人工饲养新生期仔猪的乳糖营养效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究设计两个试验,考察了提高乳糖供能水平或供能比例对新生期仔猪生产性能、养分消化、代谢、体沉积和蛋白质代谢与能量代谢的影响,旨在探讨乳糖对新生期仔猪的营养效应。
     试验一 从母猪胎次一致、产期接近的5窝0日龄长白×梅山仔猪中选取18头体重1.3kg左右的仔猪,采用因子试验设计,根据窝别和体重分为3组,分别是基础饲粮组(NL)、高乳糖组(HL)和哺乳组(S),每组设3个重复,每个重复2头,共6头猪。哺乳组仔猪由母猪哺乳,母猪哺乳仔猪头数平均为9-10头。基础饲粮组和高乳糖组仔猪则以液态饲粮人工饲养,单饲于代谢笼中,自由采食。基础饲粮组液态饲粮营养水平与猪常乳成分相近。高乳糖组饲粮蛋白和乳脂水平与基础饲粮组的相同,乳糖则提高至9.86%。试验分成四期,依次是第1周(0-7d)、第2周(8-14d)、第3周(15-21d)和第4周(22-28d)。考察1~4各周仔猪生产性能和养分的消化率与代谢率,初步探索乳糖对新生期仔猪的生长效应。
     试验一结果表明:
     1.人工饲养促进仔猪生长,充分发挥生长潜力。人工饲养的基础饲粮组和高乳糖组仔猪28日龄体重均显著高于哺乳仔猪(P<0.05)。
     2.提高乳糖能量水平显著促进仔猪生长。第1周和全期日增重比基础饲粮组分别提高了27.04%(P<0.05)和12.7%(P<0.10),28日龄体重提高11.1%(P<0.10)。
     3.高乳糖组仔猪1~4各周饲粮DM和DE摄入量显著高于基础饲粮组(P<0.01或P<0.05);第1周和第4周仔猪氮摄入量亦分别高10.49%(P<0.10)和6.25%(P<)0.05)。提高乳糖能量水平显著改善新生仔猪(第1周)饲粮氮增重效率12.5%(P<0.10)和脂肪增重效率18.2%(P<0.05),降低第2、3周和全期DM增重效率11.59%(P<0.10)、20%(P<0.05)、14.08%(P<0.05)。
     4.提高乳糖能量水平对饲粮DM、能量、蛋白质、脂肪和乳糖消化率均无显著影响(P>0.10)。在整个新生期内,仔猪对各养分消化率均在97%以上。同时,有提高饲粮饲粮蛋白质生物学价值(BV)的趋势。BV随仔猪周龄呈二次曲线下降,回归方程如下:
     HL组:BV=86.9833+3.1400w-1.3300w~2(R~2=0.9472,p=0.01,n=12)
     NL组:BV=82.3417+5.0150w-1.6250w~2(R~2=0.9633,p=0.084,n=12)
Two experiments were designed in this study to investigate the effects of improving the lactose energy level on performance, digestibilities and metabolizablities of nutrients, protein and energy deposition, protein turnover and heat production in colostrum-derpived piglets during neonatal period. The objective is to investigate lactose nutritional efficiency and partition effects in neonatal piglets.Experiment 1, eighteen Large WhitexMeishan crossbred neonatal pigs (averagely weighed 1.27kg) from 5 litters were used at 0 day and divided into 3 groups to determine: Basic diet (NL), High Lactose (HL) and Suckling (S), each group has 3 repetition, 2 for each repetition, amounts to six. Suckling piglets were nursed by the sow. HL and NL were artificially fed with liquid diet at 3-hr intervals. The composition of NL diet (DM19.46%, CP5.59%, fat 8.01%, Lactose 5.15%, GE5.33MJ/kg), were close to sow milk. And, the lactose level of HL diet was improved to 9.86%, the content of CP and fat were same as NL diet. Animals were placed in individual cages in an environmentally controlled room and had ad libitum access to diets. The experiment ended when the neonatal pigs were 28 day of age to evaluate utilization of ingested nutrients and energy by neonatal piglets and effects of higher level lactose on performance of pigs. Those result indicated that:1. The piglets aritificially reared grow faster than sow-suckled piglets. HL and NL piglets' weight reached 9.43kg and 10.48kg at day of 28 age, respectively, which exceed that sow-suckled littermates by 42.66%-58.37%. Piglet growth can be greatly accelerated by the feeding of liquid diets.2. Average daily gain of piglets were higher than that pigs fed NL diet by 27.04%, 12.7% respectively at 1~(st) week and during whole neonatal period, which resulted in body weight of 28~(th) day age of 10.48kg, improved by11.1%.3. Piglets fed HL diet consumed approximately 23.19%, 11.76%, 9.71% and 18.36%
    greater GE per day than the piglets fed NL diet on 1st, 2nd, 3rd, 4th week, respectively. Nitrogen and fat conversion efficiency were improved by 12.5%, 18.2% respectively at lsl week.4. Age and lactose energy had no significant effect on the digestibilities of DM, GE, CP, fat, lactose during the neonatal period. The digestibilities of all of the nutrients were not lower than 97%.5. The protein biological value (BV) was improved by higher lactose energy, but not significantly. The relationship between BV and age of week showed that: HL: BV =86.9833+3.1400w-1.3300w2 (R2 =0.9472, P =0.010, n =12) NL: BV =82.3417+5.0150w-1.6250w2 (R2 =0.9633, P=0.084, n =12) Experiment 2 On the condition of equal nitrogen and energy content between the diets, the objectives were to investigate improving lactose energy level on performance, nutrients utilization, body composition, protein turnover and energy metabolism, to further explore the effects of lactose.Twenty-two Large WhitexMeishan crossbred neonatal piglets (averagely weighed 1.5kg) from 5-6 litters were used. 3-4 pigs were removed from each sow immediately after birth, and placed in cage, equipped with a tray for excreta collection in temperature-controlled room (34-28 °C). After birth, four piglets were killed to determine initial body composition. The remaining eighteen piglets were allotted to treatments consisting of bovine colostrums that was formulated to contain high or normal lactose. Each treatment has 9 pigs, and each treatment has 3 experimental periods, including the first week (0-7d), the second week (8-14d) and the third week (15-21d). The content of GE and CP were same as Experiment 1, fat and lactose offer 44.70% and 29.77% of gross energy respectively. Those piglets access ad libitum to diets. The aim of the study is to investigate performance, digestion of nutrients among weeks 3 piglets were used to determine whole body protein-turnover at 6-7, 13-14, 20-21day separately for each group. Afterwards, the piglets were slaughtered to determine the body composition. The results showed as follow:1. Piglets fed with improving energy supply from lactose grow remarkably faster than that of NL piglets at 1st week by 14%.2. The average daily feed intake, DM, GE, and CP intake were not significantly difference between HL and NL group. However, nitrogen, GE and fat conversion efficiency of
    fed HLdiet were notably promoted by 5.82%, 10.96%, 28% respectively.3. The digestibilities of the DM, GE, CP, fat, and lactose were not significantly influenced by age of the piglets and lactose energy level, digestibilities of those nutrients were all up to 98% from 1st -3rd week among group.4. High lactose energy level improved protein biological value (BV), but not significantly. BV of the diets declined with age of week of piglets following as quadratic equations:HLifi: BV=91.4976+4.3813W-2.2035W2 (R2 =0.8532, n=16, P=0.000) NL*&: BV=88.4255+8.5034W-3.6222W2(R2 =0.7584, n=17, P=0.000)5. High lactose energy supply reduce whole body nitrogen flux 24.47%, FSR 9.32%, FBR 9.95%, resulted in promoting FAR16.15%, declining heat production relative to protein deposition 50.48% at 1st week. Thereafter, experiment demonstrates that energy source in diet does not alter FBR, FAR, and heat production among group from 2nd to 3rd week.6. Whole-body protein FSR and FBR declined following a quadratic curvilinear pattern with age.FSR: HL: FSR= 27.3300-8.4517W+1.2983W2 (R2=0.646, n=9, P=0.038)NL: FSR= 46.5933-20.343W+3.2567W2 (R2=0.981, n=9, P=0.000)FBR: HL: FBR= 15.1600-4.3717W+0.6817W2 (R2=1.000, n=9, P=0.102)NL: FBR= 38.6267-21.005W+3.7917W2 (R2=0.959, n=9, P=0.000)FAR: HL: FAR= 12.1733-4.0850W+0.6183W2 (R2=0.871, n=9, P=0.002)NL: FAR= 7.9767 +0.6483W-0.5317W2 (R2=0.946, n=9, P=0.000)The following conclusions can be drawn from all the above results:Lactose showed that protein sparing and energy partition effect at 1st week of piglet life. High lactose energy level decreased whole body FBR mainly, and FSR, resulted in increasing FSR, declined nitrogen flux and reduced heat production relative protein deposition, caused to increasing average daily gain, improving protein deposition and reduced heat production at lsl week life. During neonatal period, the digestibilities of DM, GE. CP, fat, and lactose of diets were not influenced by age, weight, and energy source. We suggest that increasing the lactose content in liquid can improve ADFI and gross energy, and the practice may be an efficient method for improving performance in neonatal piglets, get heavier weaned body weight.
引文
1. Noblet, J. and J. Le Dividich. Energy metabolism of the newborn pig during the first 24h of life. Boil. Neonate. 1981. 40: 175-182
    2. Schmidt, I., M. FiUault, J-C. Hulin and P. Herpin. Fatty acid oxidation in skeletal muscle mitochondria from newborn pigs. In: K. J. McCracken, E. F. Unsworth and A. R. G. Wylie (Eds). Energy Metabolism. CABI INTERNATIONAL. Wallingford. 1997. pp43-46.
    3. Dracklery, J. K. Lipid metabolism. In: J. P. F. D'Mello(eds). Farm animal metabolism and nutrition. Cabi International. Wallingford. 2000. pp97-119.
    4. Hodge, G. A. Efficiency of food conversion and body composition of the preruminant lamb and the young pig. Brit. J. Nutr. 1974. 32: 113-126
    5. Whittemore, C. Science and Practice of Pig Production. 2nd Edit. BlackweU publishing 1998. P53-92
    6. Veum, T. L and J. Olde. Feeding Neonatal pigs. In: A. J. Lewis and L. Lee Southern (Eds). Swine Nutrition. 2nd. CRC. Press. New York. 2001. 671-689
    7. Lewis, A. J., V. C. Speer and D. G. Haught. Relationship between yield and composition of sow's milk and weight gains fo nursing pigs. J. Anim. Sci. 1978. 47: No. 3. 634-638
    8. Lefaucheur, L., P. Ecolan, Y. M. Barzic, J. Marion and J. Le Dividich. Early Postnatal Food Intake Alters Myofiber Maturation in Pig Skeletal Muscle. J. Nutr. 2003. 133: 140-147
    9. Mahan, D. C., and A. J. Lepine. Effect of pig weaning weight and associated mursery feeding programs on subsequent performance to 105 kilograms body weight. J. Anim. Sci. 1991. 69: 1370-1378.
    10. Kavanagh, S., P. B. Lynch, P. J. Caffrey, and W. D. Henry. The effect of pig weaning weighton post-weaning performance and carcass traits. In: P. D. Cranwell (ed.) Manipulating pig production Ⅵ. Proc. 6th Biennial Conf. of the Australasian Pig Sci. Assoc., Canberra, Australian Capital Territories. P71.
    11. Mahan, D. C., Cromwell, R. C. Ewan, C. R. Hamilton, and J. T. Yen. Evaluation of the feeding duration of a phase 1. Nursery diet to three-week-old pigs of two weaning weights. J. Anim. Sci. 1998. 76: 578-583.
    12. Wolter, B. F. and M. Ellis. The effect of weaning weight and rate of growth immediately after weaning on subsequent pig growth performance and carcass characteristics. Can. J. Anim. Sci. 2001. 81: 363-369
    13. Wolter, B. F., M. Ellis., B. P. Corrigan and J. M. Dedecker. The effect of birth weight and feeding of supplement milk replacer to piglets during lactation on preweaning and postweaning growth performance and carcass characteristics. J. Anita. Sci. 2002. 80: 301-308
    14. Noble, M. S., M. B. Wheeler and W. L. Hurley. Association of Total Milk Solids Intake and Litter Growth: Data from a-Lactaibumin Transgenic Sows. Illini PorkNet The Online Resource for the Pork Industry. http://www. traill. uiuc. edu/porknet/papers. 2004.
    15. Odle. J., and R. J. Harrell. Nutritional approaches for improving neonatal piglet performance: Is there a place for liquid diets in commercial production? Review. ALAS. 1998. Vol. 11(No. 6) 774-780
    16. Lecce, J. G. Rearing piglets artificially in a farm environment a promise unfulfilled. J. Anita. Sci. 1975. 41( 2): 659-666
    17. Benevenga, N. J., F. R. Greer, and T. D. Grenshaw. What is the growth potential of runt pig? University of Wisconsin Swine Day Report. 1990. 4-6
    18. Harrell, R. J., M. J. Thomas, and R. D. Boyd. Limitations of sow milk yield on baby pig growth. In: proc. 1993. Comcll Nutrition conference. Ithaca, NY.
    19.苏宁,新生期仔猪整体蛋白质周转的营养生理效应研究,四川农业大学博士学位论文,2001
    20. Smith, L. W. Observing Swine Behavior To Lower Piglet Mortality. Agricultural Research. 2001. Juae: 2
    21. NRC. Nutrient Requirement of Swine (10 Ed.). National Academy Press. Washington, DC. 1998.
    22. Oftedal, O. T., Milk composition, milk yield and energy output at peak lactation: A comparative review. In: Physiological Strategies in Lactation. Symposia of the Zoological Society of London, Volume 51. (Eds.) M. Peaker, R. G. Vernon & C. H. Knight, Academic Press, London. 33-85
    23. Pluske, J. R., and G. Z. Dong. Factors influencing the utilization of colostrums and milk. In: Verstegen, M. W. A., P. J. Moughan and J. W. Schrama. (Eds.). The lactating sow. Wageningen Press, Netherlands. 1998. 45-70.
    24. Campbell, R. G., and A. C. Dunkin. The effects of energy intake and dietary protein on nitrogen retention, growth performance, body composition and some aspects of energy metabolism of baby pigs. Brit. J. Nutr. 1983. 49: 221-230
    25. Kim, S. W., R. L McPherson and G. Y. Wu. Dietary Arginine Supplementation Enhances the Growth of Milk-Fed Young Pigs. J. Nutr. 2004. 134: 625-630
    26. Pettigrew, J. Supplemental dietary fat for peripartal sows. A review. J. Anim. Sci, 1981. 53: 107
    27. Elliot, J. L and G. A. Lodge. Body composition and glycogen reserves in the neonatal pig during the first 96 hours post-partum. Can. J. Anita. Sci. 1977. 57: 141-150
    28. Pegorier, J. P., Duee, EH., Girard, J & Peret, J. Metabolic fate of non-esterified fatty acid in isolated hepatocytes newborn and young pigs. Evidence for a limited for oxidation and increased capacity for esterification. Biochemical Journal. 1983. 212, 93-97
    29. Le Dividich, J., E Herpin, J. Mourot, and A. P. Colin. Effects of low-fat colostrums on fat accretion and lipogenic enzyme activities in adipose tissue in the 1-day-old pig. Comp. Biochem. Physiol. 1994b. 108A(4): 663-671
    30. Odle. J., NJ. Benevenga and T. D. Crenshaw. Uitillization of medium-chain tdglycerides by neonatal piglets: Ⅱ: effects of even and odd chain triglyceddes consumption on blood metalbolites and urinary nitrogen excertion. J. Anim. Sci. 1989: 67: 3340-3351.
    31. Olde, J., NJ. Benevenga and T. D. Crenshaw. Evaluation of [~(14)C]-medium-chain fatty acid oxidation by neonatal piglets using continuous-infusion radiotracer kinectic mthodology. J.Nutri. 1992. 122: 2183-2189
    32. Odle, J., X. Lin, M.T. Wieland and T. A. T. G. van Kempen. Emulsification and fatty acid chain length affect the kinetics of[~(14)C]-mcdium-chain triacylglyccrol utilization by neonatal piglets. J. Nutri. 1994. 124: 84-93
    33. Odlc, J., X. Lin, T. A. T. G. van Kcmpen, J. K. Dracklcy and S. H. Adams. Camitine palmitoyltransfcrase modulation of hepatic fatty acid metabolism and radio-HPLC evidence for low kctogcncsis in neonatal pigs. J. Nutd. 1995. 125: 2541-2549
    34. Van Kempen, Theo A. T. G. and J. Odic. Carnitinc affects octanoate oxidation to carbon dioxide and dicarboxylic acids in colostrums-dcprivcd piglets: In vivo analysis of mechanisms involved based on CoA- and Carnitinc-cstcr Profiles. J Nutr.1995. 125: 238-250.
    35. Figucroa, F. A., D. J. Ivcrs, D. J. Bobilya, L. A. Shahan, K. L. Hcrkclman, M. R. Ellcrsieck, and T. L. Vcum. Gavaging of medium-chain triglyceridcs and the effect on baby pig survival and weight. J. Anim. Sci. 1989. 67 Suppl. 2): 119 (Abstr.).
    36. Lepine, A. J., R. D. Boyd, Welch, J. A. & Roneker, K. R. Effect of colostrums intake or medium-chain triglyceride supplementation on the pattern of plasma glucose, non-esterified fatty acid and survival of neonatal pigs. J. Anim. Sci. 1989. 67: 983-990
    37. Lee, H. F. and S. H. Chiang. Energy value of mdium-chain triglycerides and their efficacy in improving survival of neonatal pigs. J. Anim. Sci. 1994. 72: 133-138
    38. Lin, C. L., S. H. Chiang, and H. F. Lee. Causes of Reduced of neonatal Pigs by Medium-Chain Triglycerides: Blood metabolite and behavioral acitivity approaches. J.Anim. Sci. 1995. 73: 2019-2025
    39. Le Dividich, J. P. Herpin, and R. M. Rosario-Ludovino. Utilization of colostral energy by the newborn pig. J. Anim. Sci. 1994a. 72: 2082-2089
    40. Le Dividich, J., P. Herpin, C. Cano, and F Strullu. Effects of fat content of colostrums on voluntary colostrums intake and fat utilization in newborn pigs. J. Anim. Sci. 1997a. 75: 707
    41. Marion, J., and J. Le Dividich. Utilization of the energy in sow's milk by the piglet. In: Cranwell. P. D. (Eds.). Maipulating Production Ⅶ. Australasian Pig Science. Association, Werdbee, Australia, 1999. p254
    42. Pere, M. C. Materno-foetal exchanges and utilisation of nutrients by the foetus: comparison between species. Reprod Nutr Dev. 2003; 43(1): 1-15.
    43. Campbell, R. G. Nutrition constraints to lean tissue accretion in farm animals. Nutrition Research Reviews 1988: 233-253.
    44. Simon, O. 1989. Metabolism of proteins and amino acids. In: (Eds.) Book, H. D., B. O. Eggum, A. G. Low, O. Simon and T. Zebrowska. Protein metabolism in farm animals: Evaluation, Digestion, Absorption and metabolism. Oxford University Press. Pp273-366.
    45.周安国,蛋白质周转,第二期全国动物营养学高级研修班讲义,中国畜物兽医学会动物营养学分会,1997,148-174
    46. Reeds, P. J., M. F. Fuller, A. Cadenhead, G. E. Lobley, and J. D. McDonald. Effects of changes in the intakes of protein and non-protein energy on whole-body turnover In growing pigs. Brit. J. Nutr. 1981. 45: 539-546
    47. Rook, J. A. F. and P. C. Thomas. Nutritional physiology of farm animals. Longrnan Group Limited. London and New York. 1983.
    48. Pencharz, P., J. Beesley, P. Sauer, J. Van Aerde, U. Canagarayar, J. Rermer, M. MeVey, D. Wesson, and P. Swyer. Total-body protein turnover in parenteratty fed neonates effects of energy source studied by using [~(15)N]glycine and [1-~(13)C]leucine. Am. J. Clin. Nutr. 1989. 50: 1395-1400
    49. Csapo, J., T. G. Martin, Z. S. Csapo-Kiss and Z. Hazas. Protein, fats, vitamin and mineral concentrations in porcine colostrums and milk from partition to 60 days. Int. Dairy J. 1996. 6: 881-902.
    50.周安国,生长肉鸭体蛋白周转的营养生理效应研究,畜牧兽医学报,1995,26(2),97-103
    51. Darragh, A. J., and P. J. Moughan. The composition of colostrums and milk. In: Verstegen, M. W. A., P. J. Moughan and J. W. Schrama. (Eds.). The lactating sow. Wageningen Press, Netherlands. 1998. 45-70.
    52. Aumaitre, A. and Seve, B. Nutritional importance of colostrum in the piglet. Annales de Recherches Veterinaires. [J] 1978. 9, 181-192.
    53. Klobasa E, E. Werhahn, and J. E. Butler. Composition sow milk during lactation. J. Anim. Sci. 1987. 64: 1458-1466.
    54. Herpin, P., J Le Dividich, and N. Amaral. Effect of selection of lean tissue growth on body composition and physiological state of the pig at birth. J. Anita. Sei. 1993. 71: 2645-2653
    55. Hartmann, P. E., P. H. Bird and M. A. Holmes. Sow Latation. In: Manipulating Pig Production Ⅱ. Procedings of the Australasian pig science association. (Eds.) J. L. Barnett and D. P. Hennessy, Austrilasian Pig Science Association. Wirribcc. 1989. 72-97
    56. Pluskc, J. R., I. H. Williams & F. X. Aherne, Nutritionof the neonatal pig. In: The Neonatal Pig: Development and Survival (ed M. A. Varley), 1995. pp. 187-235. CAB International, Wallingford, Oxon, U. K.
    57. King, R. H., M. S. Toner, H. Dove, C. S. Atwood and W. G. Brown. The response of firstlitter sows to dietary protein level during lactation. J. Anim. Sci. 1993a. 71: 2457-2463.
    58. King, R. H., C. J. Rayncr and M. Kerr. Anotc on the amino acid composition of sow's milk. Anita. Prod. 1993b. 57: 500-502
    59.单虎 邹思湘 陆天水 陈伟华 王述柏,初乳免疫物质向新生仔猪血液转移的研究,中国兽医学报1998,18(1)
    60.敖长金 侯先志 杨玉芬 赵志恭 于志红,内蒙黑猪分娩后5日内初乳常规成分的动态变化,内蒙古农牧学院学报,1999,第20卷(2),13-17
    61. Pond, W. G., and J. Hmancr. Swine Production and Nutrition. The AVI Publishing Company, INC. 1984. 95-152.
    62.太湖猪育种委员会,中国太湖猪,上海,上海科学出版社,1991
    63. Revell, D. K, I. H. Williams, B. P. Mullah, J. L. Rauford, and R. J. Smits. Body composition at farrowing and nutrition during lactation affect the performance of primiparous sows: Ⅱ. Milk composition, milk yield, and pig growth. J. Anita. Sci. 1998. 76: 1738-1743
    64. Pluske, J. R., I. H. Williams, L. J. Zak, E. J. Clowes, A. C. Cegielski and EX. Aherne. Feeding primiparous lactating sows. to induce three divergent metabolic states. 3. milk production and piglet growth. J. Anim.Sci. 1998. 76: 1165-1171
    66.敖长金 侯先志 赵志恭 杨玉芬 伊毕 于志红,哺乳仔猪血清中IgG的动态变化,内蒙古农牧学院学报,1998,19(2),18-21
    67.单虎 陈伟华 陆天水 邹思湘 王述柏,初乳对新生仔猪免疫功能影响的研究,畜牧兽医学报,1998,29(3),254-260
    65.陈志敏,新生仔猪高效人工初乳的研究,内蒙古农牧大学硕士论文,2001
    68. Klobasa E, J. E. Butler, E. Werhahn and E Habe. Maternal-neonatal immunoregulation in swine. Ⅱ. Influence of multiparity on de novo immunoglobulin synthesis by piglets[J]. Vet Immunol Immunopathol 1986 Feb; 11(2): 149-59
    69. Milon, A., A. Aumaitre, J. Le Dividich, J. Franz, and J. J. Metzger. Influence of birth prematurity on colostrums composition and subsequent immunity of piglets. Ann. Rech. Vet. 1983. 14: 533
    70. Klobasa F., F. Habe. E. Werhahn, and J. E. Butler. Regulation of humoral immunity in the piglet by immunoglobulin of maternal origin. Res. Vet. Sci. 1981. 31: 195.
    71.敖长金 侯先志 赵志恭 杨玉芬 伊毕 于志红,哺乳仔猪血清中IgG的动态变化,内蒙古农牧学院学报,1998,Vol.19,No.2,18-21
    72. Jensen, A. R. J. Elnif, D. G. Burrin. and P. T. Sangild. Development of intestinal immunoglobulin absorption and enzyme activities in neonatal pigs is diet dependent. J. Nutr. 2001. 131: 3259-3265. 74.
    73. Gomez, G. G., The colostrum-deprived, ariticially-reafing, neonatal pig as a model animal for studying rotavirus gastroenteritis. Fontiers in Bioscience. 1997. 15.: d471-481
    74. Bush, L. J. and T. E. Staley. Absorption of immunoglobulin in newborn calves. J. Dairy. Sci, 1980. 63(4): 672-80.
    75. Pond, WG., JT Snook, D McNeill, WI Snyder, and BR Stillings. Pancreatic enzyme activities of pigs up to three weeks of age. J Anita Sci, Dec 1971; 33(6): 1270-3.
    76. Newport, MJ. Artificial rearing of pigs. 11. Effect of replacement of dried skim-milk by an isolated soya-bean protein on the performance of the pigs and digestion of protein. Br J Nutr, Sep 1980; 44(2): 171-82
    77. Bayley, H.S., and J.H.G Holmes. Protein sources for early weaned pigs. J.Anim. Sci. 1972. 35: 1101 (Abstr.)
    78. Pettigrew, JE., BG Harmon, J Simon, and DH Bakerm. Milk proteins for artificially reared piglets: II. Comparison to a skim milk hydrolysate .J Anim Sci, Mar 1977; 44(3): 383-8.
    79. Pettigrew, JE., BG Harmon, SE Curtis, SG Cornelius, HW Norton, and AH Jensen. Milk proteins for artificially reared piglets. III. Efficacy of sodium caseinate and sweet dried whey.J Anim Sci, Aug 1977; 45(2): 261-8.
    80. Sherry, MP, TL Veum, MK Schmidt, and DP Hutcheson.Dietary protein to calorie ratios and fat sources for neonatal pigs reared artifically with subsequent performance. II. Serum variables.J Anim Sci, May 1978; 46(5): 1267-74.
    81. Zamora, R.G, and T.L. Veum. Nutritive value of whole soybeans fermented with Aspergillus oryzae or Rhizopus oligosporus as evaluated by neonatal pigs.J. Nutr., Apr 1988; 118(4): 438-44.
    82. Zamora, R.G, and T.L. Veum.The nutritive value of dehulled soybeans fermented with Aspergillus oryzae or Rhizopus oligosporus as evaluated by ratsJ. Nutr., Jul 1979; 109(7): 1333-9.
    83. Mateo, J.P. and T.L. Veum.Utilization of casein or isolated soybean protein supplemented with amino acids and glucose or lactose by neonatal piglets reared artificially,J Anim Sci.1980; 50(5): 869-76.
    84. Leibholz., J. The flow of endogenous nitrogen in the digestive tract of young pigs.Br J Nutr. 1982; 48(3): 509-17.
    85. Maner, J.H.W.G Pond, J.K. Loosli, and R.S. Lowery. Effect of isolated soybean protein and casein on the gastric pH and rate of food residues in the baby pigs. J. Anim. Sci. 1962.21:49
    86. Corring, T, A. Aumaitre, and G Durand.Development of digestive enzymes in the piglet from birth to 8 weeks. I. Pancreas and pancreatic enzymes.Nutr Metab, Jan 1978; 22(4): 231-43.
    87.Lindemann, M.D., S.G Cornelius, S.M. el Kandelgy, R.L. Moser, and J.E. Pettigrew. Effect of age, weaning and diet on digestive enzyme levels in the piglet J Anim Sci.1986; 62(5): 1298-307.
    88. Le Dividich, J., Th. Esnault, B. Lynch, R. Hoo-Paris, Ch. Castex, and J. Peiniau. Effect of colostral fat level on fat deposition and plasma metabolites in the newborn pig. J. Anim. Sci. 1991.69: 2480-2488
    89. Lecce, J.G. and Coalson, J.A. Diets for rearing colostrum-free piglets with an automatic feeding device. J. Anim. Sci. 1976,42: 622-629.
    90. Newport, M.J., J.E. Storry, and B. Tuckley. Artificial rearing of pigs. 7. Medium chain triglycerides as a dietary source of energy and their effect on live-weight gain, feed:gain ratio, carcass composition and blood lipids. Br J Nutr, Jan 1979; 41(1): 85-93.
    91. Stern, J.S., and M.R. Greenwood.A review of development of adipose cellularity in man and animals.Fed Proc, Aug 1974; 33(8): 1952-5.
    92. Manners, M.J. & McCrea, M. R. Changes in the chemical composition of sow-reared piglets during the 1~st month of life. Brit. J. Nutr. 1963.17,495-513
    93. Brooks, C.C., J.P. Fontenot, P.E. Vipperman, Jr., H.R. Thomas and P.O. Graham. Chemical composition of the young pig carcass. J.Anim.Sci. 1964.23:1022.
    94. Lodge, GA., N.K. Sarkar and J.K.G Kramer. Fat deposition and fatty acid composition in the neonatal pig. J. Anim. Sci. 1978. Vol 47: 2,497-503.
    95. Foster, P. C. and Bailey, E. Changes in hepatic fatty acid degradation and blood lipid and ketone body content during development of the rat. Enzyme. 1976,21:397-407
    96. Duee, P. H., Pegorier, J. P., Bois-Joyeux, B. and Girard, J. J. Dev. Physiol. 1983,
     5:383±393
    97.沈同 王镜岩主编,生物化学(第二版),科技出版社,1994.
    98. Yu, X. X., J. K. Drackley and J. Odle. Food Deprivation Changes Peroxisomal b-Oxidation Activity but Not Catalase Activity during Postnatal Development in Pig Tissues. J. Nutr. 1998. 128: 1114-1121
    99. Yu, X. X., J. K. Drackley and J. Odle. Rates of Mitochondrial and Peroxisomal b-Oxidation of Palmitate Change during Postnatal Development and Food Deprivation in Liver, Kidney and Heart of Pigs. J. Nutr. 1997, 127: 1814-1821
    100. Adams, S. H. C. S. Alho, G. Asins, F. Hegardt, and P. F. Marrero. Gene expression of mitochondrial 3-hydroxy-3-methylglutaryl -CoA synthase in a poorly ketogenic mammal: effect of starvation during the neonatal period of the piglet. Biochemical J. 1997. 324: 65-73
    101. Lin, X., S. H. Adams and J. Odle. Acetate represents a major product of heptanoate and octanoateβ-oxidation in hepatocytes isolated from neonatal piglets. Biochem. J. 1996 318: 235-240
    102. Tivey, D., J. Le Dividich, P. Herpin, D. Brown and Mp. J. Dauncey. Differential effects of lipid and carbohydrate on enterocyte lactose activity in newborn piglets. Experinental Physiology. 1994. 79: 189-201
    103. Zhang, H. Z., C. Malo, and R. K. Buddington. Suckling Induces Rapid Intestinal Growth and Changes in Brush Border Digestive Functions of Newborn Pigs. J. Nutr., Mar 1997; 127: 418-426
    104. Le Dividich, J. D. Tivey, J. W. Blum, F. Strullu and C. Louat. Effect of ingested on the small on the small intestine growth and lactase activity in the newborn pig. In: J. P. Laplace, C. Fevrier and A. Barbeau. (Eds.) Digestive Physiology in pigs. Proceedings of the Ⅶth international symposim on digestive physiology in pigs. EAAP Publication No. 88. 1997b. 131-135
    105. Puchal, A. A., and R. K. Buddington. Postnatal development of monosaccharide transport in pig intestine.Am J Physiol—Legacy Content, May 1992; 262(5 Pt 1): G895-902.
    106. Le Dividich. J., and J. Noblet. Effect of Colostrum intake on metabolic rate and plasma glucose in the newborn pig relation to environmental temperature. Boil. Neonate. 1984a. 46: 98-104
    107. Berthon, D., P. Herpin, C. Duchamp, M. J. Dauncey and J Le Dividich. Modification of thermogenic capacity in neonatal pigs by changes in thyroid status during late gestation. J. Developmental Physiol. 1993. 19: 253-261
    108. Traylurn, P., N.J. Temple and J. Van Aerde. Evidence from immunoblotting studies on uncoupling protein that browm adipose tissue is not present in the domestic pig. Can. J. Physiol. Pharmac. 1989. 67: 1480-1485
    109. Berthon, D., P. Herpin, and J Le Dividich. Shivering thermoge, nesis in the neonatal pig. J. Therm. Boil. 1994. 19: No. 6. 413-418
    110. Herpin, P., and L. Lefaucheur. Adaptative changes in oxidative metabolism in skeletal muscle of cold-acclimated piglets. J. Therm. Boil. 1992. 17: 277-285
    111. Close, W. H., J Le Dividich, and P. H. Duee. Influence of environmental temperature on glucose tolerance and insulin response in the new-born piglet. Boil. Neonate. 1985. 47: 84-91
    112. Le Dividich, J., and J. Noblet. Colostrum intake and thermoregulation in the neonatal pig in relation to environmental temperature. Biol. Neonate. 1981. 40 (3-4). 167-174
    113. Herpin, P., J Le Dividich, D. Berthon, and J-C, Hulin. Assessment of thermoregulatory and postprandial thermogenesis over the first 24 hours after birth in pig. Exper. Physiol. 1994. 79: 1011-1019
    114. Le Dividich. J., and J. Noblet. Thermoregulation and energy metabolism in the neonatal pig. Ann. Rech. Vet.l984b. 14(4): 375-381
    115. Noblet, J., and J. Le Dividich. Effect of environmental temperature and feeding level on energy balance traits of early-weaned piglets. Livest. Prod. Sci. 1982.9: 619-632
    116. Le Dividich, J., and B. Seve. Effects of underfeeding during the weaning period on growth, metabolism, and hormonal adjustments in the piglet. Domestic. Anim. Endocri. 2000.19:63-74
    117. Van der Hel and M.W.A. Verstegen. Metabolism rate of piglets between suckling. In: M.W.A. Verstegen and A.M. Henken(Eds.) Energy meatabolism in farm animals. Effects of housing, stress and diease. Matinus Nijhoff, Dordrecht, The Netherlands. 1987. 63-69
    118. Herpin, P., and J. Le Dividich. Thermoregulation and the environment. In: The neonatal pig: Development and survival. Varley, M.A. (Eds.). CABI international. Wallingford, Oxon, U.K. 1995. pp57-95.
    119. Lossec. G, P. Herpin, and J. Le Dividich. Thermoregulatory responses of the newborn pig during experimentally induced hypothermia and rewarming. Exper. Physiol. 1998. 79:1011-1019
    120. Waterlow, J.C., P.J. Garlick, and D.J. Millward. Protein turnover in mammalian tissues and in the whole body. 1978a. Amsterdan: North-Holland.
    121. Young, V. R. W. P. Steffee, P. B. Pencharz, J. C. Winterer, and N. S. Scrimshaw. Total human body protein synthesis in relation to protein requirements at various ages. Natrue Lond. 1975.253:192-194
    122. Schoch, G, H. Topp, A. Held, et al. Interrelation between whole-body protein turnover rates of RNA and protein. Eur. Clin. Nutr. 1990.44:747-658.
    123. Young, V.R., Y.M. Yu, and N.K. Fukagawa. Whole body energy and nitrogen (protein) relationships. In: J. M. Kinney, and H.G Tucker (Eds.) Energy metabolism: Tissue determinants & cellular corollaries, Raven Press, New York. 1992. ppl39-160.
    124. Reeds, P.J., D.G Burrin, T.A. Davis, and B. Stoll. Amino acid metabolism and the energetics of growth. Arch. Anim. Nutr. 1998.Vol. 51,187-197.
    125. Reeds, P.J., D.G Burrin, T.A. Davis, M.L. Fiorotto, B. Stoll and J.B. van Goudoever. " Protein nutrition of the neonate. Proc. Nutri. Soci. 2000.59: 87-97.
    126. Fuller, M.F., A. Cadenhead G Mollison, and B. Seve.. Effects of the amount and quality of dietary protein on nitrogen metabolism and heat production in growing pigs. Br. J. Nutr. 1987a 58:277-285
    127. Fuller, M.F., A. P.J. Reeds, A. Cadenhead, and B. Seve. Effects of the amount and quality of dietary protein on nitrogen metabolism and protein turnover in growing pigs. Br. J. Nutr. 1987b. 58:287-300
    128. Millward, D. J., P. J. Garlick, and P. J. Reeds. The energy cost of growth. Proc. Nutr. Soc. 1976.35,339-349
    129. Lecker, S.H., V. Solomon. W.E. Mitch and A.L. Goldberg. Muscle protein breakdown and the critical role of the ubiquitin- proteasome pathway in normal and disease states. J.Nutr. 1999:227s-237s.
    130. Siems, W., W. Dubiel, R. Dumdey, M. Miller, S.M. Rapoport. Accounting for the ATP-consuming processes in rabbit reticulocytes. Eur.J. Biochem. 1984.139:101-107
    131. Lobley, GE., V. Milne, J.M. Lovie, PJ. Reeds, and K. Pennie.Whole body and tissue protein synthesis in cattle.Br J Nutr, May 1980; 43(3): 491-502.
    132. Waterlow, J.C., and D.J. Millward. Energy cost of turnover of protein and other cellular constituents. In : W. Wieser, E. Ganaiger(Eds). Energy transformation in cells and organisms. George Thieme Verlag, Stuttgart, Germany. 1990.277-282
    133. Waterlow, J.C. Protein turnover with special refrence to man. Quat. J. Exp. Physiol., 1984. 69,409-438
    134. Reeds, P.J. and C.I. Harris. Protein turnover in animals: man in his context. In: Nittrogen
    ??metabolism in man. J.C. Waterlow, J.M.L. Stephen (Eds.). Applied Science Publishers, London. 1981.391-408
    135. Muramatsu, T. Nutrition and whole-body protein turnover in the chicken in relation to mammalian species. Nutri. Res. Rev. 1990.3,211-228
    136. Salter, D.N., A.l. Montgomery, A.Hudson, D.B.Quelch, and RJ. Elliott.1990. Lysine requirements and whole body protein turnover in growing pigs. Br. J. Nutr. 63:503-513
    137.Tomas, F.M., R.G Compell, R.H.King, RJ. Johnson, C.S. Chandler and M.R. Taverner. 1992. Growth hormone increases whole-body protein turnover in growing pigs. J.Anim.Sci. 70:3138-3143.
    138. Bergen, W.G and A.M. Robet. Protein accretion. In: Growth regulation in farm animals. (Eds.) Pearson. A.M. and T.R. Dutson. Elsevier Applied Science. London and New York. 1991.169-202
    139. Webster, A. J. E, G E. Lobley, P.J. Reeds and J. D. Puller. Protein mass, protein synthesis and heat loss in the zucker rat. In: L.E. Mount (Eds). Energy Metabolism, Proceedings of the eighth symposium on energy metabolism, EAAP Publication 1980. NO26 pp125-128,
    140. Webster, A.J.E The energetic efficiency of growth.. Livest. Prod. Sci. 1980.7:243-252
    141. Webster, A. J. F. In meat and animals, growth and productivity. Lister, D., D.N. Rhodes, V. R. Fowler and M.F. Fuller (Eds.). London, Plenum. 1976. 89
    142. Koong, L.J., C.L. Ferrell, and J.A. Nienaber. Assessment of interrelationships among levels of intake and production, organ size and fasting heat production in growing animals. J. Nutr. 1985.115:1383-1390
    143. Muramatsu, T., K. Kita, I. Tasaki, and J. Okumura. Influence of dietary protein intake o whole-body protein turnover in chichs. Brit. Poult. Sci. 1987.28,471-482
    144. Young, V.R., C. Cucalp, W.M. Pand, D.E. Matthews, and D.M. Bier. Leucine kinetics during three weeks at submaintenance-to-maintenance intakes of leucine in man: adaption and accomnodation. In: Human Nutrition, Clinical Nutrition. 1987.41C. 1-18
    145. Kita, K., T. Muramatsu, I. Tasaki, and J. Okumura. Influence of dietary non-protein energy intake on whole-body protein turnover in chicks. Brit. J. Nutr. 1989. 61:235-244
    146. Reeds, P.J., and M.F. Fuller. Nutrient intake and protein turnover. Proceedings of the nutrition society 1983.42,463-471
    147. Reeds, P.J., M.F. Fuller, A. Cadenhead, and S.M. Hay. Urea synthesis and leucine turnover in growing pigs: Changes during 2d following the addition of carbohydrate or fat to the diet. Brit. J. Nutr. 1987.58:301-311
    148. Fuller, M.F. and R.MJ. Crofts. Brit. J. Nutri. 1977a.38:479-488
    149. Nakano, K., and K. Ashida. Possible interaction of insulin, cyclic AMP, and glucocorticoids in protein-sparing action of dietary carbodydrate in rats. J. Nutr. 1975.105,906-913
    150. Suryawan, A., P. M. J. O'Connor, S.R. Kimball, J.A. Bush, H.V. Nguyen, L.S. Jefferson and T.A. Davis. Amino Acids Do Not Alter the Insulin-Induced Activation of the Insulin Signaling Pathway in Neonatal Pigs. J. Nutr. 2004.134:24-30.
    151. Davis, T.A., M.L. Fiorotto, D.G Burrin, P.J. Reeds, H.V. Nguyen, P.R. Beckett, R.C. Vann, and P.J. O'Connor. Stimulation of protein synthesis by insulin and amino acid is unique to skeletal muscle in neonatal pigs. Am. J. Physiol. Metab. 2002.282: E880-890.
    152. Yoshizawa, E, S. R. Kimball, T.C.Vary, and L.S. Jefferson.. Effect of dietary protein on translation initiation in rat skeletal muscle and liver; Am J Physiol Endocrinol Metab. 1998 275: E814-E820
    153. Anthony, J.C, F. Yoshizawa, T.GAnthony, T.C. Vary, L.S. Jefferson and S.R. Kimball. Leucine Stimulates Translation Initiation in Skeletal Muscle of Postabsorptive Rats via a Rapamycin-Sensitive Pathway. J. Nutr. 2000: 130:2413-2419.
    154. Shah, O. J., J. C. Anthony, S. R. Kimball and L. S. Jefferson. 4E-BP1 and S6K1: translational integration sites for nutritional and hormonal information in muscle. Am J Physiol Endocrinol Metab. 2000. 279: E715-E729
    155. O'Connor, P. M. J., J. A. Bush, A. Suryawan, H. V. Nguyen and TA. Davis.Insulin and amino acids independently stimulate skeletal muscle protein synthesis in neonatal pigs. Am J Physiol Endocrinol Metab. 2003. 284: E110-E119
    156. Suryawan, A., H. V. Nguyen, J. A. Bush, and T. A. Davis.Developmental changes in the feeding-induced activation of the insulin-signaling pathway in neonatal pigs. Am J Physiol Endocrinol Metab 2001. 281: E908-E915.
    157. Kimball, SR., L. S. Jefferson, H. V. Nguyen, A. Suryawan, J.A. Bush, and T. A. Davis. Feeding stimulates protein synthesis in muscle and liver of neonatal pigs through an mTOR-dependent process. Am J Physiol Endocrinol Metab. 2000: 279: 1080-1087.
    158.张和平 郭军,免疫乳:科学与技术,北京,轻工业出版社,2002
    159.中华人民共和国卫生部,乳与乳制品卫生标准的分析方法GB5009.46-85,中华人民共和国国家标准,中国标准出版社,1985,183-201.
    160. Tikofsky, J. N., M. E. Van Amburgh, and D. A. Ross. Effect of varying carbohydrate and fat content of milk replacer on body composition of Holstein bull calves. J. Anita. Sci. 2001. 79: 2260-2267
    161.杨胜,饲料分析及饲料质量检测技术,北京,北京农业大学出版社,1993
    162. Oliver, W. T. K. J. Touchette, J. A. Coalson, C. S. Whisnant, J. A. Brown, S. A. Mathews Oliver, J. Odle and R. J. Harrell. Pigs weaned from the sow at 10 days of age respond to dietary energy source of manufactured liquid diets and exogenous porcine somatotropin. J. Anim. Sci. 2005. 83: 1002-1009
    163. Azain, M. J., T. Omkins, J. S. Sowinski, R. A. Arentson and D.E. Jewell. Effects of supplemental pig milk replacer on litter performance: Seasonal variation in response. J. Anita. Sci. 1996. 74: 2195-2202
    164. McCane, R. A., and E. M. Widdowson. Protein metabolism and requirement in the newborn. In: Mammalian protein metabolism. (Eds.) Munro, H. N., and J. B. Allison. Academic Press. New York. 1964. 225-245
    165. Lecce, J. G. and W. D. Armstrong, P. C. Crawford and G. A. Ducharme. J. Anita. Sci. 1979. 48: 1007-1014
    166. Coalson, J. A., C. V. Maxwell, J. C. Hiller, E. C. Nelson, I. L. Anderson, & L. D. Corley. Techniques for rearing cesarean section deprived piglets. J. Anita. Sci. 1973. 36: 259-263
    167. Le Dividich, J., and B. Sere. Energy requirements of the young pig. In: Varley, M. A., and J. Wiseman (Eds.) The Weaner Pig. Nutritional and Management.. CABI Publishing. 2001. P17-44.
    168. Oliver, W. T., E. E. Jones, R. J. Harrell, J. Odle, and K. N. Heo. Alternative sources of protein and carbohydrate for milk replacers for pigs removed from the sow at 3 to 5 days of age. J. Anim. Sci. 1998. 76(Suppl. 1): 165.
    169. Oliver, W. T., K. J. Touchette, J. A. Coalson. C. S. Whisnant, J. S. Brown, S. A. Matthews, J. Olde, and R. J. Harrell. Pigs weaned from the sow at 10days of age. Respond to dietary energy source. J. Anita. Sci. 2002a. 80suppl: 197(Abstract)
    170. Oliver, W. T., S. A. Mathews, O. Phillips, E. E. Jones, J. Odle, and R.J. Harrell. Efficacy of partially hydrolyzed corn syrup solids as a replacement for lactose in manufactured liquid diets for neonatal pigs. J. Anim. Sci. 2002b. 80: 143-153.
    171.刘惠芳,高产仔猪繁殖力与仔猪营养成本的关系研究,四川农业大学硕士学位论文,2002
    172. Noblet, J., and M. Etienne. Body composition, metabolic rate and utilization of milk nutrients in sulking piglets. Reprod. Nuter. Dev. 1987. 27: 829-839
    173. Lecce, J. G., and M. W. King. Nutrition and management of early-weaned pigs. Diets for protecting rotavirus-cxposed pigs weaned at 1 to 5 days of age. J. Anim. Sci. 1981. 47: 622-629
    174.曹劲松.1999.初乳功能性食品.中国轻工业出版社.44-50
    175. Forbes, J. M. Voluntary food intake and diet selection in farm animals. CAB International, Wallingford. 1995.
    176. Wangsness, P. J., and G. H. Soroka. Effect of energy concentration of milk on voluntary intake of lean and obese piglets. J. Nutr. 1978. 108: 595.
    177. Nyscnbaum, A. N., and J. L. Smart. Suckling behavior and milk intake of neonates in relation to milk fat content. Early Hum. 1982. 6: 205.
    178. Fomon, S. H., L. J. Filer, L. N. Thomas, T. A. Anderson, and J. E. Nelson. Influence of formula concentration on caloric intake and growth of normal infants. Acta. Paediatr. Scand. 1975. 64: 172.
    179. Houpt, K. A., and A. N. Epstein. Ontogeny of controls of food intake in the rat: GI fill and glucoprivation. Am. J. Physiol. 1973. 225: 58.(Abstr.)
    180. Beyer, M. and Jentsch, W. Relationship between milk production of the sow and growth performance in piglets In: Souffrant, W.B. and Hagemeister, H. (eds), Proceedings of the Vlth International Symposium on Digestive Physiology in Pigs. 1994. 226-229.
    181. van Milgen, J. and J. Noblet. Partitioning of energy intake to heat, protein, and fat in growing pigs. J Anim Sci. Feb 2003; 81: 86-93.
    182. Kleiber, M. The fire of life. John Wiley. New York. 1961.
    183. Blaxter, K. L., F. W. Wainman, and J. L. Davidson. Anim. Prod. 1966. 8:75
    184.许振英,猪的蛋白质代谢,养猪,1989,39-44
    185.张宏福 李长忠 马永喜,断奶日龄对仔猪和肠道中乳糖酶活性的影响.仔猪营养生理与饲料配制技术研究,北京,中国农业出版社,2001,15-19
    186. Burrin, D. G., M. A. Dudley, P. J. Reeds, R. J. Shulman, S. Pcrkison, and J. Rosenberger. Feeding colostrums rapidly alters enzymatic activity and therelative isoform abundance of jejunal lactase in neonatal pigs. J. Nutr. 1994. 124: 2350
    187. Widdowson, E. M., and D. Lister. Nutritional control of growth. In: Growth regulation in farm animals. (Eds.) Pearson, A. M. and T. R. Dutson. Elsevier Applied Science. London and New York. 1991. 67-102
    188.杨凤,动物营养,中国农业出版社,北京,2000
    189. Noblet, J., J. Le Dividich, and J. Van Milgen. Thermal environment and swine nutrition. In: Lewis, A. J. and L. LEE. Southern. (Eds.). Swine nutrition (2nd Edition), CRC Press. Boca Raton, London, New York, Washington, D. C. 2001. P519-544.
    190. Close, J. A. and M. W. Stanier. Effects of plane of nutrition and enviromental temperature on the growth and deveploment of the early-weaned piglet. 2. energy metabolism. Anim. Prod. 1984. 38: 221-231
    191. Verstegen MW, Close WH, Start IB, Mount LE. The effects of environmental temperature and plane of nutrition on heat loss, energy retention and deposition of protein and fat in groups of growing pigs. Br J Nutr. 1973. 30(1): 21-35
    193. Eggum, B. O. The influence of lactose on protein utilization. A study of certain factors influencing protein utilization in rats and pigs, and husholdning selekabets Forlag, Copenhagen, 1973. 120.
    194. Forsum, E. The effect of dietary of lactose on nitrogen utilization of a whey protein concentrate and its corresponding amino acid mixture. Nutr. Rep. Int., 11: 419-425.
    195. Waterlow, J. C., M. H. N. Golden, and P. J. Garlick. Protein turnover in man measured with 15N: Comparison of end products and dose regimes. Am. J. Phsiol. 1978b. 235: E165-175.
    196. Braude, R., K. G. Mitchell, M. J. Newport, and J. W. G. Porter. Artificial rearing of pigs. I. Effect of frequency and level of feeding on performance and digestion of milk proteins. Brit. J. Nutr. 1970. 24: 501.
    197. Burrin, D. G., T. A. Davis, S. Ebner, P. A. Schoknecht, M. L. Fiorotto, and P. J. Reeds. Colotrum enhances the nutritional stimulation of vital organ Protein synthesis in neonatal pigs. J. Nutr. 1997. 127: 1284-1289
    198. Jackson, A. A., M. H. N. Golden, R., Byfield, E. Jahoor, J. Royes, and L. Soutter. Whole body protein trunovr and nitrogen balance in young children at intakes of protein and energy in the region of maintenance. Hum. Nutr.: Clin Nutr., 1983. 37C, 433-446
    199. Muramausu, T., and J. Okumura. Whole body protein turnover in chicks at early stages of growth. J. Nutr. 1985. 115: 483-490
    200.敖长金 侯先志 赵志恭 于志红 王海荣 周薇 杨玉芬,新生仔猪对外源抗体的吸收及乳糖对其吸收的影响,动物营养学报,2001,13(4):28-33
    201. Staley, T. E., and L. J. Bush. Receptor Mechanisms of the Neonatal intestine and the irrelationship to immunoglobulin absorption and disease. J. DairySci. 1985. 68: 18 4-205
    202.郭春华,环境温度对生长育肥猪蛋白质和能量代谢及利用影响模式研究,2005,四川农业大学博士学位论文
    203. Kasper, H., Thiel H. and Ehl. M. Response of dody weight to a low carbodydrate, high fat diet in normal and obese subjects. AM. J. Clin. Nutr. 173. 26: 197-204
    204. James, W. P. T. Discussion of calorie balance versus nutrient balance. In: J. M.. Kinney and H. N. Tucker (Eds) Energy metabolism, Raven Press Ltd., New York. 1992. pp. 134.
    205. Van Milgen, J. Modeling Biochemical Aspects of Energy Metabolism in Mammals. J. Nutr. 2002. 132: 3195-3202
    206. Cortamira, N. O., B. Seve, Y. Lebreton, and P. Ganier. Effect of dietary tryptophan on muscle, liver and whole-body protein synthesis in weaning piglets: relationship to plasma insulin. Br. J. Nutr. 1991. 66: 423-435
    207. Ponter, A. A., B. Seve, N. O. Cortamria, D. N. Salter, and L. M. Morgan. The effect of dietary energy source and tryptophan on hormones of the entero-insular axis in the piglets and glucose in the early weaned pig after intragastric infusion of glucose. Proc. Nutr. Soci. 1991. 50, 227A.
    208. Kita, K., T. Muramatsu, I. Tasaki, and J. Okumura. Effect of dietary protein and energy intakes on whole-body protein turnover and its contribution to heat production in chicks. Brit. J. Nutr. 1993. 69: 681-688
    208. Ponter, A. A., N. O. Cortamria, B. Seve, D. N. Salter, and L. M. Morgan. The effect of dietary energy source and tryptophan on the rate of protein synthesis and on hormones of the entero-insular axis in the piglets. Brit. J. Nutr. 1994a. 71, 661-674
    209. Skjaerlund, D. M., D. R. Mulvaney, W. G. Bergen, and R. A. Merkel. Skeletal muscle growth and protein turnover in neonatal boars and barrows. J. Anim. Sic. 1994. 72: 315-321
    210. Stein, T. P., Yoshida S., Schluter M. D., et al. Comparison of intravenous nutrients on gut mucosal protein synthesis. J. Parenter Enteral Nutr. 1994. 18: 447-452.
    211. Stein, T. P., G. P. Buzby, M. J. Leskiw, A. R. Giandomenico and J. L. Mullen. Protein and fat metabolism in rats during repletion with total parenteral Nutrition (TPN). J. Nutr. 1981. 111: 154-165
    212. Maxton, D. G., Cynk, E. U., Jenkins, A. P. and Thompson, R. P. H. Effect of dietary fat on the small intestine. Gut. 1989. 30: 1252-1255.
    214. Wicker, C. & A. Puigserver. Effects of inverse changes in dietary lipid and carbohydrate on the synthesis of some pancreatic secretory protein. Euro. J. Biochem. 1987. 162: 25-30.
    215. Sere, B., and A. A. Ponter. Nutrient-hormone signals regulating muscle protein turnover in pigs. Proc. Nutr. Soci. 1997. 56: 565-580
    216. Burrin, D. C., C. L. Ferrell, J. H. Eisemann, R. A. Britton, and J. A. Nienaber. Effect of level of nutrition on splanchnic blood flow and oxygen consumption in sheep. Br J Nutr, Jul 1989; 62(1): 23-34.
    217. Stoll, B., D. G. Burrin, J. Henry, H. Yu, F. Jahoor, and P. J. Reeds. Substrate oxidation by the portal drained viscera of fed piglets. Am J Physiol Endocrinol Metab, Jul 1999; 277: 168-175.
    218. Fouillet, H., C. Gaudichon, F. Mariotti, C. Bos, J. F. Hunvau, and D. Tome. Energy nutrients modulate the splanchnic sequestration of dietary nitrogen in humans: a compartmental analysisAm J Physiol Endocrinol Metab. 2001. 281 (2): E248-E260.
    219. Krempf, M., R. A. Hoerr, V. A. Pelletier, L. M. Marks, R, Gleason, and V. R. Young. An isotope study of the effect of dieatary carbohydrate on the metabolic fate of dietary leucine and phenyalanine. Am. J. Clin. Nutr. 1993. 57: 161-169
    220. Mariotti, F., S. Mahe, C. Luengo, R. Benamou.zig, and D. Tome. Postprandial modulation of dietary and whole-body nitrogen utilization by carbohydrates in humans. Am. J. Clin. Nutr. 2000. 72: 954-962.
    221. Seve, B., P. J. Reeds, M. F. Fuller, A. Cadehead, and S. M. Hay. Protein synthesis and retention in some tissues of the young pig as influence by dietary protein intake after early-weaning: possible connection to the energy metabolism. Reprod. Nutr. Dev. 1986. 26(3): 849-861.
    222. Seve. B., O. Ballevre, P. Ganier, J. Nobler, J. Prugnaud, and C. Obled. Recombinant porcine somatotropin and dietary protein enhance protein synthesis in growing pigs. J. Nutr., Mar 1993; 123(3): 529-40.
    223. Reeds, EJ., A. Cadenhead, M. F. Fuller, G. E. Lobley, and J. D. McDonald. Protein turnover in growing pigs. Effects of age and food intake. Br J Nutr, May 1980; 43(3): 445-55.
    224. Bondi, A. A. Animal Nutrition. John Wiley & Son. 1987. 107-152
    225. Mcdonald, P. et al. Animal nutrition. 4th Edit. Longman Scientific and Technical. 1988. p183-188.
    226. Kerr, B. J., L. L. Southern, T. D. Bidner, K. G. Friesen and R. A. Easter. Influence of dietary protein level, amino acid supplementation, and dietary energy levels on growing-finishing pig performance and carcass composition. J. Anim. Sci. 2003. 81(12): 3075-3087
    227.李德发,中国饲料大全,中国农业出版社,北京,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700