中继卫星高速数传系统中发射端数字信号处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数据中继卫星系统(DRSS)以其高覆盖率、大容量、使用灵活等优点成为航天领域的一个重点发展方向,其返向通信链路高速数据传输是它的主要业务之一。高速数据传输系统发射端的数字信号处理面临着运行速度快、计算量大等难点;且发射端射频设备的非理想因素容易导致宽带信号失真、频谱扩散、系统性能下降。为解决这些问题,论文重点研究了基带信号成形滤波、宽带正交调制器I/Q失配预校正、高功率放大器(HPA)自适应预失真线性化等关键技术。
     首先,论文完成了高速成形滤波器的设计和实现。从系统误比特率(BER)性能和硬件可实现性两个角度,对成形滤波器的参数进行了精心设计;在FPGA中实现了基于查找表的高速成形滤波器,并利用成形滤波器的多相实现结构完成了对I/Q两路信号的自动同步。
     其次,论文研究了宽带正交调制器I/Q失配预校正方法。研究了宽带正交调制器I/Q失配模型,并给出了一种时域内I/Q失配测量方法;推导了TCM-8PSK信号在正交调制器I/Q失配条件下的星座图、BER性能;研究了宽带正交调制器I/Q失配的预校正方法,并将之应用到工程系统中,利用修改成形滤波器的抽头系数实现I/Q失配的预校正,不需要占用另外的硬件资源。
     然后,论文研究了HPA有记忆效应的非线性特性及其线性化技术。在对HPA有记忆效应的非线性模型总结的基础上,提出了一种基于并行滤波器组的扩展Volterra-Wiener模型;完善了TCM-8PSK信号在HPA有记忆效应非线性条件下的性能分析,包括信号星座图、功率谱密度(PSD)、BER性能等;对HPA常用线性化技术进行了介绍,对每种技术的基本原理、优缺点作了详细比较。
     最后,论文研究了HPA基带自适应预失真线性化技术。对基于Volterra级数和扩展Volterra-Wiener模型的自适应预失真算法进行了推导和仿真,仿真结果表明这两种算法系统收敛速度较慢;提出了将离散小波变换(DWT)应用到预失真模型中的方法,以减小输入序列的相关性,提高系统的收敛速度;针对强非线性HPA提出了一种基于离散小波神经网络(DWNN)的HPA数字自适应预失真算法,充分利用了神经网络对强非线性系统很强的学习和逼近能力。仿真结果表明,基于离散小波神经网络的自适应预失真算法与基于RBF神经网络的算法相比较,大大减少了系统的计算量,并提高了系统的收敛速度和HPA线性化性能。
Data Relay Satellite System (DRSS) is a promising research area in the field of spaceflight thanks to its near-world wide coverage, large capacity and agile controllability. High speed data transmission of the satellite communication in the backward channel is one major service of DRSS. There are many signal processing problems such as high speed operation, a great quantity of computation at the transmitter of high speed data transmission system. And nonideal factors in RF equipments may cause wide-band signal distortion, spectrum spead and system performance degradation. To solve these problems, the key techniques such as high speed pulse shaping filter, predistortion of wide-band I/Q modulator mismatch and adaptive predistortion of High Power Amplifier(HPA) are mainly researched in this thesis.
     Firstly, the design and implementation of high speed pulse shaping filter is investigated. The filter's parameters are well-chosen based on bit error rate(BER) performance and realization possibility. The filter is implemented using look-up tables in FPGA, and realized I/Q auto-synchronization with the filter's polyphase structure.
     Secondly, the predistortion technique of wide-band I/Q mismatch is investigated. The I/Q mismatch model for wide-band I/Q modulator is studied and a measure method is given. The performances of TCM-8PSK such as signal constellation and BER are analyzed in the situation of I/Q mismatch. One predistortion technique is realized in FPGA by modifing the coefficients of pulse shaping filter, which saves some handware resources.
     Thirdly, the nonlinearity with memory effects and the linearization techniques of HPA are inverstigated. An extended Volterra-Wiener model based on parallel filters bank is proposed after considering various nonlinearity models. The performances of TCM-8PSK such as signal constellation, power spectrum density(PSD) and BER are analyzed in the situation of nonlinearity with memory effects. The usual HPA linearization techniques are introduced, and comparing their principles, advantages and disadvantages.
     Finally, the adaptive predistortion techniques of HPA in baseband are inverstigated. The adaptive predistorted algorithms based on Volterra and extended Volterra-Wiener are deduced and simulated. The simulation results show that the convergence speeds of the two algorithms are slow. The Discrete Wavelet Transform(DWT) is proposed to use in the predistortion model to reduce the correlation of input sequences. The simulation results show that DWT can make the convergence speed faster. An adaptive predistorted algorithm based on Discrete Wavelet Neural Network(DWNN) is proposed for strong nonlinear HPA, which makes use of the learning and approaching capabilities of neural network. The simulation results show that the DWNN method can make the convergence speed faster, reduce the computation complexity and improve the linearization performance when compared to the RBF method.
引文
[1]李晶,基于TDRSS高速数传的载波同步设计与实现及TCM-8PSK信号的性能分析,国防科技大学博士论文[D],2005年10月.
    [2]陈秀珠,跟踪和数据中继卫星系统-卫星通信[J],卫星与网络,2001年6月.
    [3]Ronald A.M.and Allen K.B.,NASA's Next Generation Tracking and Data Relay Satellite System(TDRSS) - Launch and Operational Ground Segment Architecture[R],http://nmsp.gsfc.nasa.gov.
    [4]中国人民解放军总装备部测量通信总体研究所,“中国第一代卫星数据中继系统数据传输体制专题研究报告”[R],2001年8月.
    [5]中国人民解放军总装备部航天研发中心,“中国第二代卫星数据中继卫星系统顶层设计报告”[R],2005年1月.
    [6]Ungerboeck G.,Trellis Coded Modulation with Redundant signal sets - Part Ⅰ:Introduction[J],IEEE Communication Magazine,1987,25(2),5-11.
    [7]Ungerboeck G.,Trellis Coded Modulation with Redundant signal sets - Part Ⅱ:State of the Art[J],IEEE Communication Magazine,1987,25(2),12-21.
    [8]曹志刚 钱亚生,现代通信原理[M],清华大学出版社,北京:1992年8月,p:407-418.
    [9]Kelly J.S.,Spectral Efficiency of 8-ary PSK Modulation Utilizing Square Root Raised Cosine Filtering[R].
    [10]Massimiliano L.Letizia L.P.and Marina M.,Digital Pulse-shaping FIR Filter Design with Reduced Intersymbol and Interchannel Interference[J],European Transactions on Telecommunications,2003,14:423-433.
    [11]陈大夫,TCM/8PSK高速数传全数字接收机关键技术研究及其FPGA实现[D],国防科技大学博士论文,2006年9月.
    [12]李素芝万建伟,离散信号处理[M],国防科技大学出版社,长沙:1998年4月.
    [13]Anders V.and Nils H.,Optimal Finite Duration Pulses for OFDM[J],IEEE Transaction on Communication,Vol.44,No.1,January 1996,p:10-14.
    [14]皇甫堪陈建文楼生强,现代数字信号处理[M],电子工业出版社,北京:2003.
    [15]Stanley A.W.,Application of Distributed Arithmetic to Digital Signal Processing:A Tutorial Review[J],[EEE ASSP MAGAZINE,July 1989.
    [16]Chameleon L.,Distributed Arithmetic for the Design of High Speed FIR Filter using FPGAs[R].
    [17]Bernie N.,A Distributed Arithmetic Approach to Designing Scalable DSP Chips[A],EDN,August 17,1995[C].
    [18]Xilinx Corp.,Virtex-Ⅱ Handbook,vl.7,Oct,2001,http://www.xilinx.com.
    [19]TS86101G2 4:1 10-bits 1.2 Gsps MUX-DAC,September 2003.
    [20]Xilinx Corp.,Virtex-Ⅱ Platform FPGA User Guide:Using Digital Clock Managers(DCMs),V1.5,December 2,2002,http://www.xilinx.com.
    [21]Liu C.L.,Impacts of I/Q Imbalance on QPSK-OFDM-QAM Detection[J],IEEE Transaction on Consumer Electronics,Vol.44,No.3,August 1998,p:984-989.
    [22]Kong-pang Pun and C.Azersdo-Leme,Wideband Digital Correction of I and Q Mismatch in Quadrature Radio Receives[J],IEEE International Symposium on Circuits and Systerm,May 2000,Geneva Switzerland,p:661-664.
    [23]I1-HyunS.,Eui-Rim J.and Yong H.Lee,Data-Aided Approach to I/Q Mismatch and DC Offste Compensation in Communication Receivers[J],IEEE Communication Letters,Vol.6,No.12,December 2002,p:547-549.
    [24]Jaeyoon L.,Woojin J.and Dongweon Y.,Ser Computation of MPSK in the Presence of I/Q Mismatch[A],ICICS 2005[C],p:1071-1075.
    [25]Analytical Approach to I/Q Imbalance in OFDM,CDMA and MC-CDMA Based Systems[A],IEEE 2006[C],p:555-558.
    [26]J.P.Y.Lee,Wideband I/Q Demodulators:Measurement Technique and Matching Characteristics[J],lEE Proc.-Radar.Sonar Navig.,Vol.143,No.5,October 1996,p:300-306.
    [27]Zhu Z.W.and Huang X.P.,Theoretical Analysis of Timing Errors in a Direct Transmitter Self-Calibration System[A],ICASSP 2006[C],Canada,p:417-420.
    [28]Data Sheet,1 to 4 GHz I/Q Modulator,Model:SDM0104LC1CDQ.
    [29]Leopoldo A.,Italo G.and Michele V.,A New Method for I/Q Impairment Detection and Evaluation in OFDM Transmitters[J],IEEE Transaction on Instrumentation and Measurement,Vol.55,No.5,October 2006,p:1480-1486.
    [30]叶其孝沈永欢,实用数学手册[M],科学出版社,北京:2007年2月.
    [31]HEUTMATER M.,WELCH J.and WU E.,Using digital modulation to measure and model RF amplifier distortion[J],Applied Microwave and Wireless,1997,9(2),p:36-39.
    [32]HEUTMATER M.,WU E.and WELCH J.Envelope distortion models with memory improve some amplifier spectral regrowth predictions[J],Applied Microwave and Wireless,1997,9(4),p:72-78.
    [33]Changsoo E.,Edward J.P.,A Predistorter Design for a Memory-less Nonlinearity Preceded by a Dynamic Linear System[A][C],1995,p:152-156.
    [34]杨文考,多载波(OFDM)数字电视中放大器的自适应预失真技术研究[D], 电子科技大学博士学位论文,2002.
    [35]Saleh A A M.,Frequency-independent and frequency-dependent nonlinear models of TWT amplifiers[J],IEEE Transaction on Communications,1981,29(11),p:1715-1720.
    [36]Rapp C.,Effects of HPA-nonlinearity on 4-DPSK-OFDM-signal for a digital sound broadcasting system[A],Proceedings of the 2rid European Conference on Satellite Communications,Liege,Belgium,1991[C],ESA-SP-332,p:179-184.
    [37]Magnus I.,David W.and Daniel R.,A Comparative Analysis of Behavioral Models for RF Power Amplifiers[J],IEEE Transation on Microwave Theory and Techniques,Vol.54,No.l,January 2006,p:348-359.
    [38]Hyunchul K.and J.Stevenson K.,Behavioral modeling of nonlinear RF power amplifiers considering memory effects[J],IEEE Transaction on Microwave Theory and Techniques,Vol.51,No.12,December 2003,p:2495-2504.
    [39]A.Zhu and Thomas J.B.,Behavioral modeling of RF power amplifiers based on pruned Volterra series[J],IEEE Microwave Component Letter,Vol.14,No.12,December 2004,p:563-565.
    [40]Jian Li and Jacek Ilow,A Least-Squares Volterra Predistorter for Compensation of Non-linear Effects with Memory in OFDM Transmitters[A],Proceeding of the 3rd Annual CNSR[C],2005.
    [41]H.Ku,M.D.McKinley,and J.S.Kenney,Quantifying memory effects in RF power amplifiers[J],IEEE Transaction on Microwave Theory and Techniques,Vol.50,No.12,December 2002,p:2843-2849.
    [42]Liu T.J.,Slim B.and Fadhel M.G.,Pre-compensation for the Dynamic Nonlinearity of Wideband Wireless Transmitters Using Augmented Wiener Predistorters[A],IEEE APMC 2005 Proceeding[C].
    [43]Khosrow L.,A Nover Volterra-Wiener Model for Equalization of Loudspeaker Distortions[A],ICASSP 2006[C],p:117-120.
    [44]Changsoo E.and Edward J.P.,A New Volterra Predistorter Based on the Indirect Learning Architecture[J],IEEE Transaction on Signal Processing,1997,45(1),p:223-227.
    [45]Gang Fang,Lemin Li and Shiqi Wu,A Modified Adaptive Compensation Scheme for Nonlinear Bandlimited Satellite Channels[A],IEEE GLOBECOM'91[C],Arizona.
    [46]Timothy Pratt,Charles Bostian,Jeremy Allnutt 著,甘良才 等译.卫星通信(第二版)[M],电子工业出版社,北京:2005年7月,p:111-112.
    [47]H.S.Black,Translating system,U.S.Patent 1[M],October.9,1929,p:686-792.
    [48]H.S.Black,Wave translation system,U.S.Patent 2[M],December.21,1937,p: 102-671,
    [49] R.D.Stewart and F.F.Tusubira, Feedforward linearization of 950MHz amplifiers[A], IEE Proceeding[C], vol. 135, Pt. H, no. 5, October 1988(135), p:347-350.
    [50] R.J. Wilkinson and P.B. Kenington, Specification of Error Amplifiers for Use in Feedforward Transmitters[A], IEE Proceedings-G[C], vol. 139, no. 4, August 1992, p:477-480.
    [51] K.J. Parsons and P.B. Kenington, Effect of Delay Mismatch on a Feedforward Amplifier[A], IEE Proceedings on Circuits, Devices and Systems[C], vol. 141, no.2. April 1994,p:140-144.
    [52] R.G Meyer, R. Eschenbach and W.M. Edgerley, A Wide-band Feedforward Amplifier[J], IEEE Journal on Solid-State Circuits, vol. 9, no. 6, December 1974,p:422-428.
    [53] P. B. Kenington , Efficiency of feedforward amplifiers[A], IEE Proceedings-G[C], vol. 139, no. 5, October 1992, p: 591-593.
    [54] S. Narahashi and T. Nojima, Extremely low-distortion multi-carrier amplifier-self-adjusting feed-forward (SAFF) amplifier[A], In Proceedings of IEEE International Communication Conference[C], 1991, p: 1485-1490.
    [55] R. H. Chapman and W. J. Turney, Feedforward distortion cancellation circuit[P],U.S. Patent 5,051,704, September 24, 1991.
    [56] P. B. Kenington, M. A. Bateman and J. P. McGeehan, Apparatus and method for reducing distortion in amplification[P], U. S. Patent 5,334,946, August 2, 1994.
    [57] D.C. Cox, Linear Amplification by Sampling Techniques: A New Application for Delta Coders[J], IEEE Transactions on Communications, vol. 23, no.8, August 1975, p:793-798.
    [58] M.A. Briffa and M. Faulkner, Dynamically Biased Cartesian Feedback Linearization [A], In Proceedings of the 43rd IEEE Vehicular Technology Conference[C], May 1993, p: 672-675.
    [59] M. Johansson, T. Mattsson, L. Sundstrom and M. Faulkner, Linearization of Multi-carrier Power Amplifiers[A], In Proceedings of the 43rd IEEE Vehicular Technology Conference[C], May 1993, p: 684-687.
    [60] M. Faulkner and M.A. Briffa, Amplifier Linearisation Using RF Feedback and Feedforward Techniques[A], In Proceedings of the 45th IEEE Vehicular Technology Conference[C], July 1995.
    [61] Chattopachyay A.K., De N.K. and Dutta S.K., Microprocessor-based Feedforward Controller for a CSI-IM Drive with State Feedback[A], Industry Applications Society Annual Meeting, 1991. Conference Record of the 1991 IEEE[C], 28 Sep-4 Oct 1991, p: 1727-1733.
    [62]V.Petrovic and W.Gosling,Polar-loop Transmitter[J],Electronics Letters,vol.15,no.10,May 1979,p:286-288.
    [63]H.Kosugi,T.Matsumoto and T.Uwano,A High-efficiency Linear Power Amplifier Using an Envelope Feedback Method[A],Electronics and Communications in Japan[C],part 2,vol.77,no.3,1994,p:50-57.
    [64]L.R.Kahn,Single-sideband Transmission by Envelope Elimination and Restoration[A],Proceedings IRE[C],vol.40,July 1952,p:803-806.
    [65]D.C.Cox,Linear Amplification with Nonlinear Components[J],IEEE Transactions on Communications,vol.22,no.12,December 1974,p:1942-1945.
    [66]A.Bateman,The Combined Analogue Locked Loop Universal Modulator (CALLUM)[A],In Proceedings of the 42nd IEEE Vehicular Technology Conference[C],May 1992,p:759-763.
    [67]A.Bateman and K.Y.Chan,Analytical and measured performance of the combined analogue locked loop universal modulaor(CALLUM)[J],IEE Proc.On Communications,1995(42),p:297-306.
    [68]A.S.Wright and W.G.Durtler,Experimental performance of an adaptive digital linearized power amplifier[J],IEEE Transactions on Vehicular Technology,1992(41),p:395-400.
    [69]杨文考,多载波(OFDM)数字电视中放大器的自适应预失真技术研究[D],电子科技大学博士学位论文,2002.
    [70]Bruce E.W.,Richard N.and Murali T.,Neural Network Based Adaptive Predistortion for the Linearization of Nonlinear RF Amplifiers[J],IEEE 1995,p:145-149.
    [71]Sundstrom L.,Faulkner M.and Johansson M.,Quantization Analysis and Design of a Digital Predistortion Linearizer for RF Power Amplifiers[J],IEEE Transactions on Vehicular Technology,November 1996,p:707-719.
    [72]Krzysztof W.,A Novel Fast HPA Predistorter for High PAPR Signal[A],2005IEEE 16th International Symposium on Personal,Indoor and Mobile Communication[C],p:863-867.
    [73]He Z.Y.,Ge J.H.and Geng A.J.,An Improved Look-Up Table Predistortion Technique for HPA with Memory Effevts in OFDM Systems[J],IEEE Transaction on Broadcasting,Vol.52,No.1,March 2006,p:87-91.
    [74]Dennis R.M.,Zheng A.M.and Michael G.A.,A Generalized Memory Polynomial Model for Digital Predistortion of RF Power Amplifiers[J],IEEE Transaction on Signal Processing,Vol.54,No.10,Octorber 2006,p:3852-3860.
    [75]Raviv R.,Qian H.and Zhou G.T.,Digital Baseband Predistortion of Nonlinear Power Amplifiers Using Orthogonal Polynomials[A],ICASSP 2003[C],p:689-692.
    [76] P.L. Gilabert, G. Montoro and E. Bertran, On the Wiener and Hammerstein Models for Power Amplifier Predistortion[A], APMC 2005 Proceedings[C].
    [77] Ding L., Raviv R. and Zhou G. T., A Hammestein Predistion Linearization Design Based on the Indirect Learing Architecture[A], IEEE 2002[C], p: 2689-2692.
    [78] Li J. and Jacek I., Adaptive Volterra Predistorters for Compensation of Non-linear Effects with Memory in OFDM Transmitters[A], Proceedings of the 4th Annual Communication Networks and Services Research Conference 2006[C].
    [79] N. Naskas and Y. Papananos, Neural-Network-Based Adaptive Basedband Predistortion Method for RF Power Amplifiers[J], IEEE Transaction on Circuits and Systems-II: Express Briefs, Vol. 51, No. 11, November 2004, p: 619-623.
    [80] Bateman A., Haines D.M. and Wilkinson R.J., Linear Transceiver Architectures[A], In Proceedings of the 38th IEEE Vehicular Technology Conference[C], May 1988, p: 478-484.
    [81] Nagata Y., Linear Amplification Technique for Digital Mobile Communications[A], In Proceedings of the 39th IEEE Vehicular Technology Conference[C], May 1989, p: 159-164.
    [82] Faulkner M., Mattsson T. and W. Yates, Adaptive Linearisation Using Predistortion[A], In Proceedings of the 40th IEEE Vehicular Technology Conference[C], May 1990, p:35-40.
    [83] Faulkner M. and Johansson M., Adaptive Linearization Using Predistortion Experimental Results[J], IEEE Transactions on Vehicular Technology, vol. 43, no.2,1994, p:323-332.
    [84] Cavers J.K, A Linearizing Predistorter with Fast Adaptation [A], In Proceedings of the 40th IEEE Vehicular Technology Conference[C], May 1990, p: 41-47.
    [85] Cavers J.K, Amplifier Linearization Using a Digital Predistorter with Fast Adaptation and Low Memory Requirements[J], IEEE Transactions on Vehicular Technology, vol. 39, no. 4, November 1990, p:374-382.
    [86] Wright A.S. and Durtler W.G, Experimental Performance of an Adaptive Digital Linearized Power Amplifier[A], In IEEE MTT-S International Microwave Symposium Digest[C], vol. 2, June 1992, p:1105-1108.
    [87] Wright A.S. and Durtler W.G, Experimental Performance of an Adaptive Digital Linearized Power Amplifier[J], IEEE Transactions on Vehicular Technology, vol.41 no. 4, November 1992:395-400.
    [88] Hyun W. K., Yong S. C. and Dae. H. Y, Adaptive Precompensation of Wiener System[J], IEEE Transaction on Signal Processing, vol. 46 no. 10, October 1998,p: 2825-2829.
    [89] D. Psaltis, A. Sideris, and A. A. Yamamura, A multilayer neural network controller[J], IEEE Contr. Syst. Mag.. Apr. 1988, p: 17-21.
    [90]Magnus I.,David W.and Daniel R.,A Comparative Analysis of Behavioral Models for RF Power Amplifiers[J].IEEE Transaction on Microwave Theory and Techniques,2006,54(1),p:348-359.
    [91]Sunmin L.and Changsoo E.,Predistorter Design for a Memory-less Nonlinear High Power Amplifier Using the pth-order Inverse Method for OFDM Systems[A],Proceedings of 2005 International Symposium on Intelligent Signal Processing and Commnuication Systems[C],December 13-16 2005,Hong Kong,p:217-220.
    [92]Raviv R,Hua Q.and G.Tong Z.,Digital Baseband Predistortion of Nonlinear Power Amplifiers Using Orthogonal Polynomials[A],IEEE ICASSP 2003[C],p:689-692.
    [93]杨文考,周尚波,朱维乐,基于大功率放大器估计器的自适应预失真技术[J],信号处理,Vol.18,No.4,2002年8月,p:382-385.
    [94]杨文考,周尚波,朱维乐,基于放大器非线性拟合的自适应预失真技术[J],通信学报,Vol.23,No.10,2002年10月,p:81-88.
    [95]Lei D.,Raviv R.,and G.Tong Z.,A Hammerstein Predistortion Linearization Design Based on the Indirect Learning Architecture[J],IEEE,2002,p:2689-2692.
    [96]谢宏,基于Volterra级数、小波分析与神经网络的非线性网络故障诊断方法的研究[D],湖南大学博士学位论文,2005年3月.
    [97]Simon Haykin(著),郑宝玉等译,自适应滤波器原理(第四版)[M],电子工业出版社,2003年7月,p:183-243.
    [98]Donald B.Percival&Andrew T.Walden,程正兴等译,时间序列分析的小波方法[M],机械工业出版社,2006年3月,p:16-17.
    [99]Stephane Mallat(著),杨力华、戴道清等(译),信号处理的小波导引(第二版),机械工业出版社,2002年9月,p:193-201.
    [100]Donald B.Percival and Andrew T.Walden,((Wavelet Methods for Time Series Analysis))(英文版),机械工业出版社,2004年5月,p:56-156.
    [101]Martin T.Hagan,Howard B.Demuth and Mark H.Beale著,戴奎等译,神经网络设计[M],机械工业出版社,2006年3月,p:200.
    [102]N.Benvenuto,F.Piazza and A.Uncini,A Neural Network Approach to Data Predistortion with Memory in Digital Radio Systems[A],IEEE ICC'93[C],Vol 1,1993,p:232-236.
    [103]Changsoo E.and Edward J.R,Utilization of Neural Network Signal Processing in the Design of a Predistorter for a Nonlinear Telecommunication Channel[J],IEEE 1994,p:3582-3586.
    [104] F. Langlet, H. Abdulkader and D. Roviras, Comparison of Neural Network Adaptive Predistorsion Techniques for Satellite Down Links[J], IEEE IJCNN'01,Vol. 1, 2001,p: 709-714.
    [105] Xu G. Q., Li M.Y. and Xi Y.B., Radial Basis Function Neural Network Models for Power-Amplifier Design[J], IEEE 2004, p: 1066-1079.
    [106] Lan H. T., Trang V. M. and Joseph A. M., Embedded System to Characterize HPA and Calculate Nonlinear Predistortion Neural Network's Weights for HPA[A],IMTC 2004-Instrumentation and Measurement Technology Conference[C],Italy,May 2004, p: 424-428.
    [107] He S. B. Yan X. H. and Bao J. F., Applications of Feed-forward Neural Networks to WCDMA Power Amplifiers Model[A],APMC 2005 Proceedings[C].
    [108] Zhang Q. and A. Benveniste., Wavelet Networks[J], IEEE Transaction on Neural Network, Vol. 3, November. 1992.
    [109] Y. C. Pati and P. S. Krishnaprasad, Analysis and Synthesis of Feed-forward Neural Networks Using Discrete Affine Wavelet Transformations[J], IEEE Transaction on Neural Network, Vol. 4, January 1993.
    [110] Zhang J. and G Walter, Wavelet Neural Networks for Function Learning[J], IEEE Transaction on Signal Processing. Vol. 43. No. 6, June 1995, p: 1485-1497.
    [111] Xu J. H. and Daniel W. C, Adaptive Wavelet Networks for Nonlinear System Identification[A], Proceeding of the American Control Conference[C], California,June 1999,p:3472-3473.
    [112] Lin C. H., Chen P. J. and Chen Y. F., Multiple Cardiac Arrhythmia Recognition Using Adaptive Wavelet Network[A], Proceeding of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai China[C],September 2005, p: 5655-5659.
    [113] Lin F. J., Shieh H. J. and Huang P. K., Adaptive Wavelet Neural Network Control with Hysteresis Estimation for Piezo-Positioning Mechanism[J], IEEE Transaction on Neural Networks, Vol. 17, No. 2, March 2006, p: 432-444.
    [114] Sung J. Y, Yoon H. C. and Jin B. P., Generalized Predictive Control Based on Self-Recurrent Wavelet Neural Network for Stable Path Tracking of Mobile Robots: Adaptive Learning Rates Approach[J], IEEE Transaction on Circuits and Systemd-I: Regular Papers, Vol. 53, No. 6, June 2006, p: 1381-1394.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700