玉米光周期敏感相关基因ZmCOL的克隆及功能验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热带、亚热带玉米种质具有丰富的遗传变异,对其改良并利用可以拓宽中国玉米种质遗传基础、提升育种水平。然而,光周期敏感性严重限制了热带、亚热带种质在温带的利用。因此,分离、克隆并研究玉米光周期敏感相关基因并揭示光周期敏感的遗传特性和内在分子机制,对热带、亚热带玉米种质的有效利用具有重要的理论和实践意义。
     本研究以光周期敏感自交系CML288和光周期钝感自交系黄早4为材料,利用同源克隆的方法克隆了与拟南芥CO、水稻OsHd1同源的玉米ZmCOL基因;利用实时荧光定量PCR法研究了ZmCOL基因的昼夜表达模式,分析了不同发育时期叶片和茎尖中ZmCOL基因的表达情况及ZmCOL基因与ZmGI和ZmFT基因之间的表达关系;构建了ZmCOL基因全长及保守结构域的35S融合表达载体,对ZmCOL基因全长及保守结构域进行了亚细胞定位研究;构建了ZmCOL基因的过量表达载体,通过农杆菌浸染花序法转化拟南芥,得到了转基因一代植株;通过玉米光周期敏感相关性状,对21份玉米自交系的光周期敏感性进行了初步鉴定,并结合这21份材料中ZmCOL基因的序列变异,分析了ZmCOL基因序列变异与玉米光周期敏感性状的相关性。主要研究结果如下:
     1.利用同源克隆等方法,成功克隆了玉米类ZmCOL基因。该基因序列含有2个外显子和1个内含子,CDS序列中含有1197/1188bp的开放性阅读框,推测编码一条含有398/395个氨基酸的肽链。系统进化树分析发现,ZmCOL与水稻OsHd1位于同一进化分枝,其亲缘关系最近,同源性达87.10%。蛋白结构预测显示其蛋白含有CO/Hd1基因典型的BBOX和CCT功能域,表明ZmCOL基因是CO/Hd1的同源基因。在光敏感材料CML288和光钝感材料黄早4的ZmCOL基因的ORF中有一连续九个碱基的插入/缺失变异,该变异引起了ZmCOL蛋白序列的差异,推测该变异与玉米自交系的光周期敏感程度相关。
     2.应用实时荧光定量PCR研究了ZmCOL基因在CML288和黄早4长短日照两种处理条件下的昼夜节律表达规律及其在不同部位、不同的发育阶段的表达规律,分析了ZmCOL基因与拟南芥GI和FT的在玉米中的同源基因ZmGI、ZmFT的表达关系。结果表明:在长短日照处理条件下,与拟南芥CO和水稻OsHd1一样,两种玉米自交系中ZmCOL基因表达均表现出昼夜节律性。ZmCOL基因在黄早4和CML288的叶片和茎尖中均有表达,但在玉米的不同发育时期,ZmCOL基因的表达量呈现出高低不同的动态变化,其在茎尖和叶片中的表达高峰时期与玉米光周期诱导敏感期一致,表明ZmCOL基因可能在玉米的光周期诱导敏感期发挥作用,在该时期ZmCOL基因在不同敏感程度的自交系中的主要表达部位有所不同,在光钝感材料中ZmCOL基因在叶片的表达量较高,而在光敏感材料中ZmCOL基因在茎尖的表达量较高,但ZmCOL基因在叶片中的表达量最终决定了玉米自交系材料能否正常完成光周期诱导敏感期的光周期诱导。基因间的表达关系研究表明,ZmGI基因位于ZmCOL基因的上游,调控ZmCOL基因的昼夜表达节律;ZmCOL基因位于ZmFT的上游,在玉米发育的前期及光周期诱导敏感期发挥作用;而下游基因ZmFT,在玉米发育的后期即花发育敏感时期起调控作用。
     3.成功构建了玉米ZmCOL基因的35S融合表达载体并通过基因枪轰击,使其在洋葱表皮瞬时表达,结果表明,ZmCOL是一个核定位蛋白,其保守结构域CCT是该基因唯一的一个核定位信号,具有核定位功能;构建了过量表达载体3301-221-ZmCOL,且将该基因转入野生型拟南芥,对阳性候选转基因的PCR鉴定表明,已经成功将该基因转入拟南芥。
     4.通过分析21份不同的玉米自交系的光周期敏感性及表型性状与ZmCOL基因序列变异的相关性,结果表明,不同种质类群的玉米自交系光周期敏感程度不同,其中热带种质的自交系光周期敏感性最强;表型性状的动态聚类将不同玉米自交系光周期敏感程度划分为Ⅰ级、Ⅱ级、Ⅲ级和Ⅳ级四个等级,随着等级的升高,其含有的玉米自交系的光周期敏感性越强;ZmCOL基因序列变异位点2+(523-531)与光周期敏感相关性状密切相关,与抽雄、散粉、吐丝、株高、穗位及叶片数的相关性均达显著或极显著水平;而其它位点的变异与光周期敏感性状之间的相关性不显著。
Tropical and subtropical maize germplasm contain abundant hereditary variation, which can broaden the genetic base of Chinese maize germplasm to enhance the breeding level by improving and using of these germplasm. However, photoperiod sensitivity severely limits the use of tropical and subtropical germplasm in temperate zone. In the result, isolating, cloning and analyzing the function of photoperiod-sensitive genes is an important way to research the molecular mechanism of maize’s photoperiod-sensitivity.
     We cloned the ZmCOL gene by the method of orthologus gene cloning in a photoperiod-sensitive tropical maize (Zea mays L.) inbred line CML288 and a photoperiod-insensitive temperate inbred line HuangZao4, which was the cognate of CO gene(Arabidopsis) and OsHd1 gene(rice). Then we studied the circadian rhythm expression pattern of ZmCOL, analyzed the expression pattern of ZmCOL in shoot apical meristems (SAM) and leaves, and researched the relationship among ZmCOL, ZmGI, and ZmFT, in order to investigate the function and mechanism of ZmCOL during the photoperiod induction. We constructed several 35S fusions between GUS and ZmCOL or conserved domain of ZmCOL to test whether ZmCOL L protein is localized to the nucleus, and which domain of ZmCOL is sufficient to localize GUS to the nucleus. Then we constructed the over expression vectors of ZmCOL, transformed it into the Arabidopsis with Floral Dip method, and obtained several transformants. We identified the photoperiod sensitivity of 21 maize inbred lines by photoperiod-sensitive related traits of maize, and investigated the relationship between sequent variations of ZmCOLs and photoperiod-sensitive related traits. The main results are as follows:
     1. We had cloned the maize ZmCOL gene through orthologus gene cloning. ZmCOL gene sequence has two exons and one introns, and contained a predicated 1197/1188bp open reading frame in the CDS sequence, which could encode a peptide with 398/395 amino acids. By phylogenetic analysis, we found that the ZmCOL and the rice OsHd1 are in the same evolutionary branch with the protein sequence sharing 87.10% homology to rice OsHd1. The predicated protein that especially containing CO/Hd1 gene family is composed of a zinc finger B-box and a CCT domain. That is to say, ZmCOL gene belonged to the member of CO/Hd1 gene family. There is a continuous nine base insertion / deletion mutation variation in the ORF of ZmCOL between photoperiod-sensitive tropical maize inbred line CML288 and photoperiod-insensitive temperate inbred line Haungzao4, and it caused three amino acids differences of ZmCOL protein sequence, suggesting that maybe the variation is closely related to photoperiod sensitivity.
     2. We used fluorescence quantitative RT-PCR to research the circadian rhythm expression pattern of ZmCOL under long day and short day conditions in CML288 and HuangZao4, analysesed the expression pattern of ZmCOL in shoot apical meristems (SAM) and leaves, and researched the relationship among ZmCOL, ZmGI, and ZmFT. The results showed that similar to it’s Arabidopsis and rice homologs(CO and OsHd1), ZmCOL gene exhibited diurnal expression patterns while ZmCOL gene expressed both in SAM and leaf under long day and short day conditions in CML288 and HuangZao4; in different development stages of maize, however, the expression of ZmCOL genes showed different levels or changes. And the peak period of ZmCOL gene expression in SAM and leaves were notably similar to the phase of induction photoperiod-sensitivity, indicating that ZmCOL gene may be joined the regulation of photoperiod, and functional importance in the phase of induction photoperiod-sensitive. And in this period, the main expression parts of ZmCOL is different in different inbred lines: in the photoperiod-insensitive material ZmCOL gene expression higher in leaves, in the photoperiod-sensitive material ZmCOL expression higher in SAM. But the expression level of ZmCOL gene in leaves finally decide whether the maize inbred lines can complete the photoperiod-induction in the phase of induction photoperiod-sensitivity. Analysis by the expression of ZmGI, ZmCOL and ZmFT showed that, ZmGI gene located the upstream of ZmCOL gene, regulating the circadian rhythms expression of ZmCOL gene; ZmCOL gene located the upstream of ZmFT gene, and ZmCOL gene played an important role in the phase of induction photoperiod-sensitivity, while the downstream gene ZmFT functional were of importance in the later phase of corn growth, important to the floral development.
     3. We had constructed several 35S fusions between GUS and ZmCOL or conserved domain of ZmCOL, a transient expression assay in onion bulb epidermal cells by gene gun bombardment, the result showed that: ZmCOL can localize GUS to the nucleus of the cells, suggesting that CO is a nuclear protein, and the CCT domain is an NLS of ZmCOL, it is sufficient to target GUS to the nucleus. And we constructed the over expression vectors of ZmCOL, transforming it into the Arabidopsis with Floral Dip method. The result of PCR showed that we have got several transformant plants.
     4. We analyzed the photoperiod-sensitivity related phenotypic traits of 21 maize inbred lines and studied the relationship between sequent variations of ZmCOLs and photoperiod-sensitivity related traits, the results showed that: different maize germplasm groups have different photoperiod sensitivity, specifically, inbred lines of tropical germplasm have the strongest photoperiod sensitivity. Dynamic cluster of phenotypic characteristics divided different maize inbred lines into different sensitive grades:Ⅰ,Ⅱ,ⅢandⅣ. For maize inbred lines, the higher of the level, the stronger of the photoperiod-sensitivity. The analysis of sequence indicated that only the sequence variation of 2+(523-531)was significantly associated with the photoperiod-sensitivity related traits, however, the relationship between variation among the other six sequence variations and photoperiod-sensitive related traits were not significant.
引文
Abe M, Kobayashi Y,Yamamoto S,et al. FD,a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex[J].Science,2005,309:1052–1056.
    Abelson J,Simon M.Green fluorescent protein[J].Methods in Enzymology,1999,302:449.
    Ahmad M , Cashmore AR . HY4 gene of Arabidopsis thaliana encodes a protein with characteristics of a blue-light photoreceptor[J]. Nature,199,366:162-166.
    Alabadi D,Oyama T,Yanovsky MJ,et al. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock [J]. Science,2001,293:880- 883.
    An H,RoussotC,Suarez-Lopez P,et al. CONSTANS acts in the phloem to regulate a systemic signalthat induces photoperiodic flowering of Arabidopsis.Development[J].2004,13:3615-3626.
    Aukerman MJ,Hirschfeld M,Wester L,et al. A deletion in the PHYD gene of the Arabidopsis Wassilewskija ecotype defines a role for phytochrome D in red/far-red light sensing[J].Plant Cell0,1997,9:1317-1326.
    Ausín I,Alonso-blanco C,Martínez-zapater JM.Environmental regulation of flowering[J].Int. J. Dev. Biol.,2005,49:689-705.
    Banfield MJ,Brady RL.The structure of Antirrhinum Centroradialis protein (CEN) suggests a role as a kinase regulator[J].J Mol Biol,2000,297:1159–1170.
    Basu D,Dehesh K,Schneider-Poetsch HJ,et al. Rice PHYC gene:structure,expression,map position and evolution[J].Plant Mol Biol,2000,44(1):27-42.
    Bent AF . Arabidopsis in planta transformation. Uses , mechanisms , and prospects for transformation of other species[J].Plant Physiol 124,2000,1540-1547.
    Blazquez MA,Ferrandiz C,Madueno F,et al. How floral meristems are built[J].Plant Molecular Biology,2006,60:855–870.
    Blazquez MA,Weigel D. Integration of floral inductive signals in Arabidopsis[J].Nature,2000, 404:889-892.
    Bomblies K,Wang RL,Ambrose BA,et al. Duplicate FLORICAULA/LEAFY homologs z?1 and z?2 control in?orescence architecture and ?ower patterning in maize[J].Development,2003,130:2385-2395.
    Bonrer R,Kampmann G,Chandler J,et al. A MADS domain gene involved in the transition to flowering in Arabidopsis[J].Plant J,2000,24:591-599.
    Bortiri E,Chuck G,Vollbrecht E,et al. Ramosa2 encodes a Lateral Organ Boundary domain protein that determines the fate of stem cells in branch meristems of maize[J].The Plant Cell,2006,18:574–585.
    Bradley D,Ratcliffe O,Vincent C,et al. Inflorescence commitment and architecture in Arabidopsis[J].Science,1997,275(5296):80-83.
    Chang SS,Park SK,Kim BC,et al. Stable genetic transformation of Arabidopsis thaliana by Agrobacterium inoculation in planta[J].Plant J,1994,5:551-558.
    Chardon F,Virlon B,Moreau L,et al.Genetic architecture of flowering time in maize as inferred from QTL meta-analysis and synteny conservation with the rice genome[J].Genetics,2004,162:2169-2185.
    Chen LJ,Cheng JC,Castle L,et al.EMF genes regulate Arabidopsis inflorescence development[J].Plant Cell,1997,9:2011-2024.
    Cheng Ming,Fry JE, Shengzhi Pang,et a1.Genetic Transformation of Wheat Mediated byAgrobacterium tumefaciens[J].Plant Physiol,1997,15:971-980.
    Cinelli R A,Fermri A,Pellegrini V,et a1.The enhanced green fluorescent protein as a tool for the analysis of protein dynamics and localization : loeal fluorescence study at the single-molecule level[J] .Photochem Photobiol,2000,71(6):771—776.
    Clough S,Bent A.Floral dip,a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana[J].Plant J,1998,16:735-743.
    Colasanti J,Yuan Z,Sundaresan V.The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize[J].Cell,1998,93: 593-603.
    Corbesier L,Vincent C,Jang S,et al. Coupland G.FT Protein Movement Contributes to Long-Distance Signaling in Floral Induction ofArabidopsis[J].Science,2007,316(5827):1030–1033.
    D. Straus,F.M. Ausubel.Genomic subtraction for cloning DNA corresponding to deletion mutations[J].Proc. Natl. Acad. Sci. USA .,1990,87:1889-1893.
    Davis GL,McMullen MD,Baysdorfer C,et al.A maize map standard with sequenced core marker,grass genome reference points and 932 expressed sequence tagged site (ESTs) in a 1736-locus map[J].Genetics,1996,152:1137-1172.
    De Wet , J M J , Chapaman G R , et al . The experimental Manipulation of ovules tissue[J].published by Longman Inc Y N.1983:197.
    Dehesh K,Tepperman J,Christensen AH,et al. PhyB is evolutionarily conserved and constitutively expressed in rice seedling shoots[J].Mol Gen Genet,1991,225(2):305-313.
    Deng X.W,Matsici M.,Wei N.COP1,an Arabidopsis regulatory gene,encodes a protein with both a zinc-binding motify and a G beta homologous domain[J].Cell,1992,71:791.
    Devlin PF,Robson PRH,Patel SR,et al. Phytochrome D acts in the shade-avoidance syndrome in Arabidopsis by controlling elongation growth and flowering time[J].Plant Physiol,1999,119: 909-915.
    Devlin PF,Patel SR,Whitelam GC.Phytochrome E influences internode elongation and flowering time in Arabidopsis[J].Plant Cell,1998,10:1479-1487.
    Diachenko L,Chris Lau Y F,Campbell AP.Suppression subtractive hybridization: a method for generation differentially regulated or tissue-specific cDNA probes and libraries[J].Proc Natl Acad Sci USA,1996,93(12):6025—6030.
    Diatchenko L,Lau YF,Campbell AP,et al. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries[J].Proc Natl Acad Sci U S A.1996, Jun 11;93(12):6025-30.
    Doyle MR,Davis SJ,Bastow RM,et al.The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana [J].Nature,2002,419:74-77.
    Ellis R.H.,R.J.Sumerfield,G.O.Edmeades.Photoperiod,temperature,and the intervial from tassel inititation to emergence of maize[J].Crop Sci,1992,32:398-403.
    Eseobar N M,Haupt S,Thow G.d..High-thronghput viral expression of eDNA-green fluorescent protein fusions reveals novel subeallular addresses and identifles unique proteins that interact with plasmodesmata[J].Plant Cell,2OO3,15(7):1507-1523.
    Fanchauser C.,Yeh K. C.,Lagarias J. C.PKS1,a substrate phospharylated by phytochrome that modulates light signaling in Arabidopsis[J].Science,1999,284:1589.
    Feldmann KA,Marks MD.Agrobacterium-mediated transformation of germinating seeds ofArabidopsis thaliana:a non-tissue culture approach[J].Mol Gen Genet 1987,208:1-9.
    Fowler S,Lee K,Onouchi H,et al.GIGANTEA: a circadian clock controlled gene that regulates photoperiodic floweringin Arabidopsis and encodes a protein with several possible membrane – spanning domains [J].EMBO J,1999,18:4679-4688.
    Francis CA,Grogan CO,Sperling DW.Identification of photoperiod insensitive strains of maize(zea mays L.) [J].Crop Sci,1969,9:675-677.
    Gallavotti A,Zhao Q,Kyozuka J et al.() The role of barren stalk1 in the architecture of maize[J].Nature,2004,432:630–635.
    Garner,WW,Allard HA.Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants[J].Agric. Res,1920,18:553–606.
    Giauffret C,Lothrop J,Dorvillez D, et al. Genotype×Environment interactions in Maize Hybrids from Temperate or Highland Tropical Origin [J].Crop Sci.,2000,40:1004–1012.
    Goldenkova I V,Musiichuk K A,Pirllzlan E S.Biftmetional reporter genes:construchon and expresston in prokaryotic and eukaryotic cells[J]. Mol Bid,2003,37(2):356—364.
    Goodman MM.Exotic maize germplasm: status, prospects, and remedies[J].Iowa State J Res,1985,59:497–527.
    Gouesnard B.,Rebourg C.,Welcker C,et al. Analysis of photoperiod sensitivity within a collection of tropical maize populations.Genetic Resources and Crop Evolution[J].2002,49: 471-481.
    Guo H,Lin C,Yang H,et al.Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2[J].Proc. Natl. Acad. Sci. USA,1998,95:2686-2690.
    Hadjantonakis A K , Nagy A . 111e color of mice : in the light of GFP-variant reporters[J].Histochem Cell Biol,2001,ll5(1):49-58.
    Hallauer A R,Mirarda J N.Quantitative genetics in maize breeding[J].Amen, Iowa State Univ. Press,1981,375-402.
    Halliday KJ,Koornneef M,Whitelam GC.Phytochrome B and at least one other phytochrome mediate the accelerated flowering response of Arabidopsis thaliana L. to low red/far-red ratio[J].Plant Physiol.,1994,104:1311-1315.
    Hamner KC,Bonner J.Photoperiodism in relation to hormones as factors in floral initiation and development[J].Bot. Gaz.,1938,100:388–431.
    Hayama R,Coupland G.The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and rice[J].Plant Physiology,2004,135:677-684.
    Hayama R,Izawa T,Shimamoto K.Isolation of rice genes possibly involved in the photoperiodic control of flowering by a fluorescent differential display method[J].Plant Cell Physiol,2002,43 (5):494-504.
    Hayama R,Yokoi S,Tamakl S,et al. Adaptation of photoperiodic control pathways produces short—day flowering in rice[J].Nature,2003,422(6 933):719-722.
    He Y,Amasino RM.Role of chromatin modification in flowering time control[J].Trends Plant Sci,2005,10 (1):30~35.
    Hess D.Investigation on intro- and interspecific transfer of anthocyanin genes using pollen as a vector[J].Pflanzenphysiol,1980,98:321-327.
    Hiei Y,Ohta S,Komari T,et al.Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA[J].The Plant Journal,1994,6:271–282.
    Holland J B,Goodman M M.. Combining ability of tropical maize accessions with U.S. germplasm[J].Crop Sci,1995,35:767-776.
    Horsch,R.B.,J.E. Fry,et al.A simple and general method for transferring genes into plants[J].Science,1985,227:1229-1231.
    Huq E.,Quail P. H..PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis[J].EMBO J.,2002,21:2441.
    Imaizumi T,Schultz TF,Harmon FG,et al. FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis[J].Science,2005,309 (5732):293-297.
    Izawa T,Oikawa T,Sugiyama N,et al. Phytochrome mediates the external light signalto repress FT orthologs in photoperiodic flowering of rice[J].Genes Dev,2002,16 (15):2006-202.
    Izawa T,Takahashi Y,Yano M.Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis[J].Curr Opin Plant Biol,2003,6 (2):113-120.
    Jan A. D., Zeevaart.FT Protein,not mRNA,is the Phloem-Mobile Signal for Flowering[J].Plant Physiology online.September, 2007: http://4e.plantphys.net/article.php?ch=&id=398
    Ohnson E,Bradley M,Harberd NP,et al. Photoresponses of Light-Grown phyA Mutants of Arabidopsis Phytochrome A Jis Required for the Perception of Daylength Extensions[J].Plant Physiol.,1994,105:141-149.
    Kardailsky I,Shukla VK,Ahn JH,et al. Activation tagging of the floral inducer FT[J].Science,1999,286:1962-1965.
    Kazuyuki D,Takeshi I,Takuichi F,et al. Ehd1,a B-type response regulator in rice,confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1[J].GENES & DEVELOPMENT,2004,18:926–936.
    Kerstetter RA,Laudencia-Chingcuanco D,Smith LG,et al. Loss-of-function mutations in the maize homeobox gene , knotted1 , are defective in shoot meristem maintenance[J].Development,1997,124,3045–3054.
    Kevei E.,Nagy F.Phytochrome controlled signaling cascades in higher plant[J].Physiologia Plantarum,2003,117:305.
    Kim SK,Yun CH,Lee JH,et al. OsCO3,a CONSTANS-LIKE gene,controls Xowering by negatively regulating the expression of FT-like genes under SD conditions in rice[J].Planta,2008,228:355–365.
    Kiniry H. H., J.T.Ritchie.The photoperiod sensitive interval in maize[J].Agron. J,1983,75:687-690.
    Kiniry JR,Ritchie JT,Musser RL.The photoperiod sensitive interval in maize[J].Agron J,1983,75:687-690.
    Kyozuka J.,Konishi S.,Nemoto K.,et al. Down-regulation of RFL,the FLO/LFY homolog of rice,accompanied with panicle branch initiation[J].Proc. Natl. Acad. Sci. USA,1998,95:1979-1982.
    Kirsten Bomblies,Rong-Lin Wang,Barbara A,et al. Duplicate FLORICAULA/LEAFY homologs zf1 and zf2 control inforescence architecture and fower patterning in maize[J].Development,2003,130:2385-2395.
    Kobayashi Y,Kaya H,Goto K,et al. A pair of related genes with antagonistic roles in mediating flowering signals[J],Science,1999,286:1960-1962.
    Koester R.P.,Sisco P.H.,Stuber C.W..Identification of quantitative trait loci controlling days toflowering and plant height in two near-isogenic lines of maize[J].Crop Sci,1993,33:1209-1216.
    Kojima S,Takahashi Y,Kobayashi Y,et al. Hd3a,a rice or tholog of the Arabidopsis FT gene , promotes transition to flowering downstream of Hd1 under short-day conditions[J].Plant Cell Physiol,2002,43 (10):1096-1105.
    Komeda Y.Genetic regulation of time to flower inArabidopsis thaliana[J].Annu Rev Plant Biol,2004,55:521-535.
    Kozaki A,Hake S,Colasanti J.The maize ID1 flowering time regulator is a zinc finger protein with novel DNA binding properties[J].Nucleic Acids Res,2004,32:1710-1720.
    Krysan PJ,Young JC,Sussman MR.T-DNA as an insertional mutagen in Arabidopsis[J].Plant Cell,1999, Dec;11(12):2283-90.
    Lansford R,Bearman G,Fraser S E.Resolution of multiple green fluorescent protein color variants and dyes using two-photon microseopy and imaging spectroscpy[J].J Biomed,2001,6(3):311-318.
    Lee S,Kim J,Han JJ,et al. Functional analyses of the flowering time gene OsMADS50,the putative SUPPRESSOR OF OVEREXPRESSION OF SOC1/AGAMOUSLIKE 20 (SOC1/AGL20) ortholog in rice[J].Plant J,2004,38 (5):754-76.
    Létizia CK,Veyrieras JB,Madur D,et al. Maize adaptation to temperate climate:relationship with population structure and polymorphism in the Dwarf8 gene[J].Genetics,2006,172:2449-2463.
    Li LG,He ZY,Pandey GK,et al. Functional cloning and characterization of a plant efflux carrier for multidrug and heavy metal detoxification[J].J Biol Chem,2002,277:5360-5368.
    Liang Peng,Pardee AB.Differential display of eukaryotic messenger RNA by means of the polymerse chain reacion[J].Science,1992,257:967-71.
    Lin C,Yang H,Guo H,et al. Enhancement of blue-light sensitivity of Arabidopsis seedlings by a blue light receptor cryptochrome 2[J].Proc. Natl. Acad. Sci. USA,1998,95:2686-2690.
    Lisitsyn N,Wigler M.Cloning the differences between two complex genomes[J].Science, 259:946-951.
    Mantis J,Tngue B W.Comparing the utility of h-glucuronidase and green fluorescent protein for detection of weak promoter activity inArabidopsis thaUana[J].Plant Mol Bi0l Reporter,2000,l8:319—330.
    Marton L,Wullena GJ,Molendijk L,et al. In vitro transformation of cultured cells from Nicotiana tabacum by Agrobacterium tumefaciens[J].Nature,1979,277:129-132.
    Mas P,Alabadi D,Yanovsky MJ,et al.Dual role of TOC1 in the control of circadian and photomorphogenic responses in Arabidopsis[J].Plant Cell,2003,15:223–236.
    Matsumoto N,Hirano T,Iwasaki T,et al. Functional analysis and intracellular localization of rice cryptochromes[J].Plant Physiol,2003,133 (4):1494-1503.
    Matsushika A,Makino S,Kojima M,et al. Circadian waves of expression of the APRR1/TOC1 family of pseudoresponse regulators in Arabidopsis thaliana: insight into the plant circadian clock[J].Plant Cell Physiol,2000,41 (9):1002-1012.
    McClung C. R..Circadian rhythms in plants.Annu. Rev. Plant Physiol[J]. Plant Mol. Biol.,2001,52:139-162.
    McSteen P,Laudencia-Chingcuanco D,Colasanti J. A floret by any other name: control of meristem identity in maize[J].Trends in Plant Science,2000,5,61–66.
    McWatters H. G.,Bastow R. M.,Hall A.,et al.The ELF3 zeitnehmer regulates light signalling to the circadian clock[J].Nature,2000,408:716–720.
    Mena M,Mandel MA,Lerner DR,et al.A characterization of the MADS-box gene family in maize[J].Plant J.,1995,Dec;8(6):845-54.
    Michelmore,R.W..Isolation of disease resistance genes from crop plants[J].Curr. Opinions in Biotechnology.1995,6:145-152.
    Mockler T,Yang H,Yu X,et al. Regulation of photoperiodic flowering by Arabidopsis photoreceptors[J].Proc. Natl. Acad.Sci USA,2003,100:2140-2145.
    Monte E,Alonso JM,Ecker JR,et al. Isolation and characterization of phyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways[J].Plant Cell,2003,15:1962-1980.
    Moon J,Lee H,Kim M,et al. Analysis of flowering pathway integrators in Arabidopsis[J].Plant Cell Physiol,2005,46:292–299.
    Moon J,Suh SS,Lee H,et al. The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis[J].Plant J,2003,35:613-623.
    Motomu Endo,a Satoshi Nakamura.Phytochrome B in the Mesophyll Delays Flowering by Suppressing FLOWERING LOCUS T Expressionin Arabidopsis Vascular Bundles[J].The Plant Cell,Vol.17:1941-1952.
    Moutiq.R,Ribaut,Jean-Marcel,et al. Photoperiod Response and Two Genetic Pathways for Flowering in Maize[M].2002,maize genetics conference abstract.
    Murakami M, Matsushika A, Ashikari M, Yamashino T, Mizuno T. Circadian-associated rice pseudo response regulators(OsPRRs): insight into the control of flowering time[J].Biosci Biotechnol Biochem,2005,69(2): 410-414.
    Muszynski MG, Dam T, Li B, Shirbroun DM, Hou Zl, Bruggemann E, Archibald R, Ananiev EV, and Danilevskaya ON. delayed flowering1 Encodes a Basic Leucine Zipper Protein That Mediates Floral Inductive Signals at the Shoot Apex in Maize[J].Plant Physiology,2006, 142, 1523 - 1536.
    N Bechtold , J Ellis, G Pelletier. In planta Agrobacterium mediated gene transfer by infiltration of adult Arabidopsis thaliana plants[J]. C. R. Acad. Sci. 1993,316:1194-9
    Nelson DC, Lasswell J, Rogg LE, Cohen MA, Bartel B (2000). FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis[J]. Cell 101: 331–340
    Ni M ,Tepperman J M ,Quail P H.Binding of phytochrome B to its nuclear signalling partner PIF3 is reversibly induced by light[J].Nature,1999,400(6746):781—784.
    Nilsson O,Lee I,Blazquez MA,et al.Floweirng-time genes modulate the response of LEAFY activity[J].Genetics,1998,150:403-410.
    Ohta Y.High-efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA[J].Proc Natl Acad Sci USA,1986,81:715-719.
    Osborne B.I.,Baker B..Movers and shakers: maize transposons as tools for analyzing other plant genomes[J].Curr. Opin. Biotech., 1995,7:406-413.
    P Zambryski,M Holsters,K Kruger,et al.Tumor DNA structure in plant cells transformed by A. tumefaciens[J].Science,1980,209:1385– 1391.
    Pandey K.K..Sexual transfer of specific genes without gametal fusion[J].Nature,1975,256(5515):310-313.
    Parcy F,Bomblies K,Weigel D.Interaction of LEAFY,AGAMOUS and TERMINAL FLOWER1in maintaining floral meristem identity in Arabidopsis[J].Development,2002,129:2519-252.
    Parcy.Flowering:a time for integration[J].Int.J.Dev. Biol.,2005,49:585-593.
    Park DH,Somers DE,Kim YS,et al.Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene [J].Science,1999,285:1579-1580.
    Putterill J,Laurie R,Macknight R.It’s time to flower:the genetic control of flowering time[J].BioEssays,2004,26(4):363-373.
    Putterill J,Robson F,Lee K,et al.The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors[J].Cell,1995,180(6):847-857.
    Quaedvlieg N E,Schlaman H R,Admiraal P C,et al.Fusions between green fluorescent protein and beta-glucuronidase as sensitive and vital bifunctional reporters in plants[J].Plant Mol Biol,1998,38(5):861—873.
    Quail PH.Photosensory perception and signalling in plant cells:new paradigms? [J].Curr. Op. Cell Biol.,2002,14:180-188.
    Reed JW,Nagatani A,Elich TD,et al.Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis development[J].Plant Physiol.,1994,104:1139-1149.
    Robert,L.S.,Robson, F.,et al. Conserved structure and function of the Arabidopsis flowering time gene CONSTANS in Brassica napus[J].Plant Mol. Biol.,1998,37:763–772.
    Roenneberg T.,Merrow M.Circadian clocks: Omnes viae Romam ducunt[J].Curr. Biol.,2000,10:R742–R745.
    Russel W.K.,C.Stuber.Effects of photoperiod and temperatures on the duration of vegetative in maize[J].Agron. J,1983,75:795-802.
    Ryosuke Hayama,Shuji Yokoi,Shojiro Tamaki,et al.Adaptation of photoperiodic control pathways produces short-day flowering in rice[J].Nature,2003,17(422):719-722.
    Samach A.,Onouchi H.,Gold S.E.,et al.Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis[J].Science,2000,288:1613-1616.
    Sangho J,Steven E C.Photoperiod regulates flower meristem development in Arabidopsis thaliana[J].Genetics,2005,1(69):907-915.
    Schaffer R,Ramsay N,Samach A,et al.The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering [J].Cell,1998,l93:1219-1229.
    Scherer G.,Telford J.,Baldar C.,et al.Isolation of cloned genes differentially expressed at early and late stages of Drosophila embryonic development[J].Dev.Biol,1981,86:438-447.
    Schfer E.,Bowler H.Phytochrome-mediated photoperception and signal transduction in higher plants[J].EMBO Reports,2002,3:1042.
    Seth J,DAVIS. Photoperiodism:The coincidental perception of the season[J].Curr Biol,2002,12(24):841..
    Shannon S,Meeks-Wagner D R.A Mutation in the Arabidopsis TFL1 Gene Affects Inflorescence Meristem Development[J].The Plant Cell,1991,3:877-892.
    Shun-mei Wang.Characterization of a maizeβ-Amylose cDNA clone and its expression during seed germination[J].Plant Physiol.,1997,113:403-409.
    Somers D. E.,Schultz T. F.,Milnamow M.,et al. ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis[J].Cell,2000,101:319–329.
    Speulman E,Bouchez D,Holub E,et al.Disease resistance gene homologs correlate with disease resistance loci of Arabidopsis thialiana[J].Plant J,1998,14:467-474.
    Strayer C,Oyama T,Schultz T F,et al.Cloning of the Arabidopsis clock gene TOC1,an autoregulatory response regulator homolog[J].Science,2000,289:768-771.
    Struik PC,Doorgeest M,Boonman G..Environmental effects on flowering characteristics and kernel set of maize (Zea mays L.) [J].Netherlands J of Agric Sci,1986,34:469-484.
    Stuber CW,Moll RH,Goodman MM,et al.Alozyme frequency changes associated with selection for increased grain yield in maize (Zea mays L) [J].Genetics,1980,95:225-236.
    Suarez-Lopez P.,K. Wheatley,F. Robson,et al.CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis[J].Nature,2001,410:1116–1120.
    Sullivan K F,Kay S A.Green fluorescent proteins[J].Methods in Cell Biology,1998,58:386.
    Sung ZR,Belachew A,Shunong B,et al.EMF,an Arabidopsis Gene Required for Vegetative Shoot Development[J].Science,1992,258(5088):1645-1647.
    T. M. Klein,E. D. Wolf,R. Wu,et al.High-velocity microprojectiles for delivering nucleic acids into living cells[J].Nature,1987,327:70– 73.
    Takada S.,Goto K.TERMINAL FLOWER2,an Arabidopsis homolog of HETEROCHROMATIN PROTEIN1,counteracts the activation of FLOWERING LOCUS T by CONSTANS in the vascular tissues of leaves to regulate flowering time[J].Plant Cell,2003.15:2856-2865.
    Tanksley S.D.,Young N.D.,Paterson A.H.,et al.RFLP mapping in plant breeding:new tools for an old science[J].Biotechnology,1989,7:257-264.
    Tanksley,S.D.,Ganal,et al.Chromosome landing: A paradigm for map-based gene cloning in plants with large genomes[J].Trends Genet,1995,11:63–68.
    Theresa A,Miller·Elizabeth H,Muslin·Jane E,et al.A maize CONSTANS-like gene,conz1, exhibits distinct diurnal expression atterns in varied photoperiods[J].Planta,2008,227:377–1388.
    Thomas B,Vince-Prue D..Juvenility,photoperiodism and vernalization.In:Wilkins MB,ed. Advanced plant physiology[J].London:Pitman,1984:408–439.
    Thomas Ohrt,Jorg Miitze,Wolfgang Staroske,et al.Fluorescence correlation spectroscopy and fluorescence cross-rrelation spectroscopy reveal the cytoplasmic origination of loaded nuclear RISC in vivo in human cells[J].Nucleic Acids Research,2008,36(20):6439-6449.
    Thornsberry JM,Goodman MM,Doebley J,et al.Dwarf8 polymorphisms associate with variation in flowering time[J].Nat Genet,2001,28:286–28.
    Tollenaar M.,R.B.hunter.A photoperiod and temperature sensitive period for leaf number of maize[J].Crop Sci,1983,23:457-460.
    Valverde.F,Mouradov.A,Soppe.W,et al.Photoreceptor regulation of CONSTANS protein and the mechanism of photoperiodic fowering[J].Science,2004,303:1003-1006.
    Varecha M,Amrichova J,Zimmermann M,et al.Bioinformatic and image analyses of the cellular localization of the apoptotic proteins endonuclease G, AIF, and AMID during apoptosis in human cells[J].Apoptosis,2007,12(7):1155—1171.
    Vartiainen MK,Guettler S,Larijani B,et al.Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL[J].Science, Jun 22 2007;316 (5832) 1749-1752.
    Vladutu. C.,J. Mclaughlin,R. L. Phillips.Fine mapping and characterization of linkedquantitative trait loci involved in the transition of the maize apical meristem from vegetative to generative structures[J].Genetics,1999,153:993-1007.
    Wagner D,Sablowski R,Wand Meyerowitz EM.Transcriptional activation of APETALA1 by LEAFY[J].Science,1999,285:582-584.
    Wang Z Y,Tobin E M..Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression [J].Cell,1998,93:1207-1217.
    Weigel D,Nilsson O.A developmental switch sufficient for flower initiation in diverse plants[J].Nature,1995,377(6549):495-500.
    WEIGEL. D, Alvarez. J,Smyth. DR,et al.LEAFY controls floral meristem identity in Arabidopsis[J].Cell,1992,69:843-859.
    Wigge P A,Kim M C,Jaeger K E,et al.Integration of spatial and temporal information during floral induction in Arabidopsis[J].Science,2005,309:1056–1059.
    Wu LC,Wang TG,Chen YH,et al.Determination of the Photoperiod-Sensitive Inductive Phase in Maize with Leaf Numbers and Morphologies of Stem Apical Meristem[J].Agriculture Sciences in China,2008,7(5):554-560.
    Xudong Ye,Salim A1-Babili,Andreas Kl?ti,et a1.Engineering the Provitamin A (β-Carotene) Biosynthetic Pathway into (Carotenoid-Free) Rice Endosperm[J].Science,2000,287:303~305.
    Yano M,Katayose Y,Ashikari M,et al.Hd1,a major photoperiod sensitivity quantitative trait locus in rice,is closely related to the Arabidopsis flowering time gene CONSTANS[J].Plant Cell,2000,12 (12):2473-2484.
    Yano M,Kojima S,Takahashi Y,et al.Genetic control of flowering time in rice, a short-day plant[J].Plant Physiol,2001,127 (4):1425-1429.
    Yoo SK,Chung KS,Kim J,et al.Constans activates suppressor of overexpression of constans 1 through flowering locus T to promote flowering in Arabidopsis[J].Plant Physiol,2005,139(2):770-778.
    Yoo SK,Chung KS,Kim J,et al.Constans activates suppressor of overexpression of constans 1 through flowering locus T to promote flowering in Arabidopsis[J].Plant Physiol,2005,139 (2):770-778.
    Yu H.,Xu Y.,Tan E.L.,et al.AGAMOUS-LIKE 24,a dosage-dependent mediator of the flowering signals[J].Proc Natl Acad Sci U S A,2002,99:16336-16341.
    Yuji Ishida.High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens[J].Nature Biotechnology,1996,14:745-750.
    Zeevaart,JAD. Flower formation as studied by grafting.Meded[J].Landbouwhogesch. Wageningen 1958,58:1–88.
    陈晓.玉米光周期敏感相关基因的的克隆与分析[D].郑州:河南农业大学,2008.
    程芳芳.玉米光周期敏感相关性状的QTL定位[D].郑州:河南农业大学,2007.
    段晓岚,陈善葆.外源DNA导入水稻引起性状变异[J].中国农业科学,1985,(3):6-10.
    郭瑞.玉米光周期敏感性及相关性状的遗传研究及QTL定位[D].郑州:河南农业大学,2005.
    郭瑞,王海斌,陈彦惠.温、热生态环境下玉米生育性状的遗传研究[J].2005.6:25-29..
    哈洛威AR.玉米轮回选择的理论与实践[M].北京:农业出版社,1989.
    黄骏麒,钱思颖,刘桂玲,等.外源海岛棉DNA导致陆地棉性状的变异[J].遗传学报,1981,8(1):56-62。
    李德全,赵会杰,高辉远。植物生理学[M]..中国农业科技出版社,1999.
    李思远.玉米光周期敏感基因类Hd6的克隆和功能分析[D].郑州:河南农业大学,2008.
    刘纪麟主编.玉米育种学[M].北京,1991,农业出版社.
    任永哲,陈彦惠,库丽霞,等.玉米光周期反应研究简报[J].玉米科学,2005,13(4):86-88.
    王翠玲.玉米光周期敏感相关性状的QTL分析及杂种优势研究[D].郑州:河南农业大学,2008.
    王新涛.玉玉米光周期敏感基因ZmGI的克隆和功能分析[D].郑州:河南农业大学,2009.
    吴景锋.我国玉米杂交种发展的主要历程、差距和对策[J].玉米科学,1995,3(1):1-5.
    夏光敏,李忠谊,贺晨霞,等.根癌农杆菌介导的小麦转基因植株再生[J].植物生理学报,1999,25(1):22-28.
    谢道昕,范云六,倪丕冲,等.苏云金芽芽孢杆菌杀虫基因导入中国栽培水稻品种中花11号获得转基因植物[J].中国科学(B辑),1991,21(8):830-834.
    谢道昕,范云六,倪万潮等.苏云金芽孢杆菌杀虫晶体蛋白基因导入棉花获得转基因植物[J].中国科学(B辑),21(4):367-373.
    曾君祉,王东江,吴有强,等.用花粉管途径获得小麦转基因植株[J].中国科学(B辑),1993,23(3):256-262.
    张凤路,S. Mugo.不同玉米种质对长光周期反应的初步研究[J].玉米科学,2001,9(4):54-56.
    张世煌,石德权,徐家舜,等.对两个亚热带优质蛋白玉米群体的适应性混合选择研究[J].作物学报,1995,21(3):271-280.
    周光宇.从生物化学角度探讨远缘杂交的理论[J].中国农业科学,1978,11 (2):16-20.
    周光宇.远缘杂交的分子基础—DNA片段杂交假设的一个论证[J].遗传学报,1979,6: 405-413.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700