超分辨率重建问题的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像超分辨率是指从一组低质量、低分辨率图像中产生高质量、高分辨率图像的图像处理算法。人们总是对图像质量不断提出更高的要求,所以图像细节水平在一些计算机视觉算法性能中具有决定性的作用。当由于造价问题或者硬件的物理限制而无法通过更换传感器来改善分辨率的时候,求助于超分辨率算法就成为一个自然的选择。即便是可以获得更好的物理设备或仪器,超分辨率算法仍不失为一种既廉价又方便的替代选择。
    目前,研究者在不断寻求和探索关于超分辨率图像重建的数学模型、理论框架和高效的数值计算方法。图像配准、运动估算和正则化约束是其中正迅速发展和不断完善的一些领域。本文在力求全面分析超分辨率重建技术的同时,对这三个领域进行了探索和研究,给出了超分辨率重建在荧光造影图像序列中的应用,并给出了自己的研究观点和实验效果,归纳如下:
    (1) 本文提出了基于分析Fourier-Mellin 变换的图像配准方法,该方法能够计算因几何变换而错位的两幅图像间的变换参数。该配准方法由于采用了笛卡尔坐标系下的分析Fourier-Mellin 变换的数值逼近,所以降低了再采样误差的影响,具有较高的准确性;而且与使用相关函数的传统方法相比,该方法获得了明显的效率改进。
    (2) 为了实现基于光流方法的超分辨率重建,本文基于对光流计算中二阶和四阶偏微分方程约束的光滑效果的分析,提出了用于改善运动估算精度的带有四阶偏微分方程约束的局部与全局混合方法。这一方法可被视为光滑性约束与非连续性保持互为补充的一个例证。
    (3) 本文提出了荧光造影图像序列的超分辨率重建方案,该方案将强度约束合并到Miller 正则化公式中以获得保持高强度的能力。针对造影图像的特定需求,本文在数值计算中采用了Q 阶收敛算法,它是一种具有较高收敛率的改进算法;由于合并了投影算子,改进的Q 阶收敛算法具有了更广泛的通用性。
The spatial resolution that represents the number of pixels per unit area in an image is the principal factor in determining the quality of an image. With the development of image processing applications, there is a big demand for high-resolution (HR) images since HR images not only give the viewer a pleasing picture but also offer additional detail that is important for the analysis in many applications. The current technology to obtain HR images mainly depends on sensor manufacturing technology that attempts to increase the number of pixels per unit area by reducing the pixel size. However, the cost for high-precision optics and sensors may be inappropriate for general purpose commercial applications, and there is a limitation to pixel size reduction due to shot noise encountered in the sensor itself. Therefore, a resolution enhancement approach using signal processing techniques has been a great concern in many areas, and it is called super-resolution (SR) (or HR) image reconstruction or simply resolution enhancement in the literature.
    The basic idea behind SR is the fusion of a sequence of low-resolution noisy blurred images to produce a higher resolution image or sequence. Early works on SR showed that the aliasing effects in the high-resolution fused image can be reduced or even completely removed, if a relative sub-pixel motion exists between the undersampled input images. However, contrary to the simple frequency domain description of the early work, in general, SR is a computationally complex and numerically ill-posed problem. This makes SR one of the most appealing research areas for image processing researchers.
    For some problems existing in the field of SR reconstruction, such as image registration, motion estimation and regularization constraints, we investigate the SR problem from the following aspects, and propose some novel and improved ideas and methods with respect to SR image reconstruction, and thus develop SR technology
    further. 1. This paper presents a novel method of image registration based on analytical Fourier-Mellin transform (AFMT) for computing transformation parameters from two images that differ by a geometric transformation. The geometric transformation consists of x-axis and y-axis translation, rotation, and uniform scale transformation. The basic idea of the proposed image registration method is that the transformed image after an appropriate transform should be variant to one transformation parameter, but invariant to the other parameters. Thus, it is very suitable to use the transformed image to computer each of geometric transformation parameters individually in succession. The properties of Fourier transform indicate that Fourier magnitude spectrum is invariant to translation, but variant to rotation and uniform scale. On the other hand, AFMT is a transform oriented to rotation and uniform scale, while modulus based AFMT is variant to scale. Therefore, these properties lend themselves to the determination of scale factor by two serial transforms, Fourier transform and AFMT. Obviously, the image registration method based on AFMT can be used to find a set of appropriate transformation parameters. Since the original method is based on the discrete log-polar coordinates, the numerical conversion from Cartesian to log-polar coordinates of the discrete image is required, and will bring significant resampling error, which severely interfere the resulting transformation parameters. Furthermore, the error introduced by the interpolation may reduce the accuracy of registration. As a result, it is necessary to control the diffusion of error. For the purpose, the proposed registration method aiming at finite discrete images adopts the Cartesian AFMT approximation. The Cartesian approximation can eliminate the conversion between the two coordinate spaces, so the proposed method can avoid the process of interpolation required in the conversion and the influence of the resampling error, reduce the registration error and obtain a significant improvement in the aspect of accuracy and robustness compared with the conventional method using cross-correlation functions. In the implementation of registration method, in order to remove “+”shaped artifact in the spectrum, we propose a border blurred filter, which is applied to our proposed algorithm. By the operations in spatial domain, the border blurred filter can improve the frequency components and eliminate “+”shaped artifact in frequency domain. With this filter, very few pixels need be altered. In general, within a few pixels of each border there is some effect, so that a majority of pixels are unchanged. In experiments, the two results of normalized high frequency energy and mean square
    error both show that the pre-filtering with the border blurred filter makes significant improvement on the reduction of “+”shaped artifact, without changing the most of the original image information and the most of Fourier spectrum coefficients. 2. We propose a novel optical flow based motion estimation technology, which is combined with Bayesian multiframe SR reconstruction algorithm to achieve Bayesian SR reconstruction. Optical flow based motion estimation adopted in the paper is a hybrid method with a class of fourth-order partial differential equation constraints. This method embeds Lucas-Kanade local technique into Horn-Schunck global approach, yielding a new technique with dense optical flow fields, which is robust against noise. The use of the new technique doesn’t require post-processing for the interpolation of sparse data. Therefore, this method has the features of local spatial constancy of optical flow fields for Lucas-Kanade method, and the features of spatiotemporal constancy for Horn-Schunck method due to the combination of different smoothness effects from local and global methods. In the proposed method, we also exploit a fourth-order partial differential equation constraint term to improve smoothness constraints, and to avoid over-smoothness effect in optical flow fields. Moreover, the use of nonlinear penalty functions or nonlinear penalisers can give better flow discontinuity-preserving. Both of them contribute to the precision of motion estimation, and the improvement of SR reconstructed image quality. In order to implement the computation of linear and nonlinear approximation equations of the hybrid method, and approximation equations with fourth-order partial differential equation constraints, we adopt an iterative method called successive overrelaxation. The iterative method uses less storage space with higher convergence rate. The experimental results show that the precision of motion estimation has direct and significant effect on SR reconstructed image quality. In addition, we present a generalized mathematical framework for optical flow computing. In the framework, the adoption of spline functional as smoothness constraints contains the two special cases of second-order and fourth-order partial differential equation constraints. Moreover, we prove the necessary condition of the solution of the minimization problem for optical flow computing. Actually, the process of the proof is a process to solve the minimization problem for optical flow computing. In methodological point of view, the proof provides the foundation for the formulation and numerical computation of optical flow computing. Another task of the mathematical framework is the reduction from the partial differential equations to linear algebraic equations with respect to two motion components u and v. The
    conversion contributes to the discrete formulation of optical flow equations, and at the same time, in algebraic point of view, proves that the use of smoothness constraints guarantees the existence and the uniqueness of the solution 3. In the most of medical image sequences, the image contents change with time elapsing, consequently, the image intensities vary among frames. The direct SR reconstruction from each single frame will result in the magnification of noise, or the loss of spatial detail information in the case of pre-filtering for smoothing, while the traditional SR reconstruction from multi-frame will lead to intensity degradation due to the inconsistency of image intensity. For the solution of the problem, we propose a SR reconstruction scheme with the feature of intensity preserving. In SR reconstruction, we employ a novel intensity-preserving filter, which is constructed based on a bilateral filter. Different from the traditional filter such as Gaussian filter, the bilateral filter defines the closeness of two pixels not only based on geometric distance but also based on photometric distance. Therefore, the filtering result isn’t only influenced by geometric distance, but also by photometric distance. We extend the traditional bilateral filter to achieve the generality by replacing the central pixel with the pixel of interest (POI), and providing other possible convolution kernel for the filtering of support domain and intensity range. The improved bilateral filter has the following features: 1) a simpler kernel than the Gaussian adopted in the bilateral filter may be easier to compute, leading to a performance speed enhancement; 2) selecting the POI rather than the center pixel leads to a general filter; 3) the improved bilateral filter enhances the ability to control the weights of pixels within the support; 4) by defining an appropriate POI, the improved bilateral filter extends the ability of controlling outputs, and broadens the extent of its applications. From the extension, we note that the improved bilateral filter can be spatial distance weighted or photometric distance weighted filter (controlled by the parameters σd and σr), linear or nonlinear filter (determined by the choice of POI), spatial or temporal filter (determined by the size in each dimension of 3D support ?). In order to achieve the two goals, suppressing noise as well as preventing the high intensities from being degraded, we define the POI using maximum aggregate functions. Through the definition, more high-intensity values can be preserved after filtering. Therefore, in addition to denoising, the intensity-preserving filter can also avoid the degradation of the image intensity. In this paper, we propose a SR reconstruction scheme for fluorescein angiogram sequence, which combines the new intensity constraint to Miller’s regularization
    formulation to achieve the ability of preserving high-intensity. In reconstruction, intensity-preserving filter plays a role of pre-filtering noise and determining intensity template. In implementation, we use a modified Q-th order converging algorithm to solve the minimization problem subject to both the smoothness and the intensity constraint. The intensity template derived from a pre-filtering process is employed in the intensity constraint, representing an image with the desirable intensities. The estimated SR reconstruction may be influenced by the regularization parameter of the intensity constraint as does the regularization parameter of the smoothness constraint. From two aspects, we explain the importance of the proposed intensity-preserving SR reconstruction scheme. On the one hand, the proposed intensity constraint is a novel regularized constraint used to preserve intensity, which enriches the contents of regularized constraints; on the other hand, the scheme is an application of SR reconstruction in the medical imaging field of fluorescein angiogram sequences, which broadens the extent of the SR applications. Moreover, the idea of intensity preserving can further be applied in SR with significant illumination change. In conclusion, the achievement of the investigation results enriches the approaches to the SR problem, and has a certain theoretical and practical importance. This paper provides useful methods and approaches for the research and the development of SR reconstruction problem.
引文
[1] T. Komatsu, K. Aizawa, T. Igarashi, T. Saito. Signal-processing based method for acquiring very high resolution image with multiple cameras and its theoretical analysis. Proc. Inst. Elec. Eng., Feb. 1993, 140, (1):19-25
    [2] S. Chaudhuri, Ed., Super-Resolution Imaging. Norwell, MA: Kluwer, 2001
    [3] R. Y. Tsai, T. S. Huang. Multipleframe image restoration and registration. In Advances in Computer Vision and Image Processing. Greenwich, CT: JAI Press Inc., 1984. 317-339.
    [4] T. Komatsu, T. Igarashi, K. Aizawa, T. Saito. Very high resolution imaging scheme with multiple different-aperture cameras. Signal Processing: Image Communication, Dec. 1993, 5:511-526
    [5] S. P. Kim, N. K. Bose, H. M. Valenzuela. Recursive reconstruction of high resolution image from noisy undersampled multiframes. IEEE Transactions on Acoustics, Speech, Signal Processing, June 1990, 38:1013-1027
    [6] S. P. Kim, W. Y. Su. Recursive high-resolution reconstruction of blurred multiframe images. IEEE Transactions on Image Processing, Oct. 1993, 2:534-539
    [7] N. K. Bose, H. C. Kim, H. M. Valenzuela. Recursive implementation of total least squares algorithm for image reconstruction from noisy, undersampled multiframes. In Proc. IEEE Conf. Acoustics, Speech and Signal Processing, Minneapolis, MN, Apr. 1993, 5:269-272.
    [8] S. H. Rhee, M. G. Kang. Discrete cosine transform based regularized high-resolution image reconstruction algorithm. Optical Engineering, Aug. 1999, 38, (8):1348-1356
    [9] N. R. Shah, A. Zakhor. Resolution enhancement of color video sequences. IEEE Transactions on Image Processing, June 1999, 8:879-885
    [10] M. Irani, S. Peleg. Improving resolution by image registration. CVGIP: Graphical Models and Image Proc., May 1991, 53:231-239
    [11] S. Mann, R. W. Picard. Virtual bellows: Constructing high quality stills from video. In Proc. IEEE Int. Conf. Image Processing, Austin, TX, Nov. 1994. 363-367.
    [12] P. E. Eren, M. I. Sezan, A. M. Tekalp. Robust, object-based high-resolution image reconstruction from low-resolution video. IEEE Transactions on Image Processing, Oct. 1997, 6 (10):1446-1451
    [13] R. R. Schulz, R. L. Stevenson. Extraction of high-resolution frames from video sequences. IEEE Transactions on Image Processing, June 1996, 5:996-1011
    [14] R. C. Hardie, K. J. Barnard, E. E. Armstrong. Joint MAP registration and high-resolution image estimation using a sequence of undersampled images. IEEE Transactions on Image Processing., Dec. 1997, 6:1621-1633
    [15] N. Nguyen, P. Milanfar, G. Golub. A computationally efficient superresolution image reconstruction algorithm. IEEE Transactions on Image Processing, Apr. 2001, 10:573-583
    [16] B. C. Tom, A. K. Katsaggelos. Reconstruction of a high-resolution image by simultaneous registration, restoration, and interpolation of low-resolution images. Proc. 1995 IEEE Int. Conf. Image Processing, Washington, DC, Oct. 1995. 2:539-542.
    [17] M. Elad, A. Feuer. Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images. IEEE Transactions on Image Processing, Dec. 1997, 6 (12):1646-1658
    [18] M. Elad, A. Feuer. Superresolution restoration of an image sequence: adaptive filtering approach. IEEE Transactions on Image Processing, Mar. 1999, 8:387-395
    [19] M. Elad, A. Feuer. Super-resolution reconstruction of image sequences. IEEE Transactions on Pattern Anal. Machine Intelli., Sept. 1999, 21, (9):817-834
    [20] H. Ur, D. Gross. Improved resolution from sub-pixel shifted pictures. CVGIP: Graphical Models and Image Processing, Mar. 1992, 54:181-186
    [21] M. S. Alam, J. G. Bognar, R. C. Hardie, B. J. Yasuda. Infrared image registration and high-resolution reconstruction using multiple translationally shifted aliased video frames. IEEE Transactions on Instrum. Meas., Oct. 2000, 49:915-923
    [22] N. Nguyen, P. Milanfar. An efficient wavelet-based algorithm for image superresolution. In Proc. Int. Conf. Image Processing, 2000, 2:351-354.
    [23] M. Irani, S. Peleg. Motion analysis for image enhancement resolution, occlusion, and transparency. J. Visual Commun. Image Represent., Dec. 1993, 4:324-335
    [24] B. C. Tom, A. K. Katsaggelos. Resolution enhancement of monochrome and color video using motion compensation. IEEE Transactions on Image Processing, Feb. 2001, 10(2):278-287
    [25] A. M. Tekalp, M. K. Ozkan, M. I. Sezan. High-resolution image reconstruction from lower-resolution image sequences and space varying image restoration. in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), San Francisco, CA., Mar. 1992, 3:169-172.
    [26] A. J. Patti, M. I. Sezan, A. M. Tekalp. Superresolution video reconstruction with arbitrary sampling lattices and nonzero aperture time. IEEE Transactions on Image Processing, Aug. 1997, 6 (8):1064-1076
    [27] A. J. Patti, Y. Altunbasak. Artifact reduction for set theoretic super resolution image reconstruction with edge adaptive constraints and higher-order interpolants. IEEE Transactions on Image Processing, Jan. 2001, 10(1):179-186
    [28] B. C. Tom, A. K. Katsaggelos An iterative algorithm for improving the resolution of video sequences. In Proc. 1996 SPIE Conf. Visual Communications and Image Processing, Orlando, FL, Mar. 1996. 1430-1438.
    [29] P. Cheeseman, B. Kanefsky, R. Kraft, J. Stutz, R. Hanson. Super-resolved surface reconstruction from multiple images. NASA Ames Research Center, Moffett Field, CA, Tech. Rep. FIA-94-12, Dec. 1994.
    [30] N. Nguyen, P. Milanfar, G. Golub. Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement. IEEE Transactions on Image Processing, Sept. 2001, 10:1299-1308
    [31] H. Stark, P. Oskoui. High resolution image recovery from image-plane arrays, using convex projections. J. Opt. Soc. Am. A, 1989, 6:1715-1726
    [32] R. C. Hardie, K. J. Barnard, J. G. Bognar, E. E. Armstrong, E. A. Watson. High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system. Optical Engineering, Jan. 1998, 37(1):247-260
    [33] M. C. Hong, M. G. Kang, A. K. Katsaggelos. A regularized multichannel restoration approach for globally optimal high resolution video sequence. In SPIE VCIP, San Jose, CA, Feb. 1997, 3024:1306-1317.
    [34] M. C. Hong, M. G. Kang, A. K. Katsaggelos. An iterative weighted regularized algorithm for improving the resolution of video sequences. In Proc. Int. Conf. Image Processing, 1997, 2:474-477.
    [35] M. G. Kang. Generalized multichannel image deconvolution approach and its applications. Optical Engineering, Nov. 1998, 37(11):2953-2964
    [36] N. K. Bose, S. Lertrattanapanich, J. Koo. Advances in superresolution using L-curve. In Proc. Int. Symp. Circuits and Systems, 2001, 2:433-436.
    [37] D. Rajan, S. Chaudhuri. Generation of super-resolution images form blurred observations using an MRF model. J. Math. Imaging Vision, 2002, 16:5-15
    [38] D. Rajan, S. Chaudhuri. Simultaneous estimation of super-resolved intensity and depth maps from low resolution defocused observations of a scene. In Proc. IEEE Int. Conf. Computer Vision, Vancouver, Canada, July 2001. 113-118
    [39] D. Rajan, S. Chaudhuri. Generalized interpolation and its applications in super-resolution imaging. Image and Vision Computing, Nov. 2001, 19:957-969
    [40] M. V. Joshi, S. Chaudhuri. Super-resolution imaging: Use of zoom as a cue. In Proc. Indian Conf. Vision, Graphics and Image Processing, Ahmedabad, India, Dec. 2002. 439-444.
    [41] S. Borman, R. L. Stevenson. Super-resolution from image sequences —A review. In Proc. 1998 Midwest Symp. Circuits and Systems, 1999. 374-378
    [42] N. K. Bose, H. C. Kim, B. Zhou. Performance analysis of the TLS algorithm for image reconstruction from a sequence of undersampled noisy and blurred frames. In Proc. ICIP-94, IEEE Int. Conf. Image Processing, 1994, 3:571-575.
    [43] M. Ng, J. Koo, N. Bose. Constrained total least squares computations for high resolution image reconstruction with multisensors. Int. J. Imaging Syst. Technol., 2002, 12:35-42
    [44] M. K. Ng, N. K. Bose. Analysis of displacement errors in high-resolution image reconstruction with multisensors. IEEE Transactions on Circuits Syst. I, June 2002 49:806-813
    [45] M. Park, E. Lee, J. Park, M. G. Kang, J. Kim. DCT-based high-resolution image reconstruction considering the inaccurate sub-pixel motion information. SPIE Optical Engineering, Feb. 2002, 41(2):370-380
    [46] W. Lim, M. Park, M. G. Kang. Spatially adaptive regularized iterative high resolution image reconstruction algorithm. In Proc. VCIP2001, Photonicswest, San Jose, CA, Jan. 2001. 20-26.
    [47] C. A. Segall, R. Molina, A. K. Katsaggelos, J. Mateos. Reconstruction of high-resolution image frames from a sequence of low-resolution and compressed observations. In Proc. 2002 IEEE Int. Conf. Acoustics, Speech, and Signal Processing, 2002, 2:1701-1704.
    [48] Wirawan, P. Duhamel, H. Maitre. Multi-channel high resolution blind image restoration. In Proc. IEEE ICASSP, AZ, Nov. 1989. 3229-3232.
    [49] M. Elad, Y. Hel-Or. A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur. IEEE Transactions on Image Processing, Aug. 2001, 10, (8):1187-1193
    [50] M. Ng, R. Chan, T. Chan, A.Yip. Cosine transform preconditioners for high resolution image reconstruction. Linear Algebra Appls., 2000, 316:89-104
    [51] D. S. Messing, M. I. Sezan. Improved multi-image resolution enhancement for colour images captured by single-CCD cameras. in Proc. Int. Conf. Image Processing, 2000, 3:484-487.
    [52] M. K. Ng. An efficient parallel algorithm for high resolution color image reconstruction. in Proc. 7th Int. Conf. Parallel and Distributed Systems: Workshops, 2000, 547-552.
    [53] M. Ng, W. Kwan. High-resolution color image reconstruction with Neumann boundary conditions. Ann. Oper. Res., 2001, 103:99-113
    [54] D. Chen, R. R. Schultz. Extraction of high-resolution video stills from MPEG image sequences. In Proc. 1998 IEEE Int. Conf. Image Processing, 1998, 2:465-469.
    [55] Y. Altunbasak, A. J. Patti. A maximum a posteriori estimator for high resolution video reconstruction from MPEG video. In Proc. 2000 IEEE Int. Conf. Image Processing, 2000, 2:649-652.
    [56] B. Martins, S. Forchhammer. A unified approach to restoration, deinterlacing and resolution enhancement in decoding MPEG-2 video. IEEE Transactions on Circuits Syst. Video Technol.,
    Sept. 2002, 12(9):803-811
    [57] S. C. Park, M. G. Kang, C. A. Segall, A. K. Katsaggelos. Spatially adaptive high-resolution image reconstruction of low resolution DCT-based compressed images. In Proc. 2002 IEEE Int. Conf. Image Processing, 2002, 2:861-864.
    [58] B. K. Gunturk, Y. Altunbasak, R. M. Mersereau. Multiframe resolution-enhancement methods for compressed video. IEEE Signal Processing Lett., June 2002, 9:170-174
    [59] H. C. Andrews, B. R. Hunt, Digital Image Restoration. Englewood Cliffs, NJ: Prentice-Hall, 1977.
    [60] A. K. Katsaggelos, Ed. Digital Image Restoration. Heidelberg, Germany: Springer-Verlag. Springer. vol. 23, 1991.
    [61] I. J. Schoenberg. Cardinal interpolation and spline functions. J. Approx. Theory., 1969, 2:167-206
    [62] R. E. Crochiere, L. R. Rabiner. Interpolation and decimation of digital signals—A turorial review. Proc. IEEE, Mar. 1981, 69(3):300-331
    [63] M. Unser, A. Aldroubi, M. Eden. Enlargement or reduction of digital images with minimum loss of information. IEEE Transactions on Image Processing, Mar. 1995, 4(3):247-258
    [64] J. L. Harris. Diffraction and resolving power. J. Opt. Soc. Am., July 1964, 54:931-936
    [65] G. Toraldo di Francia. Resolving power and information. J. Opt. Soc. Am., July 1955, 5:497-501
    [66] R. W. Gerchberg. Super-resolution through error energy reduction. Optica Acta, 1974, 211(9):709-720
    [67] H. Ur, D.Gross. Improved resolution from subpixel shifted pictures. CVGIP: Graph. Models Image Processing, 1992, 54(2):181-186
    [68] E. Kaltenbacher, R. C.Hardie. High-resolution infrared image reconstruction using multiple low-resolution aliased frames. In: Proc IEEE Nat. Aerospace Electronics Conf. Dayton, OH. 1996, 702-709
    [69] B. C. Tom, A. K. Katsaggelos, N. P.Galatsanos. Reconstruction of a high resolution image from registration and restoration of low resolution images. In: Proc IEEE Int Conf Image Processing, Austin, TX. 1994, 553-557
    [70] H. J. Trussell, M. R.Civanlar. The landweber iteration and projection onto convex sets. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1985, 33(6):1632-1633
    [71] B. C. Tom, A. K. Katsaggelos. Resolution enhancement of video sequences using motion compensation. In: Proc IEEE Int Conf Image Processing. Lausanne, Switzerland. 1996, 1:713-716
    [72] B. C. Tom, A. K. Katsaggelos. Resolution enhancement of color video. In: Proc Conf Eur Signal Processing. 1996. 1:145-148
    [73] M. K. Ozkan, A. M. Tekalp, M. I. Sezan. POCS-based restoration of space-varying blurred images. IEEE Transactions on Image Processing, 1994, 3 (4):450-454
    [74] J. Patti, M. Sezan, A. M. Tekalp. High-resolution image reconstruction from a low-resolution image sequence in the presence of time-varying motion blur. In: Proc IEEE Int Conf Image Processing. Austin, TX. 1994. 343-347
    [75] J. Patti, M, I. Sezan, A. M. Tekalp. High-resolution standards conversion of low resolution video. In: Proc IEEE Int Conf ASSP. Detroit, MI. 1995. 2197-2200
    [76] J. Patti, M. I. Sezan, A. M. Tekalp. Robust methods for high-quality stills from interlaced video in the presence of dominant motion. IEEE Transactions on Circuits and Systems for Video Technology, 1997, 7(2):328-342
    [77] Tokiu, A. T. Erdem, M. I. Sezan, A. M. Tekalp. Tracking motion and intensity variations using hierarchical 2-D mesh modeling for synthetic object transfiguration. Graphical Models and Image Processing. 1996, 58(6):553-573
    [78] R. R. Schultz, R. L. Stevenson. Improved definition video frame enhancement. In: Proc IEEE ICASSP-95. Detroit, MI. 1995, 4:2169-2172
    [79] R. R. Schultz, R. L. Stevenson. A Bayesian approach to image expansion for improved definition. IEEE Transactions on Image Processing. May 1994, 3:233-242
    [80] S. Borman, R. L. Stevenson. Simultaneous multi-frame MAP super-resolution video enhancement using spatial-temporal priors. In: Proc IEEE Int Conf Image Processing. 1999. 469-473
    [81] M. Elad, A. Feuer. Super-resolution reconstruction of an image. In: Proc 19th IEEE Conf. Israel, Jerusalem. 1996, 39l-394
    [82] M. Elad, A. Feuer. Super-resolution restoration of continuous image sequence using the LMS algorithm. In: Proc 18th IEEE Conf Israel, Tel-Aviv. 1995, 2.2.5:1-5
    [83] M. Elad, A. Feuer. Super-resolution reconstruction of continuous image sequences. In: Proc Int Conf Image Processing-1C1P1999. Kobe, Japan. 1999. 459-463
    [84] S. Baker, T. Kanade. Limits on super-resolution and how to break them. In: Proc. IEEE Int Conf Computer Vision and Pattern Recognition. 2000. 372-279
    [85] G. Sheppard, K. Panchapakesan, A. Bilgin, B. R. Hunt, M. W. Marcellin. Lapped nonlinear interpolative vector quantization and image super-resolution. IEEE Transactions on Image Processing. 2000, 9(2):295-298
    [86] Y. Altunbasak, A. J. Patti. A fast method of reconstructing high-resolution panoramic stills from MPEG-compressed video. In: Conf Multimedia Signal Processing. Los Angeles, CA. 1998. 7-9.
    [87] K. Jensen, D. Anastassiou. Spatial resolution enhancement of images using nonlinear interpolation. In: Proc IEEE ICASSP-90. 1990. 2045-2048
    [88] Murat A. Tekalp, Digital Video Processing. Prentice Hall Signal Processing Series. Upper Saddle River. NJ 07458, 1995.
    [89] Y. Wang, S. K. Mitra. Motion/pattern adaptive interpolation of interlaced video sequences. ICASSP-91: Proceedings of IEEE International Conference on Acoustics. Speech, Signal Processing. May 1991, 4:2829-2832
    [90] Ayazifar. Pel-adaptive model-based interpolation of spatially subsampled images. M. S. thesis. Massachusetts Institute of Technology. Cambridge. MA. 1992.
    [91] Stefan Thurnhofer, Sanjit K. Mitra. Edge-enhanced image zooming: Optical Engineering, July 1996, 35(7):1862-1870
    [92] Malgouvres, F. Guichard. Edge direction preserving image zooming: A mathematical, numerical analysis. SIAM, Journal on Numerical .4naIysZS. 2001, 39(1):1-37
    [93] William T. Freeman. Thouis R. Jones, Egon C. Pasztor. Example-based super-resolution. IEEE Computer Graphics, Applications. March/April 2002, 22(2):56-65
    [94] Papoulis. Generalized sampling theorem. IEEE Transactions on Circuits Syst. Nov. 1977, 24:652-654
    [95] J. L. Brown. Multi-channel sampling of low pass signals. IEEE Transactions on Circuits Syst., Feb. 1981, 28:101-106
    [96] L. Landweber. An iteration formula for Fredholm integral equations of the first kind. Amer. J. Math. 1951, 73:615-624
    [97] Richard Franke. Smooth interpolation of scattered data by local thin plate splines. Comput. Math. Appl. 1982, 8(4):273-281
    [98] David T. Sandwell. Biharnionic spline interpolation of Geo-3 and Seasat altimeter data. Geophysical Research Letters. February 1987, 14(2):139-142
    [99] David Capel, Andrew Zisserman. Super-resolution enhancement of text image sequences. Proceedings International Conference on Pattern Recognition 2000, September 3-7, 2000. 1:600-605
    [100] Ford, D. M. Etter. Wavelet basis reconstruction of nonuniformlv sampled data. IEEE Transactions on Circuits, System II: .4nalog, Digital Signal Processing. August 1998, 45(8):1165-1168
    [101] Nhat Nguyen, Peyman Milanfar. Wave1et-based interpolation-restoration method for superresolution (wavelet superresolution). Circuits Systems Signal Process. 2000, 19(4):321-338
    [102] Luca Poletto, Piergiorgio Nicolosi. Enhancing the spatial resolution of a two-dimensional discrete array detector. Optical Engineering, October 1999, 38(10):1748-1757
    [103] Philip J. B. Koeck. Ins and outs of digital electron microscopy. Microscopy Research and Technique. 2000, 49:217-223
    [104] Sharon Peled, Yehezkcl Yeshurun. Superresolution in MRI: Application to human white matter fiber tract visualization by diffusion tensor imaging. Magnetic Resonance in Medicine. 2001, 45:29-35
    [105] 丛键, 李在铭. 基于盲均衡的超分辨率图像重建. 系统工程与电子技术, 2000, 22(5):61-63
    [106] 郭坡, 彭思龙, 余达太, 孙昌国. 保留边缘信息的静态数字图像超分辨率重建. 中国图像图形学报, 2003, 8(6):653-656
    [107] 刘良云, 李英才, 相里斌. 超分辨率图像重建技术的仿真实验研究. 中国图像图形学报, 6(7):629-635
    [108] 张地, 杜明辉. 超分辨率图像重建边缘振荡的高效去除算法. 信息与电子工程, 2004, 4(4):81-85
    [109] 邵凌, 丁佩律, 张立明, 胡波. 从多帧低分辨率图像序列中获取高分辨率图像的算法研究. 电子学报, 2002, 30(1):58-61
    [110] 邵凌, 丁佩律, 张立明, 胡波. 重建高分辨率图像的实时串行迭代算法. 红外与毫米波学报, 2002, 21(2):104-108
    [111] 王程, 王润生. 基于MAP 框架的图像序列超分辨率和模板匹配. 计算机学报, 2003, 26(8):961-967
    [112] 苏秉华, 伟其, 牛丽红, 刘广荣, 刘明奇. 基于Markov 约束的泊松最大后验概率超分辨率图像复原法. 光子学报, 2002, 31(4):492-496
    [113] 黄战华, 蔡怀宇, 张以谟, 李贺桥, 夏劲松, 李蒙. 基于半像素错位的多幅图像重建高分辨率图像技术研究. 光学技术, 2002, 28(5):389-394
    [114] 洪功义, 姜昱明. 基于图像配准的POCS 超分辨率图像重建. 计算机仿真, 2004, 21(6):145-147
    [115] 张地, 杜明辉. POCS 超分辨率图像重建的快速算法. 信息技术, 2004, 28(7):1-3
    [116] 黄丽, 庄越挺, 苏从勇, 吴飞. 基于多尺度和多方向特征的人脸超分辨率算法. 计算机辅助设计与图形学学报, 2004, 16(7):953-961
    [117] 张新明, 沈兰荪. 基于多尺度边缘保持正则化的超分辨率复原. 软件学报, 2003, 14(6):1075-1081
    [118] 张新明, 沈兰荪. 在小波变换域内实现图像的超分辨率复原. 计算机学报, 2003, 26(9):1183-1189
    [119] 赵书斌, 彭思龙. 基于小波域HMT 模型的图像超分辨率重建. 计算机辅助设计与图形学学报, 2003, 15(11):1347-1352
    [120] 郭晓新, 许志闻, 卢奕南, 庞云阶. 基于Fourier-Mellin 不变量的图像配准方法. 仪器仪表学报, 2004, 25(4(增刊)):421-424.
    [121] 郭晓新, 许志闻, 卢奕南, 庞云阶. 基于分析Fourier-Mellin 变换的图像配准. 计算机研究与发展, 2005, 42(增刊B):335-340.
    [122] Xiaoxin Guo, Zhiwen Xu, Yinan Lu, Zhanhui Liu, Yunjie Pang. Image Registration Based on Pseudo-Polar FFT and Analytical Fourier-Mellin Transform. Proceedings of International Conference on Intelligent Computing (ICIC 2005), 2005, 3644:31-39.
    [123] Xiaoxin Guo, Zhiwen Xu, Yinan Lu, Yunjie Pang. An Application of Fourier-Mellin Transform in Image Registration. The Proceeding of the 5th International Conference on Computer and Information Technology (CIT2005), 2005, 619-623.
    [124] 郭晓新, 李文辉, 庞云阶. 视网膜血流造影图像序列的超分辨率重建. 吉林大学学报(理学版), 2002, 40(1):67-70.
    [125] 郭晓新, 卢奕南, 许志闻, 王云霄, 庞云阶. 荧光造影图像序列的噪声滤波. 吉林大学学报(理学版), 2005, 43(3):348-353.
    [126] Xiaoxin Guo, Zhiwen Xu, Yinan Lu, Yunjie Pang. An EAWA Filter for Denoising of Filtering of Fluorescein Angiogram Sequences. The Proceeding of the 5th International Conference on Computer and Information Technology (CIT2005), 2005, 614-618.
    [127] Xiaoxin Guo, Yinan Lu, Zhiwen Xu, Zhanhui Liu, Yunxiao Wang, Yunjie Pang. Noise suppression of Fluorescein Angiogram Sequences Using Bilateral Filter. Proceedings of 2005 International Conference on Machine Learning and Cybernetics (ICMLC 2005), 2005, 9:5366-5371.
    [128] Xiaoxin Guo, Zhiwen Xu, Yinan Lu, Yunjie Pang. Extended Adaptive Weighted Averaging Filter Model. The proceeding of ICCM2004, accepted.
    [129] Xiaoxin Guo, Zhiwen Xu, Yinan Lu, Zhanhui Liu, Yunjie Pang. Super-resolution Reconstruction from Fluorescein Angiogram Sequences. Proceedings of International Conference on Intelligent Computing (ICIC 2005), 2005, 3644:661-669.
    [130] L. G. Brown. A survey of image registration techniques. ACM Comput. Surveys, Dec. 1992, 24(4):325-376
    [131] J. Bergen, P. Burt, R. Hingorani, S. Peleg. A three-frame algorithm for estimating two-component image motion. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1992, 14 (9):886-896
    [132] M. M. Chang, A. M. Tekalp, M. I. Sezan. Simultaneous motion estimation and segmentation. IEEE Transactions on Image Processing. 1997, 6(9):1326-1333
    [133] J. K. Aggarwal, N. Nandhakumar. On the computation of motion from sequences of images-A review. In: Proc IEEE. 1988, 76 (8):9l7-935
    [134] Tsai, N. P. Galatsanos, A. K. Katsaggelos. Optical flow estimation from noisy data using differential techniques. In: Proc IEEE Int Conf Acoustics, Speech, and Signal Processing. Phoenix. 1999, 6:3393-3396
    [135] M. Bierling, R. Thoma. Motion compensating field interpolation using a hierarchically structured displacement estimator. Signal Processing, 1986, 11(4):387-404
    [136] R. Rajagopalan, M. T. Orchard, R. D. Brandt. Motion field modeling for video sequences. IEEE Transactions on Image Processing. 1997, 6(11):1503-1516
    [137] de Haan, P. W. A. C. Beizen. Sub-pixel motion estimation with 3-d recursive search block-matching. Signal Processing: Image Communication, 1994, 6:229-239
    [138] P. Kauff, K. Schuur. Fast motion estimation for real-time shape-adaptive MPEG-4 video encoding. In: Proc ACM Multimedia 2000 Workshops. Los Angeles, USA. 2000
    [139] P. Kauff, O. Schreer, J-R. Ohm. A universal algorithm for real-time estimation of dense displacement vector fields. In: Proc Int Conf Media Futures. Florence, Italy. 2001
    [140] J. Konrad, E. Dubois. Bayesian estimation of motion vector fields. IEEE Transactions on PATTERN ANALYSIS AND MACHINE INTELLIGENCE. 1992, 14(9): 910-927
    [141] J. C. Brailean, A. K. Katsaggelos. A recursive nonstationary map displacement vector field estimation algorithm. IEEE Transactions on Image Processing. 1995, 4(4):416-429
    [142] R. R. Schultz, R. L. Stevenson. Bayesian estimation of subpixel-resolution motion fields and high-resolution video stills. In: Proc IEEE Int Conf Image Processing. Santa Barbara, CA. 1997, 26-19:62-65
    [143] W. ge Chen, G. B. Giannakis, N, Nandakumar. Spatio-temporal approach for time-varying image motion estimation. IEEE Transactions on Image Processing. 1996, 5(10):1448-1461
    [144] U-V. Koc, K. J. R. Liu. DCT-based motion estimation, IEEE Transactions on Image Processing. 1998, 7(7):948-965
    [145] Mujica, J-P. Leduc, R. Murenzi, M. J. T. Smith. A new motion parameter estimation algorithm based on the continuous wavelet transform, IEEE Transactions on Image Processing. 2000, 9(5):873-888
    [146] P. Bao, D. Xu. Panoramic image mosaics via complex wavelet pyramid. In: Proc IEEE Int Conf Systems, Man, and Cybernetics. 1998, 5, 11-14:4614-4619
    [147] Y. T. Wu, T. Kanade, C. C. Li, J. Cohn. Image registration using wavelet-based motion model. International Journal of Computer Vision. 2000, 38(2):129-152
    [148] N. A. Dodgson. Quadratic interpolation for image resampling, IEEE Transactions on Image Processing. 1997, 6 (9):1322-1326
    [149] W. K. Carey, D. B. Chuang, S. S. Hemami. Regularity-preserving image interpolation. IEEE Transactions on Image Processing. 1999, 8 (9):1293-1297
    [150] Xie, H. Sun. The study of bivariant fractal interpolation functions and creation of fractal interpolated surfaces. Fractals. World Scientific Publishing Company. 1997, 5(4):625-634
    [151] Z. Feng, H. Xie. on stability of fractal interpolation. Fractals. World Scientific Publishing Company. 1998, 6(3):269-273
    [152] J. J. Clark, M R. Palmer, P. D. Laurence. A transformation method for the reconstruction of functions from nonuniformly spaced samples. IEEE Transactions on Acoustics, Speech, Signal Processing, 1985, 33:1151-1165
    [153] S. P. Kim, N. K. Bose. Reconstruction of 2-D bandlimited discrete signals from nonuniform samples. In: Proc. Inst. Elec. Eng., June 1990, 137:197-204
    [154] P. C. Hansen, D. Prost O’Leary. The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput., Nov. 1993, 14(6):1487-1503
    [155] H. J. Trussell, M. T. Civanlar. Feasible solution in signal restoration. IEEE Transactions on Acoustics, Speech, Signal Processing, Mar. 1984, 32:201-212
    [156] M. G. Kang, A. K. Katsaggelos. General choice of the regularization functional in regularized image restoration. IEEE Transactions on Image Processing, May 1995, 4:594-602
    [157] Anuta P. E. Spatial registration of multispectral and multitemporal digital imagery using feast Fourier transform techniques. IEEE Transactions on Geoscience Electronics, 1970, 8(4):353-368
    [158] DeCastro E, Cristini G, Martelli A, Morandi C, Vascotto M: Compensation of random eye motion in television ophthalmoscopy: preliminary results. IEEE Transactions on Medical lmaging, 1987, 6:74-81
    [159] DeCastro, C. Morandi. Registration of translated and rotated images using finite Fourier transforms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, 9 (5):700-703
    [160] Lee DJ, Krile TF, Mitra S: Power cepstmm and spectrum techniques applied to image registration. Applied Optics, 1988, 27:1099-1106
    [161] P. E. Anuta. Spatial registration of multispectral and multitemporal digital imagery using fast Fourier transform techniques. IEEE Transactions on Geoscience Electronics, 1970, 8:353-368
    [162] D. Casasent, D. Psaltis. Position, rotation, and scale invariant optical correlation. Applied Optics, 1976, 15:1795-1799
    [163] D. Casasent, D. Psaltis. Space-bandwidth product and accuracy of the optical Mellin transform. Applied Optics, 1977, 16:1472
    [164] D. Casasent, D. Psaltis. Accuracy and space bandwidth in space variant optical correlators. Optics Communications, 1977, 23:209-212
    [165] D. Casasent, D. Psaltis. Deformation invariant, space-variant optical pattern recognition. In: Wolf E (Ed): Progress in Optics, North-Holland Publishing Co, Amsterdam, 1978. 290-356
    [166] J. Aitmann, H. J. P. Reitbock. A fast correlation method for scale-and translation-invariant pattern recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984, 6:46-57
    [167] A. S. Jensen, L. Lindvold, E. Rasmussen. Transformation of image positions, rotations, and sizes into shift parameters. Applied Optics, 1987, 26:1775-1781
    [168] A. Apicella, J. S. Kippenhan, J. H. Nagel. Fast multi-modality image matching. SPIE: Medical Imaging III, 1989, 1092:252-263
    [169] A. V. Cideciyan, S. G. Jacobson, C. M. Kemp, R. W. Knighton, J. H. Nagel. Registration of high resolution images of the retina. SPIE: Medical Imaging VI, 1992, 1652:310-322
    [170] M. F. Georgio, J. H. Nagel, A. V. Cideciyan, G. N. Sfakianakis. Compensation for patient motion in nuclear medicine renal studies by fast correlation image registration. In: Proc 15th Ann lntl Conf lEEE/EMBS, San Diego, CA, Oct 28-31, 1993. 106-107,.
    [171] Q. S. Chen. Image Registration and its Applications in Medical Imaging, PhD Dissertation, Vrije Universiteit Brussel, Belgium, December 1993.
    [172] M. F. Georgio, G. N. Sfakianakis, J. H. Nagel, A. V. Cideciyan. Patient motion compensation for renal studies by a fast correlation image registration method. The Soc of Nuc Med 41st Ann Meeting, Orlando, FL, June 5-8, 1994.
    [173] B. S. Reddy, B. N. Chatterji. An FFT-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. on Image Processing, August, 1996, 3(8):1266-1270.
    [174] D. J. Lee, S. Mitra, T. F. Krile. Analysis of sequential complex images, using feature extraction and two-dimensional cepstrum techniques. J. Opt. Soc. Am. A, , June, 1989, 6(6): 863-871.
    [175] S. Alliney. Digital Analysis of Rotated Images. IEEE Trans. on Pattern Analysis and Machine Intelligence, May, 1993, 15(5):499-504.
    [176] Q.-S. Chen, M. Defrise, F. Deconinck. Symmetric phase-only matched filtering of Fourier-Mellin transforms for image registration and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, December, 1994, 16(12):1156-1168.
    [177] Casasent, D. Psaltis. Scale invariant optical transform. Optical Engineering, May/June 1976, 15(3):258-261
    [178] T. Yatagay, K. Choji, H. Saito. Pattern classification using optical Mellin transform and circular photodiode array. Optical Communication, August 1981, 38(3):162-165
    [179] M. R. Inggs, A. R. Robinson. Neural approaches to ship target recognition. In Proc. of the IEEE Int. Radar Conference, Alexandria (Eg.), May 1995. 386-391
    [180] Y. Sheng, H. H. Arsenault. Experiments on pattern recognition using invariant Fourier-Mellin descriptors. J. of the Optical Society of America A, June 1986, 3(6):771-776
    [181] A. E. Grace, M. Spann. A comparison between Fourier-Mellin descriptors and moment based features for invariant object recognition using neural networks. Pattern Recognition Letters, October 1991, 12:635-643
    [182] P. E. Zwicke, Z. Kiss. A new implementation of the Mellin transform and its application to radar classification. IEEE Transactions on Pattern Analysis and Machine Intelligence, March 1983, 5(2):191-199
    [183] Ghorbel. A complete invariant description for gray-level images by the harmonic analysis approach. Pattern Recognition Letters, October 1994, 15:1043-1051
    [184] R. Milanese, M. Cherbuliez. A rotation-, translation-, and scale-invariant approach to content-based image retrieval. J. of Visual Communication and Image Representation, June 1999, 10:186-196
    [185] J. J. K. Ruanaidh, T. Pun. Rotation-, translation-, and scale-invariant digital image water-marking. In Proc. of the IEEE Int. Conf. on Image Processing, Santa-Barbara (Ca.), October 1997. 536-539
    [186] R. Bracewell. The Fourier Transform and Its Applications. McGraw-Hill Inc., 2nd edition, New York (USA), 1986.
    [187] S. Goh. The Mellin transformation: Theory and digital filter implementation. Ph. D. dissertation, Purdue University, West Lafayette, I. N., 1985.
    [188] Berenstein, L. N. Kanal, D. Lavine, E. C. Olson. A geometric approach to subpixel registration accuracy. Computer Vision, Graphics, and Image Processing, 1987, 40:334–360.
    [189] Q. Tian, M. N. Huhns. Algorithms for subpixel registration. Computer Vision Graphics, Image Processing, 1986, 35:220–233.
    [190] A. Mitiche, P. Bouthemy. Computation and analysis of image motion: A synopsis of current problems and methods. International Journal of Computer Vision, 1996, 19(1):29–55.
    [191] C. Stiller, J. Konrad. Estimating motion in image sequences. IEEE Signal Processing Magazine, 1999, 16:70–91.
    [192] C. Schn?rr. On functionals with greyvalue-controlled smoothness terms for determining optical flow. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15:1074–1079.
    [193] D.J. Fleet, A.D. Jepson. Computation of component image velocity from local phase information. International Journal of Computer Vision, 1990, 5(1):77–104.
    [194] O. Tretiak, L. Pastor. Velocity estimation from image sequences with second order differential operators. In Proc. Seventh International Conference on Pattern Recognition, Montreal, Canada, 1984, 16–19.
    [195] S. Uras, F. Girosi, A. Verri, V.A. Torre. Computational approach to motion perception. Biological Cybernetics, 1988, 60:79–87.
    [196] A. Bainbridge-Smith, R.G. Lane. Determining optical flow using a differential method. Image and Vision Computing, 1997, 15(1):11–22.
    [197] C. Fermüller, D. Shulman, Y. Aloimonos. The statistics of optical flow. Computer Vision and Image Understanding, 2001, 82(1):1–32.
    [198] B. Jahne. Digitale Bildverarbeitung. Springer: Berlin. 2001.
    [199] N. Ohta. Uncertainty models of the gradient constraint for optical flow computation. IEICE Transactions on Information and Systems, 1996, E79-D(7):958–962.
    [200] E.P. Simoncelli, E.H. Adelson, D.J. Heeger. Probability distributions of optical flow. In Proc. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE Computer Society Press: Maui, HI, 1991, 310–315.
    [201] J. K. Kearney, W. B. Thompson, D. L. Boley. Optical flow estimation: An error analysis of gradient-based methods with local optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, 9(2):229–244.
    [202] B. Galvin, B. McCane, K. Novins, D. Mason, S. Mills. Recovering motion fields: An analysis of eight optical flow algorithms. In Proc. 1998 British Machine Vision Conference, Southampton, England. 1998.
    [203] J. L. Barron, D. J. Fleet, S. S. Beauchemin. Performance of optical flowtechniques. International Journal of Computer Vision, 1994, 12(1):43–77.
    [204] K. Jain. Fundamentals of Digital Image Processing. Prentice–Hall, Englewood Cliffs, NJ, 1989.
    [205] H. Hou, H. C. Andrews. Cubic splines for image interpolation and digital filtering. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1978, 26(6): 508–517.
    [206] S. Geman, D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 1984, 6(6):721–741.
    [207] M. Ortega, W. C. Rheinbolt. Iterative Solutions of Nonlinear Equations in Several Variables. Computer Science and Applied Mathematics, New York: Academic Press, 1970.
    [208] G. Musmann, P. Pirsch, H.-J. Grallert, Advances in picture coding, In: Proceedings of the IEEE, 1985, 73(4):523–548.
    [209] B. Lucas, T. Kanade. An iterative image registration technique with an application to stereo vision. In: Proc. Seventh International Joint Conference on Artificial Intelligence, Vancouver, Canada, 1981. 674–679.
    [210] B. D. Lucas. Generalized image matching by the method of differences. PhD thesis, School of Computer Science, Carnegie–Mellon University, Pittsburgh, PA. 1984
    [211] K. P. Horn, B. G. Schunk. Determining optical flow. Aritificial Intelligence, 1981, 17:185-203
    [212] R. Courant, D. Hilbert. Methods of Mathematical Physics, vol. 1. Interscience: New York. 1953
    [213] L. E. Elsgolc. Calculus of Variations. Pergamon. Oxford. 1961
    [214] C. Schnorr. Determining optical flow for irregular domains by minimizing quadratic functionals of a certain class. International Journal of Computer Vision, 1991, 6(1):25–38.
    [215] D. Terzopoulos. Regularization of inverse visual problems involving discontinuities. IEEE Transactions on Pattern Analysis and Machine Intelligence, July 1986, 8:413-424
    [216] D. Terzopoulos. Multilevel reconstruction of visual surfaces: Variational principles and finite element representations. In: Multiresolution Image Processing and Analysis, A. Rosenfeld (Ed.), Springer Verlag, New York, 1984. 273-310
    [217] W. E. L. Grimson. From Images to Surfaces: A Computational Study of the Human Early Visual System. MIT Press, Cambridge, MA, 1981.
    [218] I. M. Gelfand, S. V. Fomin. Calculus of Variations. Prentice-Hall, Englewood Cliffs, NJ, 1963.
    [219] H. Sagan. Introduction to the Calculus of Variations. McGraw-Hill, New York, 1969.
    [220] N. B. Karayiannis, A. N. Venetsanopoulos. Regularization theory in image restoration: The stabilizing functional approach. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1990, 38(7):1155-1179
    [221] D. M. Young. Iterative Solution of Large Linear Systems. Academic Press: New York. 1971
    [222] A. Manivannan, P. F. Sharp, R. P. Phillips, et. al. Digital fundus imaging using a scanning laser ophthalmoscope, Physiological Measurement, 1993, 14:43-56
    [223] R. H. Webb, G. W. Hughes. Scanning laser ophthalmoscope, IEEE Transactions on Biomedical Engineering, 1981, 28:488-492
    [224] P. J. Huber, Robust Statistics. New York: Wiley, 1981.
    [225] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory. New Jersey: Prentice-Hall, 1993, vol. I.
    [226] N. Tikhonov, V. Y. Arsenin, Solution of Ill-Posed Problems. New York: Winston, Wiley, 1977.
    [227] M. Z. Nashed. Aspects of generalized inverses in analysis and regularization. In: Generalized Inverses and Applications, M. Z. Nashed. Ed. New York: Academic. 1976.
    [228] M. Bertero, C. DeMol, G. A. Viano. The stability of inverse problems: Inverse Scattering Problems in Optics. Topics in Current Physics, vol. 20, H. P. Baltes, Ed. Berlin: Springer, 1980. 161-214.
    [229] Lannes, S. Roques, M. J. Casanove. Resolution and robustness in image processing: A new regularization principle. J. Opt. Soc. Amer., Jan. 1987, 4:189-199
    [230] Miller. Least-squares method for ill-posed problems with a prescribed bound. SIAMJ. Math. Anal, Feb. 1970, 1:52-74
    [231] M. Titterington. General structure of regularization procedures in image reconstruction. Astron. Astrophys., 1985, 144:381-387
    [232] M. Elad, A. Feuer. Restoration of single super-resolution image from several blurred, noisy and down-sampled measured images. IEEE Transactions on Image Processing, Dec. 1997, 6(12):1646–1658
    [233] Bovik, Handbook of Image and Video Processing. New Jersey: Academic Press Limited, 2000.
    [234] Rudin, S. Osher, E. Fatemi. Nonlinear total variation based noise removal algorithms. Physica D, Nov. 1992, 60:259–268
    [235] T. F. Chan, S. Osher, J. Shen. The digital TV filter and nonlinear denoising. IEEE Transactions on Image Processing, Feb. 2001, 10(2):231–241
    [236] Acar R, Vogel C. Analysis of total variation penalty methods. Inverse Problem, 1994, 10:1217–1229.
    [237] J. Biemond, R. L. Lagendijk. Regularized iterative image restoration in a weighted hilbert space. ICASSP'86
    [238] R. L. Lagendijk, J. Biemond, D. E. Boekee. Regularized iterative image restoration with ringing reduction. IEEE Transactions on Acoustics, Speech and Signal Processing, 1987
    [239] Tomasi, R. Manduchi. Bilateral filtering for gray and color images. In: Proceedings of IEEE Int. Conf. on Computer Vision, Jan. 1998. 836–846.
    [240] P. Perona, J. Malik. Scale-space filtering and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, July 1990, 12(7):629 –639
    [241] Michael J. Black, Guillermo Sapiro, David H. Marimont, David Heeger. Robust anisotropic diffusion. IEEE Transactions on Image Processing, March 1998, 7(3):421–432
    [242] Charles V. Stewart. Robust parameter estimation in computer vision. SIAM Review, 1999, 41(3):513–537
    [243] S. Singh, S. N. Tandon, H. M. Gupta. An iterative restoration technique. Signal Processing, 1986. 11
    [244] C. E. Morris, M. A. Richards, M. H. Hayes. An iterative deconvolution algorithm with pth-order convergence. In: Proc. of the 1986 DSP Workshop, Chatham, Mass., 1986
    [245] K. R. Castleman. Digital Image Processing. Upper Saddle River, New Jersey: Prentice Hall International, Inc. 1998. 64-65
    [246] R. C. Gonzalez, R. E. Woods. Digital Image Processing. 2rd. ed., Addison-Wesley. 1987. 602-607

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700