超高压输电线路单端暂态电流保护算法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代电力系统呈现大容量、远距离、高电压、联合电网的发展趋势,对电网运行的稳定性要求更高。快速切除故障是确保电力系统稳定运行的有效措施之一。暂态量保护利用故障分量中的高频暂态分量来进行故障的判别、实现保护功能,具有响应快、准确性高等优点,而且不受过渡电阻、系统振荡、TA饱和等因素的影响。因此,暂态量保护可以改善继电保护装置的性能、解决工频量保护固有的弊端,成为未来继电保护的发展方向之一
     输电线路故障时产生的高频分量在经过线路边界后会遭受大量的衰减和反射作用,因此在保护安装处检测到的区内外故障分量存在差异,利用此差异可实现区内外故障的识别。本文在分析输电线路边界频率特性的基础上,提出两种基于故障暂态分量的超高压输电线路保护算法。其一为利用改进递归小波变换相位信息的暂态保护算法:采用改进递归小波变换提取故障电流信号中的暂态分量,利用小波变换后的相位信息来测量故障信号的平均频率,通过区内外故障暂态信号的平均频率差异来识别故障。其二为利用希尔伯特-黄变换的暂态保护算法:采用希尔伯特-黄变换方法对故障电流信号进行处理,得到信号高频分量的Hilbert谱,通过比较故障发生时刻的瞬时频率大小来判别区内外故障。通过电磁暂态仿真软件PSCAD/EMTDC搭建了实际的500kV超高压输电线路模型,对不同故障距离、不同故障类型、不同故障过渡电阻、不同故障初始角、不同边界等多种故障情况进行了大量的仿真,并利用MATLAB处理仿真数据,对所提算法进行测试实验,实验结果表明本文所提出的两种暂态保护算法具有可行性。
Modern power system develops the trend of large capacity, long distance, high voltage and interconnected grid, which demands higher transient stability for power system. Clearing the faults rapidly is an effective method to ensure stable operation. Transient Based Protection utilize high-frequency components of fault transient to carry out discrimination, achieve their protective function, with fast response, high accuracy advantages, but also is insensitive to the transition resistance, the system oscillation, TA saturation and other factors. Therefore. Transient Based Protection can improve the performance of protective relaying devices, to solve the inherent defects of the frequency protection, become one of the development directions of power system protective relaying.
     Transmission line fault-generated high frequency components through the line boundary can suffer a large number of attenuation and reflection, so the detection internal and external fault component are differences, this difference can be realized the fault identification. On the basis of the frequency characteristics of line boundary, this paper was proposed two protection algorithms for EHV transmission lines based on fault transient components. The first is based on improved recursive wavelet transform (IRWT) phase information of the transient protection algorithms:IRWT is used to extract desirable frequency components of fault-induced transient current signals, according the difference of the average frequency of the extracted signals which measured by their phase information, an internal or external fault can be distinguished. The second is a transient protection algorithm based Hilbert's-Huang Transform:Hilbert-Huang Transform method process fault current signal to achieve Hilbert spectrum of the high-frequency components, according to compare the size of instantaneous frequency at the fault-occurred time to determine the internal and external fault.
     A simulation model of 500 kV extremely high voltage transmission systems are established on the platform of PSCAD/EMTDC. A lot of simulations about different fault conditions such as fault location, fault resistance, fault type, fault inception angle and different
引文
[1]葛耀中.新型继电保护与故障测距原理与技术[M].西安:西安交通大学出版社,1996.
    [2]薄志谦.新一代电力系统继电保护暂态保护[J].电网技术,1996,20(3):34-36.
    [3]Pease J. Experience with optical "PTs and CTs" at 500 kV for metering and relaying. IEEE Technical Applications Conference and Workshops,1995,260-266.
    [4]高厚磊,贺家李.基于GPS的同步采样及在保护与控制中的应用[J].电网技术,1995,19(7):30-32.
    [5]胡清兰等.光纤通信技术在电力系统中的应用[J].现代电力,2000,17(3):75-81.
    [6]张雄伟,曹铁勇.DSP芯片原理与开发应用[M].北京:电子工业出版社,2000.
    [7]G.W Swift. The spectra of fault-induced transients. IEEE Trans. Power Apparatus Systems.1979, 98(3):940-947.
    [8]邬林勇,何正友,钱清泉.一种提取行波自然频率的单端故障测距方法[J].中国电机工程学报,2008,28(10):69-75.
    [9]Takagi T, Baba J, Uemura K., et al. Fault protection based on traveling wave theory, part 1: theory[C]. IEEE PES Summer Meeting. Mexico City,1977.
    [10]Takagi T, Baba J, Uemura K, et al. Fault protection based on traveling wave theory, part 2:sensitivity analysis and laboratory test[C]. IEEE PES Winter Meeting, New York,1978.
    [11]苏斌,董新洲,孙元章.基于小波变换的行波差动保护[J].电力系统自动化,2004,28(18):25-29.
    [12]李幼仪,董新洲,孙元章.基于电流行波的输电线横差保护[J].中国电机工程学报,2002,22(11):6-10.
    [13]张举,张晓东,林涛.基于小波变换的行波电流极性比较式方向保护[J].电网技术,2004,28(4):51-54.
    [14]程临燕,段建东,张保会等.基于形态梯度的输电线电流行波比较式超高速保护[J].西安交通大学学报,2007,41(4):484-488
    [15]M Chamia, S Liberman. Ultra high speed relay for EHV/UHV transmission lines-development, design and application[J]. IEEE Trans on Power Apparatus and Systems,1978,97(6):2104-2112.
    [16]Dommel H W, Michels J M. High speed relaying using traveling wave transient analysis[C]. IEEE PES Winter Meeting, New York,1978.
    [17]Mansour M M, Swift G W. A multi-microprocessor based traveling wave relay-theory and realization[J]. IEEE Trans on Power Delivery,1986.1(1):272-279.
    [18]Johns A T. New ultra-high-speed directional comparison technique for the protection of EHV transmission lines[J]. IEE Proceedings-C. Generation, Transmission and Distribution,1980,127(4): 228-239.
    [19]Johns A T, Martin M A, Barker A, et al. A new approach to EHV direction comparison protection using digital signal processing techniques[J]. IEEE Trans on Power Delivery,1986,1 (4):24-34.
    [20]Aggarwal R K, Johns A T, Tripp D S. The development and application of directional comparison protection for series compensated transmission systems[J]. IEEE Trans on Power Delivery,1987, 2(4):1037-1045.
    [21]董新洲,葛耀中,贺家李.波阻抗方向继电器的基本原理[J].电力系统自动化,2001,25(9):15-18.
    [22]杨钟皓,董新洲.波阻抗方向继电器的完善方案[J].电工技术学报,2003,18(2):22-26.
    [23]Dong X Z, Ge Y Z, He J L. Surge impedance relay[J]. IEEE Trans on Power Delivery,2005,20(2): 1247-1256.
    [24]董杏丽,董新洲,张言苍,等.基于小波变换的行波极性比较式方向保护原理研究[J].电力系统自动化,2000,24(14):11-15.
    [25]董杏丽,葛耀中,董新洲,等.基于小波变换的行波幅值比较式方向保护[J].电力系统自动化,2000,24(17):11-15.
    [26]Wu Q H, Zhang J F, Zhang D J. Ultra-high-speed directional protection of transmission lines using mathematical morphology [J]. IEEE Trans on Power Delivery,2003,18(4):1127-1133.
    [27]林湘宁,刘沛,高艳.基于故障暂态和数学形态学的超高速线路方向保护[J].中国电机工程学报,2005,25(4):13-18.
    [28]胡文丽,焦彦军,崔宏斌.基于小波变换的新型暂态行波方向保护[J].电网技术,2005,29(3):68-71.
    [29]段建东,张保会,周艺.超高速暂态方向继电器的研究[J].中国电机工程学报,2005,25(4):7-12.
    [30]林湘宁,刘沛,高艳.基于故障暂态和数学形态学的超高速线路方向保护[J].中国电机工程学报,2005,25(4):13-18.
    [31]赵青春,邹力,刘沛.基于数学形态学的线路超高速方向保护[J].电网技术,2005,29(21):75-80.
    [32]Crossley P A, Mclaren P G. Distance protection based on travelling waves[J]. IEEE Trans on Power Apparatus and Systems,1983,102(9):2971-2983.
    [33]Shehab-Eldin E H, Mclaren P G. Travelling wave distance protection-problem areas and solutions[J]. IEEE Trans on Power Delivery,1988,3(3):894-902.
    [34]Liang J, Elangovan S, Devotta J B X. Adaptive traveling-wave protection algorithm using two correlation functions[J]. IEEE Trans on Power Delivery,1999,14(1):126-131.
    [35]Pathirana V, Dirks E, Mclaren P G. Using impedance measurement to improve the reliability of traveling-wave distance protection[C]. IEEE PES General Meeting, Toronto. Canada.2003: 1874-1879.
    [36]Dutta P K. Dutta Gupta P B. Microprocessor-based UHS relaying for distance protection using advanced generation signal processing[J]. IEEE Trans on Power Delivery,1992.7(3):1121-1128.
    [37]Ancell G B, Pahala waththa N C. Maximum likelihood estimation of fault location on transmission lines using traveling-waves[J]. IEEE Trans on Power Delivery,1994,9(2):680-689.
    [38]董杏丽,葛耀中,董新洲,等.基于小波变换的行波测距式距离保护原理的研究[J].电网技术,2001,25(7):9-13.
    [39]L N Walker. Implementation of High Frequency Transient Fault[C]. Detector IEEE Winter Power Meeting, New York, Jan.1970
    [40]Johns A.T, Bo Z.Q.. Non-Unit Protection Technique for EHV Transmission Systems Base on Fault Genegrate Noise. Part 3 Engineering and HV laboratory testing. Gener,Trans. and Distri, IEE Proceedings-1996,143(3):276-282
    [41]Johns AT, Aggarwal R K, BoZQ. Non-unit protection technique for EHV transmission systems based on fault-generated noise, part 2:signal processing[J]. IEE Proceedings on Generation Transmission and Distribution,1994,141(2):141-147.
    [42]Aggarwal R K, Johns AT, BoZQ. Non unit protection technique for EHV transmission systems based on fault-generated noise. part 3:engineering and HV laboratory testing[J]. IEE Proceedings on Generation Transmission and Distribution,1996,143(3):276-282.
    [43]Bo Z Q. A new non-communication protection technique for transmission lines[J]. IEEE trans on Power Delivery,1998,13(4):1073-1078.
    [44]Chen Z, Bo Z.Q, Jiang F, Weller G. A fault generate high frequency current transients Based protection scheme for series compensated lines[C]. Power Engineering Society Winter Meeting,2000.IEEE,Volume 3.23-27, pp.1838-1843
    [45]哈恒旭,张保会,吕志来.边界保护的理论基础,第一部分:故障暂态分析[J].继电器,2002,30(9):7-14
    [46]哈恒旭,张保会,吕志来.边界保护的理论基础,第二部分:线路边界的折、反射系数的频谱[J]。继电器,2002,30(10):1-5.
    [47]哈恒旭,张保会,吕志来.边界保护的理论基础,第三部分:故障暂态频谱差异EMTP仿真[J].继电器,2002.30(11):1-4.
    [48]Ha Hengxu, ZhangBaohui. The basic theory of boundary protection for EHV transmission Lines. International Coferenceon Power System Technology.Proceedings,2002.Vol.4.2569-2574.
    [49]哈恒旭,张保会,吕志来.利用暂态电流的输电线路单端量保护新原理探讨[J].中国电机工程学报,2000,20(11):56-61.
    [50]段建东,基于暂态量的超高压电网超高速保护的研究[D],西安:西安交通大学,2005.
    [51]段建东,张保会,任晋锋,等.超高压输电线路单端暂态量保护元件的频率特性分析[J].中国电机工程学报.2007,27(1):37-43
    [52]夏明超,黄益庄,赵沃泉.利用多端暂态电流的高压输电线路保护新算法[J].中国电机工程学报,2004,24(2):304-307
    [53]林湘宁,刘沛,杨春明,等.基于小波分析的超高压输电线路无通信全线速动保护方案[J].中国电机工程学报,2001,21(6):9-14.
    [54]何正友,王晓茹,钱清泉.利用小波分析实现EHV输电线路单端量暂态保护的研究[J].中国电机工程学报,2001,21(]0):10-14.
    [55]余健明,吴姗姗,段健东,匡军.基于改进递归小波变换的超高压输电线路边界保护元件算法[J].电网技术,2008,34(17):105-110
    [56]李天运,赵妍,等.HHT方法在电力系统故障信号分析中的应用[J].电工技术学报,2005,20(6),87-91
    [57]武安绪,吴培稚,等.Hilbert-Huang变换与地震信号的时频分析[J].中国地震,2005,21(2):207-215
    [58]Oppenheim AV, Lim, J.S. The importance of phase in signal [J]. Proceedings of the IEEE,1981,69(5):529-541.
    [59]Unser M., Aldroubi A. A review of wavelets in biomedical applications [J]. Proceedings of the IEEE,1996,84(4):626-638.
    [60]Haddad, S.A.P. Analog complex wavelet filters[C]. IEEE International Symposium on Circuits and System,2005.Kobe, Japan,2005,3287-3290
    [61]张传利,黄益庄,马晓旭,等.改进递归小波变换在变压器保护中的应用研究[J].电力系统自动化,1999,23(17):20-22.
    [62]Tao Lin, A. Domijian Jr. Recursive algorithm for real-time measurement of electrical variables in power systems[J]. IEEE Transactions on Power Delivery.2006,21(1):15-22.
    [63]Tao Lin, A. Domijian Jr. Novel complex filter with recursive algorithm for phasor computation in power-quality monitoring[J]. IEE Proceedings Generation, Transmission & Distribution.2006,153(3):283-289.
    [64]赵成勇,何明锋.基于复小波变换相位信息的谐波检测算法[J].中国电机工程学报,2005.25(1):38-42
    [65]Huang N E, Shen, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A,1998,454:903-995
    [66]Huang N E. A new view of nonlinear waves:The Hilbert spectrum.Annual Review of Fluid Mechanics,1999,31:417~457
    [67]段建东,张保会,李鹏,等.超高压输电线路新单端暂态量保护元件的实用算法[J].中国电机工程学报,2007.27(7):45-51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700