.. Preparation and characterization of d.c-plated nanocrystalline nickel electrodeposits[J]. Surf and Coatings Technology, 1996, 78: 124-136.
    Ball P., Garwin L.. Science at the atomic scale[J]. Nature, 1992, 355: 761-763.
    Bergenstof C., Nielsen A., Horsewell M. J.. Ostergard.On texture formation of nickel electrodeposits[J]. Appl. Electrochm., 1997, 27: 839-845.
    Czerwinski F., Kedzierski Z.. Study on the mechanism of microcrack formation in nanocrystalline Fe-Ni electrodeposits[J]. Mater. Sci., 1997, 32: 2957-2961.
    Dijken A., Meulenkamp E. A.. The luminescence of ZnO particles: the mechanism of the ultraviolet and visible emission[J]. Lumin, 2000, 87: 454-456.
    Dong X. T., Qu X. G., Hong G. Y., et al. Preparation and application in electrochemistry of nanocrystalline CeO2[J]. Chin. Sci. Bull., 1996, 41:1396.
    Feldhein D. L., Keating C. D.. Self-assembly of single electron transistors and related devices[J]. Chem Soc Rev, 1998, 27: 1-13.
    Halperin W. P.. Quantum size effects in metal particles[J]. Rev. of Modern Phys., 1986, 58-64.
    Hasegawa M., Ishii A., Kishi S.. Intramolecular Excited Energy Transfer from Phenanthroline Fluorophore to Pr(III) in a Metal Complex[J]. Photochem. Photobiol. A., 2006, 178: 220-237.
    Henglein A., Tausch-Treml R. Optical absorption and catalytic activity of subcolloidal and colloidal silver in aqueous solution: A pulse radiolysis study[J]. Colloid Interface Sci, 1981, 80: 84-90.
    Honma T., Benino Y., Fujiwara T.. New optical nonlinear crystallized glasses and YAG laser-induced crystalline dot formation in rare-earth bismuth borate system[J]. Opt Mater, 2002, 20: 27-33.
    Ishigaki T., Li J. G.. Synthesis of functional nanocrystallites through reactivethermal plasma processing. Science and Technology of Advanced Materials, 2007, 8: 617-623.
    Jia C. J., Sun L. D., Luo F., et al. Structural transformation induced improved luminescent properties for LaVO4:Eu nanocrystal[J]. Appl. Phys. Lett., 2004, 84: 5305-5307.
    Journet C., Maser W. K., Bernier P.. Large-scale production of single-walled carbon nanotubes by the electric-arc technique[J]. Nature, 1997, 388: 756-758.
    Kneller E. F.. The exchang - spring - magnets. a new material princple for permanent magnets[J]. IEEE Trans Magn, 1991, 27 (3): 588.
    Laudise R. A.. Preparation of Superfine SrO_2-La_2O_3 by Hydrothermal Method[c]. In: Dyburgh P M ed. Advanced Crytal Growth [J]. New York: Prentice Hall, 1987, 267-271.
    Malvezzi A. M., Patrini M., Stella A., et al. Linear and nonlinear optical Characterization of Ga nanoparticle monolayers[J]. Materials Science and Engineering: C, 2001, 15: 33-35.
    Marignier J. L., Belloni J., Delcourt M. O., et al. Microaggregates of non-noble metals and bimetallic alloys prepared by radiation-induced reduction[J]. Nature., 1985, 317: 344-345.
    Park J. C., Moon H. K., Kim D. K., Byeon S. H., et al. Morphology and cathodoluminescence of Li-doped Gd2O3:Eu3+, a red phosphor operating at low woltgages[J]. Appl. Phys. Let., 2000, 77: 2162-2164.
    Park S. J., Taton T. A., Mirkin C. A.. Array-based electrical detection of DNA withnanoparticle probes[J]. Science, 2002, 295:1503-1506.
    Pasternack R. F., Bustamante C., Collings P. J.. Porphyrin assemblies on DNA as studied by a resonance light-scattering technique[J]. Am Chem Soc, 1993, 115: 5393-5399.
    Rambabu U., Amalnerkar D. P., Kale B. B., et al. Fluorescence spectra of Eu~(3+)-doped LnVO_4(Ln=La, Y) powder phosphors[J]. Mater.Res., Bull. 2000, 35: 929-936.
    Singh V. B., Sarabi R. S.. Hardness and Structure of Electrodeposted Nickel Salfamate-Formamide Bath[J]. Plating Surf Finishing, 1996, 10: 54-57.
    Tsuuzki T., Mccoick P. G.. Synhtesis of ulrtafineceria Powders by mechnaochemical Processing[J]. Am. Ceram. Soc., 2001, 1453-1458.
    Switzer J. A.. Electrochemical synthesis of Ceramic Films and Powders[J]. Am Ceram Soc Bull, 1987, 66: 1521-1525.
    Ternane R., Panczer G. Structural and luminescent properties of new Ce~(3+) doped calcium borophosphate with apatite structure[J]. Alloy Compd, 1998, 268: 272-277.
    Tong C. L., Zhu Y., Liu W. Study on the co-luminescence system of Dy–Gd-1,6-bis(1-phenyl-3-methyl-5-pyrazol-4-one)hexanedione–cetyltrimethylammonium bromide and its analytical application[J]. Analyst, 2001, 126 (7): 1167-1168.
    Wang Q., Yan B., Zhang X., et al. Photochem. Photophysical properties of novel lanthanide complexes with long chain mono-eicosyl cis-butene dicarboxylate[J]. Photobiol. A: chem., 2005, 174: 119-123.
    Wang X. J., Jia D. D., Yen W. M.. Mn~(2+) activated green, yellow and red long persistent phosphors[J]. Lumin., 2003: 34-37.
    Weissman S. I.. Intramolecular Energy Transfer The Fluorescence of Complexes of Europium[J]. Chem. Phys., 1942, 10: 214-217.
    Yang J. H., Ge H. M., Jie N. Q., et al. The luminescence system of yttrium(Ⅲ)- BPMPHD-CTMAB and the determination of yttrium (Ⅲ)[J]. Talanta, 1994 , 41 (12): 2055-2060.
    Yang P., Yao G. O., Lin J. H.. Photoluminescence of Ce~(3+) in haloapatites Ca_5(PO_4)_2X[J]. Chem. Commun., 2004, 7: 302-304.
    Yapici S., Kuslu S., Ozmetin C.. Surface shear stress for a submerged jet inpingement using electrochemical technique[J]. Appl. Electrochem., 1999, 29: 185-190.
    Yu M., Lin J., Wang S. B.. Effects of x and R3+ on the luminescentproperties of Eu~(3+) in nanocrystallineYV_xP_(1-x)O4: Eu~(3+) and RVO4: Eu3+ thin-filmphosphors[J]. App. Phys. A., 2003: 1-8.
    Yu M., Lin J., Wang Z., et al. Fabrication, Patterning, and Optical Properties of Nanocrystalline YVO_4:A (A-Eu~(3+), Dy~(3+), Sm~(3+)) phosphor Films via Sot-Gel Soft Lithography[J]. Chem. Mater., 2002, 14: 2224-2231.
    Yu Y., Zhou S., Zhang S.. Luminescence of the compounds of Eu3+[J]. Alloy Comp., 2003, 351: 84-86.
    Zhou Y. C., Phillips R. J., Switzer J. A.. Electrochemical synthesis and sintering of Nanocrystalline Cerium Oxide Powders[J]. Am Ceram Soc Bull, 1995, 78: 981-984.
    Zhu Y. J., Qian Y. T., Zhang M. W., et al. Preparation of nanocrystalline silver powders byγ-ray radiation combined with hydrothermal treatment Mater[J]. Letter, 1993, 17: 314-318.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700