力及力—电耦合作用下微结构中扩散、应力和变形分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学和力学交互作用下的结构失效与原子或者离子的扩散密切相关。一方面,固体结构中物质扩散会引起局部应力变化;另一方面,在制造和使用过程中产生的应力和外力会对扩散产生影响。因此,正确理解应力作用下的物质扩散和迁移过程,对认识与控制结构的长寿命服役老化和可靠性衰退具有重要意义。本文围绕应力及力-电耦合作用下结构中的物质扩散、应力和变形问题,进行了相关的理论分析和实验研究。主要研究工作和结论如下:
     以热力学理论和菲克定律为基础,建立了包含扩散和应力耦合效应的通用理论模型。利用有限差分法求解,分析了承受单向应力梯度的平板中,扩散物质的浓度和扩散致应力随时间的变化规律及扩散和应力集中的交互作用。研究表明:在扩散致应力、外力和扩散的耦合作用下,当外应力梯度和扩散方向相同时,外力会促进物质扩散,同时降低扩散本身导致的应力;在几何结构不连续或者材料固有缺陷部位,物质扩散导致的应力会降低结构的应力集中。
     根据力与力矩的平衡原理,推导出膜/基结构中扩散致弯曲曲率和扩散致应力的闭合解,建立了包含热残余应力和扩散致应力影响的自洽扩散模型。该理论模型可用于分析在扩散和应力耦合作用下,膜/基结构中物质的扩散行为、应力分布和弯曲变形。研究发现,结构中的残余应力可以延长或者缩短扩散致弯曲达到稳定状态的时间,但不会改变达到稳定状态后弯曲曲率的大小,弹性模量比、厚度比和扩散物质在结构中的扩散率对膜/基悬臂梁结构的弯曲变形和应力分布有显著影响,这一结果对膜/基悬臂梁型微器件的结构优化有一定意义。
     考虑纳米尺度下的表面粗糙现象和表面能效应,根据能量最小原理,建立了扩散导致的膜/基微悬臂梁结构应力分布和弯曲变形的解析解,定量分析了表面粗糙度和表面残余应力的影响。结果表明,纳米尺度下薄膜的表面粗糙度和上、下表面残余应力可显著改变膜/基微悬臂梁的弯曲变形和应力分布。
     针对电子封装和互联结构的力-电耦合失效问题,进行了力-电耦合作用下铜的拉伸蠕变实验,分析了不同应力水平和电流下的蠕变变形行为。以晶界扩散理论为基础,建立了稳态蠕变应变率和电流密度及应力之间的关系。理论计算和实验结果对比分析表明,铜的蠕变应变和稳态蠕变应变率随应力和电流增加而增大;在较低应力水平下,电场不会改变蠕变变形的控制机理;但随着应力水平提高,蠕变变形会由受晶界扩散控制转变为受位错滑移或者攀移控制。在低应力和电场作用下,稳态蠕变应变率的理论预测值与实验结果较为相符。
The structure damage caused by the interaction of chemical and mechanical effects is in-timately associated with the diffusion of atoms or ions. Diffusion of atoms in structure can lead to the evolution of local stresses. On the other hand, the stresses produced during prac-tical manufacture and application can also influence the diffusion process. Therefore, under-standing of mass diffusion and migration is significant for analyzing and controlling the age-ing and reliability deterioration of long life structure. Studies on the diffusion behavior, stress and deformation under stress and electro-mechanical coupling effects have been systemically investigated in this contribution. The main contents and conclusions are as follows:
     A self-consistent diffusion model including the coupling effects of diffusion and stress is developed under the frame of the thermodynamic theory and Fick's law. With the help of fi-nite difference method, the evolutions of concentration and diffusion-induced stress during diffusion process and the interaction between diffusion and stress concentration are analyzed. Results show that the external stress field will accelerate the diffusion process, and thus pro-mote the value of concentration while reduce the magnitude of stress induced by diffusion when the direction of diffusion is identical to that of external stress gradient with the coupling effects. The stress concentration around geometrical discontinuities and defects could be re-lieved by diffusion of solute.
     According to the equilibrium conditions of force and moment, the exact closed-form so-lutions of curvature and diffusion-induced stress in the film/substrate structure are derived. And then, the self-consistent diffusion model involving the coupling effects of thermal misfit stress and diffusion-induced stress are developed. The theoretical model is available for ana-lyzing the diffusion behavior, diffusion-induced bending and stress with the coupling effects of diffusion and stress. Results indicate that thermal misfit stress can extend or shorten the time for achieving the saturated state, but won't change the magnitude of curvature at saturated state. The diffusivity and other structure parameters have great influence on the diffu-sion-induced curvature and stress distribution, which are meaningful for structural optimiza-tion of film/substrate cantilever-based device.
     Based on energy minimization principle, the analytic solutions of diffusion-induced bending curvature and stress in film/substrate system are derived with coupling effects of rough surface and surface energy. The effects of surface roughness and residual surface stress have been analyzed quantitatively. Results show that the diffusion-induced stress and bending of film/substrate structure will dramatically changes with the variation of surface roughness and residual surface stress of the top and bottom surface.
     Aiming at the failure of electronic packing and interconnection structure under the coupling effects of stress and electric field, tensile creep experiments on creep behavior of copper have been carried out. The creep behavior is analyzed under different stress and elec-tric current. Based on the grain boundary diffusion theory, a simple expression has been de-rived for the prediction of the steady state creep rate. According to the comparison of experi-ment results and theoretical predictions, the steady creep strain rate and creep strain of copper increase with increasing stress and electric current. The creep deformation is controlled by grain boundary diffusion at lower stress level, while it's controlled by dislocation glide or climb at higher stress level. The theoretical predictions of steady creep strain rate agree with the experiment results under low stress and electric field.
引文
[1]温熙森.高可靠长寿命产品可靠性技术研究.国防科学技术大学.2006
    [2]涂善东.高温结构完整性原理.北京:科学出版社,2003
    [3]涂善东,陈舜青.慢速化学—力学过程及其测量,现代科技发展对实验力学带来的挑战和机遇.北京:北京理工大学出版社,2004:107-118
    [4]Sih GC, Tu ST. Why, where and when it becomes necessary to consider chemical reac-tion effects in mechanics. Fracture Mechanics Symposium 2003, Shanghai:ECUST Press. 2003:1-18
    [5]Hashemian HM. Aging management of instrumentation & control sensors in nuclear power plants. Nuclear Engineering and Design 2010,240:3781-3790
    [6]Luzio GDi, Cusatis G. Hygro-thermo-chemical modeling of high performance concrete. I: Theory Cement & Concrete Composites.2009,31:301-308
    [7]Petersen JC. Factors affecting the kinetics and mechanics of asphalt oxidation and the relative effects of oxidation products on age hardening. American Chemical Society, Di-vision of Fuel Chemistry.1996(4):1322-1344
    [8]Morrell PR, Patel M, Skinner AR. Accelerated thermal ageing studies on nitrile rubber O-rings. Polymer Testing 2003,22:651-656
    [9]王晓东,文九巴,魏金山.低合金高强度焊接结构钢扩散氢的研究进展.洛阳工学院学报.2002,23(2):16-20
    [10]乔利杰,王燕斌,褚武扬.应力腐蚀机理.北京:科学出版社.1993:92-106
    [11]Metzger DR, Sauve RG, Byrne TP. Overview of Computational Methods for Hydrogen Diffusion Coupled with Stress and Temperature Gradients in Zirconium Reactor Com-ponents. Pressure Vessels and Piping Division Conference.2006(2):477-484
    [12]董金梅,林建鸿.加氢反应器氢致开裂的有限元分析.压力容器.2001,18(3):47-49
    [13]谢飞.提高金属材料抗渗碳性能的表面处理技术.中国表面工程.2004(5):11-14,22
    [14]Tawancy HM, Abbas NM. Mechanism of carburization of high-temperature alloy. Journal of Materials Science.1992,27:1061-1069
    [15]谢飞,李雄,张丙生.乙烯裂解炉管的渗碳与抗渗碳[J].材料导报.2002,16:24-26
    [16]Bao LR, Lee AF, Lee CYC. Moisture absorption and hygrothermal aging in a bisma-leimide resin. Polymer.2001,42:7327-7333
    [17]Lin TY, Njoman B, Crouthamel D, Chua KH. Teo SY, Ma YY. The impact of moisture in mold compound preforms on the warpage of PBGA packages. Microelectronics Re-liability.2004.4(44):603-609
    [18]Zhang XF. Guo JD. Shang JK. Effects of Electromigration on Interfacial Reactions in the Ni/Sn-Zn/Cu Solder Interconnect. Journal of Electronic Materials.2009.38(3): 425-429
    [19]Prussin S. Generation and Distribution of Dislocations by Solute Diffusion. Journal of Applied Physics.1961,32(10):1876-1881
    [20]Lewi FA, Magennis JP, McKee SG, Ssebuwufu PJM. Hydrogen chemical potentials and diffusion coefficients in hydrogen diffusion membranes. Nature.1983,306(15):673-675
    [21]Opposites G, Szabo S, Beke DL, Guba Z, Szabo IA. Diffusion-induced Bending of Cu-Ni Thin Sheet Diffusion Couples. Scripta Materialia.1998,39(12):977-983.
    [22]Szabo IA, Daruka I, Beke DL. Diffusion and Stresses. Defect and Diffusion Forum. 1996,127:129-130
    [23]Bastin GF, Rieck GD. Diffusion in the Titanium-Nickel System:I. Occurrence and Growth of the Various Intermetallic Compounds. Metallurgical Transactions 1974,5(8): 1817-1826
    [24]Kodentsov AA, Rijnders M R, Van Loo F J J, Periodic pattern formation in solid state reactions related to the Kirkendall effect. Acta Materialia.1998,46(18):6521-6528
    [25]Frank W, Gosele U, Seeger A. Diffusion in Crystalline Solids, Edited by Murch G E and Nowick A S. Academic, New York.1984:P95
    [26]Levy RA. Microelectronic Materials and Process, Kluwer Academic, Boston, MA.1989: Chap 12
    [27]Lee DB. Philips Research Report.1975,5
    [28]Darken LS. Diffusion, Mobility and Their Interrelation Through Free Energy in Binary Metallic Systems. Transaction of American Institute of Mining, Metallurgical, and Pe-troleum Engineers.1948,175:184-201
    [29]Li JCM. Chemical potential for diffusion in a stressed solid. Scripta Metallurgica.1981, 15(1):21-28
    [30]Larche FC, Cahn JW. Effect of self-stress of diffusion an solids. Acta Metallurgica. 1982,30(10):1835-1845
    [31]Ko SC, Lee S, Chou YT. Chemical stresses in a square sandwich composite. Materials Science and Engineering A.2005, A409:145-152
    [32]Lee S, Wang WL, Chen JR. Diffusion-induced stresses in a hollow cylinder:Constant surface stresses. Materials Chemistry and Physics.2000,64:123-130
    [33]Lee S, Wang WL, Chen JR. Diffusion-induced stresses in a hollow cylinder. Materials Science and Engineering A.2000, A285:186-194
    [34]Larche FC, Cahn JW. The interactions of composition and stress in crystalline solids. Journal of Research of the National Bureau of Standards.1984,89(6):467-500
    [35]Aziz MJ. Thermodynamics of diffusion under pressure and stress:Relation to point de-fect mechanisms.1997,70(21):2810-2812
    [36]Zhang WS, Zhang XW, Zhang ZL. Effects of self-induced stress on the steady concen-tration distribution of hydrogen in fee metallic membranes during hydrogen diffusion. Physical Review B.2000,62(13):8884-8890
    [37]Wang WL. Lee S. Chen JR. Effect of chemical stress on diffusion in a hollow cylinder. Journal of Applied Physics.2002.91:9584-9590
    [38]Chu JL. Lee SB. The effect of chemical stresses on diffusion. Journal of Applied Phys-ics.1994.75(6):2823-2829
    [39]Yang FQ. Interaction between Diffusion and Chemical Stresses. Materials Science and Engineering A.2005, A409:153-159
    [40]Limarga AM, Wilkinson DS. Modeling of interaction between creep deformation and scale growth process. Acta Materialia.2007,55:189-201
    [41]Krom AHM, Maier HJ, Koers RWJ, Bakker A. The effect of strain rate on hydrogen distribution in round tensile specimens. Materials Science and Engineering A.1999,271: 22-30
    [42]Gerberich WW, Marsh PG, Hoehn W. Hydrogen induced cracking mechanism-Are there critical experiments? In Hydrogen effects in Materials:Proceedings of the Fifth International Conference on the Effect of Hydrogen the Behavior of Materials.1994: 539-553
    [43]Symons D. The effect of carbide precipitation on the hydrogen-enhanced fracture beha-vior of alloy 690. Metallurgical and Materials Transactions A.1998,29:1265-1277
    [44]Liang Y, Sofronis P, Dodds RH. Interaction of hydrogen with crack-tip plasticity:ef-fects of constraint on void growth. Materials Science and Engineering A.2004,366: 397-411
    [45]Feng JL, Varias AG, Sui YK. Finite element analysis for steady-state hydride-induced fracture in metals by composite model. International Journal of Solids and Structures 2006,43:2174-2192
    [46]Rozenak P, Loew A. Stress distributions due to hydrogen concentrations in electro-chemically charged and aged austenitic stainless steel. Corrosion Science.2008,50: 3021-3030
    [47]Petit J, Scott P. Comprehensive structural integrity-Fracture of materials from nano to macro. Elsevier.2003,6:65-101
    [48]Robertson IM. The effect of hydrogen on dislocation dynamica. Engineering Fracture Mechanics.2001,68:671-692
    [49]Hardie D, Liu S. The effect of stress concentration on hydrogen embrittlement of a low alloy steel. Corrosion Science.1996,38(5):721-733
    [50]Wang MQ, Akiyama E, Tsuzaki K. Effect of hydrogen on the fracture behavior of high strength steel during slow strain rate test. Corrosion Science.2007,49:4081-4097
    [51]Wang MQ, Akiyama E, Tsuzaki K. Determination of the critical hydrogen concentration for delayed fracture of high strength steel by constant load test and numerical calculation. Corrosion Science.2006.48:2189-2202
    [52]Mahmoodi S N, Afshari M, Jalili N. Nonlinear vibrations of piezoelectric microcanti-levers for biologically-induced surface stress sensing. Communications in Nonlinear Science and Numerical Simulation.2008.13:1964-1977
    [53]Kuru Y. Wohlschlogel M. Welzel U. Mittemeijer E J. Interdiffusion and stress devel-opment in Cu-Pd thin film diffusion couples. Thin Solid Films.2008.516:7615-7626
    [54]Cizek J, Prochazka I. Vlach M. Zaludova N. Danis S. Dobron P. Chmelik F. Brauer G. Anwand W. Mucklich A. Nikitin E, Gemmac R, Kirchheim R and Pundt A. Hydro-gen-induced buckling of Pd films studied by positron annihilation. Applied Surface Science.2008,255:241-244
    [55]Bevenot X, Trouillet A, Veillas C, Gagnaire H, Clement M. Hydrogen leak detection using an optical fibre sensor for aerospace applications. Sensors and Actuators B.2000, 67:57-67
    [56]Zhang WH, Turner KL. A mass sensor based on parametric resonance. Solid-State Sen-sor, Actuator and Microsystems Workshop, Hilton Head Island, South Carolina, June 6-10,2004:49-52
    [57]Shi XL, Chen Q, Fang J, Varahramyan K, Ji HF. A1203-coated microcantilevers for de-tection of moisture at ppm level. Sensors and Actuators B.2008,129:241-245
    [58]Boisen A, Thaysen J, Jensenius H, Hansen O. Environmental sensors based on micro-machined cantilevers with integrated read-out. Ultramicroscopy.2000,82(1-4):11-16
    [59]Cermak J. Diffusion-elastic phenomena Ⅰ. Theory of diffusion-induced elastic bending. Czechoslovak Journal of Physics.1973,23(12):1355-1369
    [60]Cermak J, Kufudakis A. Diffusion-elastic phenomena Ⅱ. Experiments. Czechoslovak Journal of Physics.1973,23(12):1370-1381
    [61]Stephenson G B. Plastic strain and stress during interdiffusion. Scripta Metallurgica. 1986,20:465-470
    [62]Stephenson GB. Deformation during interdiffusion. Acta Metallurgica.1988,36(10): 2663-2683
    [63]Daruka I, Szabo I A, Beke D L, Cserhati Cs, Kodentsov A. Diffusion-induced bending of thin sheet couples:Theory and experiments in Ti-Zr system. Acta Materialia.1996, 44(12):4981-4993
    [64]Yang FQ, Li JCM. Diffusion-induced beam bending in hydrogen sensors. Journal of Applied Physics.2003,93(11):9304-9309
    [65]Greek S., Chitica N. Deflection of surface-micromachined devices due to internal, ho-mogeneous or gradient stresses. Sensors and Actuators 1999,78:1-7.
    [66]Timoshenko S. Analysis of Bi-Metal Thermostats. Optics InfoBase:Journal of the Opt-ical Society of America A.1925,11:233-255
    [67]Hsueh CH, Evans AG. Residual Stresses in Metal/Ceramic Bonded Strips. Journal of the American Ceramic Society.1985,68:241-248
    [68]Hsueh C H. Modelling of elastic deformation of multilayers due to residual stresses and external bending. Journal of Applied Physics.2002,91:9652-9656
    [69]Zhang N-H. Thermoelastic stresses in multilayered beams. Thin Solid Films.2007, 515(23):8402-8406
    [70]HirschTK, Rocha ADS, Ramos FD, Strohaecker TR. Residual Stress Affected Diffusion during Plasma Nitriding of Tool Steels Metallurgical and Materials Transactions A. 2004,35:3523-3530
    [71]Ozen I, Gulgun MA. Residual Stress Relaxation and Microstructure in ZnO Thin Films. Advances in Science and Technology.2006.45:1316-1321
    [721 Vlasov NM. Fedik II. Diffusion-Induced Relaxation of Residual Stresses. Doklady Physic.2000.45(11):623-626
    [73]Ibach H. The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures. Surface Science Reports.1997,29(5-6):195-263
    [74]Muller P, Saul A. Elastic effects on surface physics. Elastic effects on surface physics. 2004,54(5-8):157-258
    [75]Cuenot S, Fretigny C, Demoustier-Champagne S, Nysten B. Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy. Physical Review B.2004,69:165410
    [76]Duan HL, Wang J, Huang ZP, Karihaloo BL. Eshelby formalism for na-no-inhomogeneities. Proceedings of the Royal Society A.2005,461:3335-3353
    [77]Duan HL, Wang J, Huang ZP, Karihaloo BL. Size-dependent effective elastic constants of solids containing nano-inhomogeneities with interface stress. Journal of the Mechan-ics and Physics of Solids.2005,53(7):1574-1596
    [78]Jing GY, Duan HL, Sun XM, Zhang ZS, Xu J, Li YD, Wang JX, Yu DP. Surface effects on elastic properties of silver nanowires:Contact atomic-force microscopy. Physical Review B.2006,73:235409-1-6
    [79]Jiang Q, Zhang S H, Li J C. Grain size-dependent diffusion activation energy in nano-materials. Solid State Communications.2004,130:581-584
    [80]Guisbiers G, Buchaillot L. Size and shape effects on creep anddiffusion at the nanoscale. Nanotechnology.2008,19:435701-1-5
    [81]Portavoce A; Chai G; Chow L; Bernardini J. Nanometric size effect on Ge diffusion in polycrystalline Si. Journal of Applied Physics.2008,104(10):104910-1-8
    [82]Cammarata RC. Surface and interface stress effects on interfacial and nanostructured materials. Materials Science and Engineering A.1997,237(2):180-184
    [83]Liang HY, Upmanyu M. Size-dependent elasticity of nanowires:Nonlinear effects. Physical Review B.2005,71:241403-1-4
    [84]Dingreville R, Qu JM, Cherkaoui M. Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. Journal of the Mechanics and Physics of Solids.2005,53(8):1827-1854
    [85]Gibbs JW. The Scientific Papers of J. Willard Gibbs Vol.1:Thermodynamics Long-mans and Green (New York) 1906
    [86]Gurtin ME, Murdoch A. A continuum theory of elastic material surfaces. Archive for Rational Mechanics and Analysis.1975,57(4):291-323
    [87]Sharma P, Ganti S. Size-dependent Eshelby's tensor for embedded nano-inclusions in-corporating surface/interface energies. Journal of Applied Mechanics.2004,71:663-671
    [88]Wang GF, Feng XQ. Surface effects on buckling of nanowires under uniaxial compres-sion. Applied Physics Letters.2009,94:141913
    [89]Zang J. Huang MH, Liu F. Mechanism for Nanotube Formation from Self-Bending Na-nofilms Driven by Atomic-Scale Surface-Stress Imbalance. Physics Review Letter.2007, (98):146102-1-4
    [90]Huang M. Boone C. Roberts M. Savage DE, Lagally MG, Shaji N. Qin H, Blick R. Nairn J A, Liu F. Nanomechanical Architecture of Strained Bilayer Thin Films:From Design Principles to Experimental Fabrication. Advanced Materials.2005,17(23): 2860-2864
    [91]McFarland A W, Poggi MA, Doyle MJ, Bottomley AL. Influence of surface stress on the resonance behavior of microcantilevers. Applied Physics Letters.2005,87:053505-1-3
    [92]Sadeghian H, Goosen JFL, Bossche A, Keulen F. Surface stress-induced change in overall elastic behavior and self-bending of ultrathin cantilever plates. Applied Physics Letters.2009,94:231908-1-3
    [93]Cheng YT, Verbrugge MW. The influence of surface mechanics on diffusion induced stresses within spherical nanoparticles. Journal of Applied Physics.2008,104: 083521-1-6
    [94]Zang J, Liu F. Modified Timoshenko formula f or bending of ultrathin strained bilayer films. Applied Physics Letters.2008,92:021905
    [95]Park H S. Quantifying the size-dependent effect of the residual surface stress on the re-sonant frequencies of silicon nanowires if finite deformation kinematics are considered. Nanotechnology.2009,20:115701-1-7
    [96]Weissmuller J, Duan HL. Cantilever Bending with Rough Surfaces. Physical Review Letters.2008,101(14):146102
    [97]Ergincan O, Palasantzas G, Kooi BJ. Influence of random roughness on cantilever cur-vature sensitivity. Applied Physics Letters.2010,96:041912-1-3
    [98]Lavrik NV, Tipple CA, Sepaniak MJ, Datskos PG. Enhanced chemi-mechanical trans-duction at nanostructured interfaces. Chemical Physics Letters.2001,336:371-376
    [99]Lavrik NV, Tipple CA, Sepaniak MJ, Datskos PG. Gold nano-structures for transduc-tion of biomolecular interactions into micrometer scale movements. Bio-med.Microdevices.2001,3(1):35-44
    [100]Duan HL, Xue YH, Yi X. Vibration of cantilevers with rough surfaces. Acta Mechanica Solida Sinica.2009,22(6):550-554
    [101]Heurle FM, Rosenberg R. Physics of Thin Film, Vol.7 (edited by Hsaa G, Francombe M, Hoffman R). Academic Press, New York.1973:257
    [102]Heurle FM, Ho PS. Thin Film:Interdiffusion and Reaction (edited by Poate J, Tu KN and Mayer J). Wiley, New York.1978:234
    [103]Fiks VB. Mechanism of ion mobility in metals. Soviet Physics-Solid State.1959,1: 14-28
    [104]Huntington H, Grone A. Current-induced marker motion in gold wires. Journal of Physics and Chemistry of Solids.1961,20:76-87
    [105]Blech IA. Electromigration in thin aluminum films on titanium nitride. Journal of Ap-plied Physics.1976.47:1203-1208
    [106]Blech IA. Herring C. Stress generation by electromigration. Applied Physics Letters. 1976.29:131-133
    [107]Williams RO. Diffusion of vacancies under stress a gradient. Acta Metalkirgica.1957.5: 55-56
    [108]Li CY, Borgesen P, Sullivan TD. Stress-migration related electromigration damage mechanism in passivated, narrow interconnects. Applied Physics Letters.1991,59: 1464-1466
    [109]Lloyd JR. Electromigration and mechanical stress. Microelectronic Engineering.1999, 49:51-64.
    [110]Kirchheim R. Stress and electromigration in Al-lines of integrated circuits. Acta Metal-lurgica et Materialia.1992,40(1):309-323
    [111]Clement JJ. Reliability analysis for encapsulated interconnect lines under dc and pulsed dc current using a continuum electromigration transport model. Journal of Applied Physics.1997,82(12):5991-6000
    [112]Korhonen MA, Bφrgesen P, Tu KN, Li CY. Stress evolution due to electromigration in confined metal lines. Journal of Applied Physics.1993,73(8):3790-3799
    [113]Knowlton BD, Clement JJ, Thompson CV. Simulation of the effects of grain structure and grain growth on electromigration and the reliability of interconnects. Journal of Applied Physics.1997,81(9):6080 6073
    [114]Rzepka S, Korhonen MA, Weber ER, Li CY. Three-dimensional finite element simula-tion of electro and stress migration effects in interconnect lines. Materials reliability in microelectronics Ⅶ; Proceedings of the Symposium, San Francisco, CA; UNITED STATES.1997,473:329-335
    [115]Garikipati K, Bassman L, Deal M. A lattice-based micromechanical continuum formu-lation for stress-driven mass transport in polycrystalline solids. Journal of the Mechan-ics and Physics of Solids.2001,49(6):1209-1237
    [116]Sarychev ME, Zhitnikov YV, Borucki L, Liu CL, Makhviladze TM. A new, general model for mechanical stress evolution during electromigration. Thin Solid Films.2000, 365:211-218
    [117]Wang PC, Cargill GS, Noyan IC, Hu CK. Electromigration-induced stress in aluminum conductor lines measured by x-ray microdiffraction. Applied Physics Letters.1998, 72(11):1296-1298
    [118]Wang H, Bruynseraede C, Maex K. Impact of current crowding on the electromigra-tion-induced mass transport. Applied Physics Letters.2004,84:517-519
    [119]Ru CQ. Thermomigration as a driving force for instability of electromigration induced mass transport in interconnect lines. Journal of Materials Science.2000,35: 5575-5579
    [120]Nguyen HV, Salm C, Krabbenborg B, Weide-Zaage K, Bisschop J, Mouthaan AJ, Ku-per FG. Effect of Thermal Gradients on the Electromigration Lifetime in Power Elec-tronics. In:IEEE 42nd Annual International Reliability Physics Symposium,25-29 April 2004. Phoenix. Arizona. USA.2004:619-620.
    [121]Lloyd JR. Shatzkes M. Challaner DC. Kinetic study of electromigration failure in Cr/Al-Cu thin film conductors covered with polyimide and the problem of the stress dependent activation energy, in:Proceedings of the IRPS. IEEE.1988:216-225
    [122]Schwarzenberger AP, Ross CA. Evens JE. Greer AL. Electromigration in the presence of a temperature gradient:experimental study and modeling. Journal of Electronic Ma-terials.1988,17:473-478.
    [123]Blech IA, Meieran ES. Direct transmission electron microscope observations of electro-transport in aluminum films, Applied Physics Letters.1967,11:263-266.
    [124]Arnaud L, Berger T, Reimbold G. Evidence of grain-boundary versus interface diffu-sion in electromigration experiments in copper damascene interconnects. Journal of Applied Physics.2003,93:192-204
    [125]Arzt E, Kraft Q, Nix W D, Sanchez J E. Electromigration failure by shape change of voids in bamboo lines. Journal of Applied Physics.1994,76:1563-1571
    [126]Kraft O, Arzt E. Electromigration mechanisms in conductor lines:void shape changes and slit-like failure. Acta Materialia.1997,45:1599-1611
    [127]Chuang TJ, Kagawa KI, Rice JR, Sills LB. Non-equalibrium models for diffusive cavi-tation of grain interfaces. Acta Metallurgica.1979,27:265-284
    [128]Martinez L, Mix WD. Numerical study of cavity growth controlled by coupled surface grain boundary diffusion. Metallurgical and Materials Transactions A.1982,13: 427-437
    [129]Zaporozhets TV, Gusak AM, Tu KN, Mhaisalkar SG.Three-dimensional simulation of void migration at the interface between thin metallic film and dielectric under electro-migration. Journal of Applied Physics.2005,98:103508-103518
    [130]Dong X, Li Z. An analytical solution for motion of an elliptical void under gradient stress field. Applied Physics Letters.2009,94:071909-1-3
    [131]Scorzoni A, Neri B, Caprile C, Fantini F. Electromigration in thin-film interconnection lines:models, methods and results. Materials Science Reports.1991,7(4-5):143-220
    [132]Basaran C, Lin MH, Ye H. A thermodynamic model for electrical current induced damage. International Journal of Solids and Structures.2003,40:7315-7327
    [133]Wilkening J, Borucki L, Sethian JA. Aanlysis of Stress-Driven Grain Boundary Diffu-sion. Part I. SIAM Journal on Applied Mathematics.2004,64(6):1839-1863
    [134]Mullins WW. Mass transport at interfaces in single component systems. Metallurgical and Materials Transactions A.1995,26:1917-1929
    [135]Li W, Tan CM, Hou Y. Dynamic simulation of electromigration in polycrystalline in-terconnect thin film using combined Monte Carlo algorithm and finite element model-ing. Journal of Applied Physics.2007,101:104314
    [136]Dong X, Zhu P, Li Z, Sun J, Boyd JD. Electromigration-induced stress in a confined bamboo interconnect with randomly distributed grain sizes. Microelectronics Reliabili-ty.2010,50:391-397
    [137]Nabarro FRN. Deformation of Crystals by the Motion of Single Ions. Report of a Con-ference on Strength of Solids (Bristol).1948:75-90
    [138]Herring C. Diffusional Viscosity of a Polycrystalline Solid. Journal of Applied Physics. 1950.21:437-445
    [139]Coble RL. A model for boundary diffusion controlled creep in polycrystalline materials. Journal of Applied Physics.1963.34:1679-1684
    [140]Needleman A, Rice J R. Plastic Creep Flow Effects in the Diffusive Cavitation of Grain Boundaries. Acta Metallurgica.1980,28:1315-1332
    [141]Lloyd JR. Electromigration and Mechanical Stress. Microelectronic Engineering.1999, 49:51-46
    [142]Kobrinsky M J, Thompson CV, Gross ME. Diffusional creep in damascene Cu lines. 2001,89(1):91-98
    [143]Tu KN, Brown LM. Grain boundary electromigration and creep. Materials Chemistry and Physics.1992,32:49-55
    [144]Suo A. A Continuum Theory That Couples Creep and Self-Diffusion. Transaction of American Institute of Mining, Metallurgical, and Petroleum Engineers.2004,71: 646-651
    [145]Klinger L, Glickman E, Katsman A, Levin L. Time dependence of stress and hillock distributions during electromigration in thin metal film interconnections. Materials Science and Engineering:B.1994,23(1):15-18
    [146]Glickman EE. Short stripe effect and electromigration stress. Microelectronic Engi-neering.2002,64(1-4):383-389
    [147]Nucci JA, Straub A, Bischoff E, Arzt E, Volkert CA. Growth of electromigra-tion-induced hillocks in Al interconnects. Journal of Materials Research.2002,17(10): 2727-2735
    [148]Liu HY, Zhu QS, Zhang L, Wang ZG. Enhanced stress relaxation of Sn-3.8Ag-0.7Cu solder by electrical current. Journal of Materials Research.2010,25(6):1172-1178
    [149]Kim DK, Nix WD, Deal MD, Plummer JD. Creep-controlled diffusional hillock for-mation in blanket aluminum thin films as a mechanism of stress relaxation Journal of Materials Research.2000,15(8):1709-1718
    [150]Gladkikh A, Lereah Y, Glickman E, Karpovski M, Palevski A, Schubert J. Hillock for-mation during electromigration in Cu and Al thin films:Three-dimensional grain growth. Applied Physics Letters.1995,66(10):1214-1215
    [151]Lu W, Kim D. Void Evolution Via Coupled Creep and Electromigration in Comfined Small Scale in Terconnects. Proceedings of ASME International Mechanical Engineer-ing Congress and Exposition. November 5-10,2006, Chicago, Illinois, USA.
    [152]Klypin AA. Creep of metals under the influence of electric current. Strength of Mate-rials.1973,5(9):1064-1068
    [153]Chen R, Yang FQ. Impression creep of a Sn60Pb40 alloy:the effect of electric current. Journal of Physics D:Applied Physics.2008,41:155406-1-7
    [154]Chen R, Yang FQ. Effect of DC Current on the Creep Deformation of Tin. Journal of Electronic Materials.2010,39(12):2611-2617
    [155]Chen R. Yang FQ. Effect of electric current on the creep deformation of lead. Materials Science and Engineering:A.2011.528(6):2319-2325
    [156]Li ZH, Dong Y. Li S. Xu L M, Sun J. Electromigration-induced Coble creep in poly-crystalline materials. APPLIED PHYSICS LETTERS 2007.91:191902-1-3
    [157]Hsiao CM,Zhang TY. in:Microstructure and Properties of Materials. Li JCM. (Ed.). World Scientific, New Jersey.2000 (Chapter 4).
    [158]Baierlein R. The elusive chemical potential. American Journal of Physics.2001,69: 423-434
    [159]Lewis GN. Outlines of a new system of thermodynamic chemistry. Proceedings of the American Academy of Arts and Sciences.1907,43:259-293
    [160]Li JCM. Physical chemistry of some microstructural phenomena. Metallurgical and Materials Transactions A.1978,9:1353-1380
    [161]Zhang TY, Zheng YP. Effect of Absorption and Desorption on Hydrogen Permeation-I. Theoretical Modeling and Room Temperature Verification. Acta Materialia.1998, 46(14):5023-5033
    [162]Pumphrey PH. On the boundary conditions for hydrogen permeation through cathodi-cally charged iron and mild steel. Scripta Metallurgica.1980,14:695-701
    [163]Zhang TY, Zheng YP, Wu QY. On the boundary conditions of electrochemical hydro-gen permeation through iron. Journal of The Electrochemical Society.1999,146 (5): 1741-1750
    [164]Zhang TY, Ko SC, Lee S. Effects of absorption and desorption on the chemical stress field. Journal of Applied Physics.2002,91(4):2002-2008
    [165]Quan GF. Experimental Study of Hydrogen Diffusion Behaviors in Stress Fields. Cor-rosion.1997,53(2):99-102
    [166]Ko SC, Zhang T Y, Lee S. Influence of chemical stresses in the permeation, one-side and two-side charging processes. Journal of Applied Physics.2007,101:113521
    [167]Yen JY, Hwu J G. Enhancement of silicon oxidation rate due to tensile mechanical stress. Applied Physics Letters.2000,76 1834-1836
    [168]Sanchez J, Fullea J, Andrade C and Andres P L Hydrogen in a-iron:Stress and diffusion. Physical Review B.2008,78:014113
    [169]Fujii T, Nazama T, Makajima H, Horita R. "A safety analysis on overlay disbonding of pressure vessels for hydrogen service" in:Hydrogen Problems in Steels, Proceeding 1st International Conference, ASM, Metals Park, Ohi.1982, pp361-368
    [170]Yen JY, Hwu J G. Enhancement of silicon oxidation rate due to tensile mechanical stress. Applied Physics Letters.2000,76:1834-1835
    [171]Wang M Q, Akiyama E, Tsuzaki K. Determination of the critical hydrogen concentra-tion for delayed fracture of high strength steel by constant load test and numerical cal-culation. Corrosion Science.2006,48:2189-2202
    [172]Kanezakia T, Narazakib C, Minea Y, Matsuoka S. Murakami Y. Effects of hydrogen on fatigue crack growth behavior of austenitic stainless steels. International Journal of Hy-drogen energy.2008,33:2604-2619
    [173]Battiston FM. Ramseyer JP. Lang HP. A chemical sensor based on a microfabricated cantilever array with simultaneous resonance-frequency and dending readout. Sensors and Actuators B.2001.77:122-131
    [174]Braun T. Ghatkesar MK. Backmann N. Grange W. Boulanger P. Letellier L. Lang HP. Bietsch A. Gerber C, Hegner M. Quantitative time-resolved measurement of membrane protein-ligand interactions using microcantilever array sensors. Nature Nanotechnology 2009,4:179-185
    [175]Fritz J,Baller MK, Lang HP, Rothuizen H, Vettiger P, Meyer E, Guntherodt HJ, Gerber Ch, Gimzewski JK. Translating Biomolecular Recognition into Nanomechanics. Science.2000,288:316-318
    [176]Begley MR, Utz M. Multiscale modeling of absorbed molecules on freestanding micro-fabricated structures. AMSE Journal of Applied Mechanics.2008,75:021008
    [177]Berger R, Delamarche E, Lang HP, Gerber Ch, Gimzewski JK, Meyer E, Guntherodt H J. Surface stress in the self-assembly of alkanethiols on gold. Science.1997,276: 2021-2024
    [178]Jensenius H, Thaysen J, Rasmussen AA, Veje LH, Hansen O, Boisen A. A microcanti-lever-based alcohol vapour sensorapplication and response model. Applied Physics Letters.2000,76(18):2615-2617
    [179]Greek S, Chitica N. Deflection of surface-micromachined devices due to internal ho-mogeneous or gradient stresses. Sensors and Actuators.1999,78(1):1-7
    [180]Campbell DS. Mechanical properties of thin films, in Handbook of Thin Film Technol-ogy, Maissel L I and Glang R ed. (New York:McGraw-Hill).1970
    [181]Chakravarty S, Gupta M, Schmidt H, Gupta A. Effect of Compressive Stress on Fe Self-Diffusion in Nanocrystalline FeN(Zr) Thin Films. Diffusion Fundamentals.2008,8: 10.1-9
    [182]Gupta M, Gupta A, Chakravarty S, Gupta R, Gutberlet T. Iron self-diffusion in FeZr/57FeZr multilayers measured by neutron reflectometry:Effect of applied compres-sive stress. Physical Review B.2006,74(10):104203-1-10
    [183]Sakamoto Y, Chen FL, Kinari Y. Permeability and diffusivity of hydrogen through Pd-Y-In(Sn, Pb) alloy membranes. Journal of Alloys and Compounds.1994,205(1-2): 205-210
    [184]Wasz ML, McLellan RB. The diffusion of hydrogen at low temperatures in Pd-Er-H ternary solutions. Acta Metallurgica et Materialia.1993,41(7):1971-1977
    [185]Sanders P G, Eastman J A, Weertman J R. Elastic and Tensile Behaviour of. Nanocrys-talline Copper and Palladium. Acta Metallurgica.1997,45:4019-4025
    [186]Barsoum M. Fundamentals of Ceramics (New York:McGraw-Hill) 1997:401
    [187]Okada Y, Tokumaru Y. Precise determination of lattice parameter and thermal expansion coefficient of silicon between 300 and 1500 K. Journal of Applied Physics.1984,56: 314-320
    [188]Kuru Y, Wohlschlogel M, Welzel U, Mittemeijer E J. Coefficients of thermal expansion of thin metal films investigated by non-ambient X-ray diffraction stress analysis. Sur-face and Coatings Technology.2008.202:2306-2309
    [189]Machunze R. Janssen GCAM. Stress gradients in titanium nitride thin films. Surface and Coatings Technology.2008.203:550-553
    [190]Clevenger LA. Mutscheller A. Harper JME. Cabral C. Barmak K. The relationship be-tween deposition conditions, the beta to alpha phase transformation, and stress relaxa- tion in tantalum thin films. Journal of Applied Physics.1992,72:4918-4924
    [191]Woehrl N. Buck V. Influence of hydrogen on the residual stress in nanocrystalline di-amond films Diamond and Related Materials.2007,16:748-752
    [192]Shaler AJ. in Structure and Properties of Solid Surfaces, Gomer R and Smith CS, eds. (University of Chicago, Chicago) 1953, p.5
    [193]Cammarata RC. Surface and interface stress effects in thin films. Progress in Surface Science.1994,46:1-38
    [194]Gurtin ME, Weissmuller J, Larche F. A general theory of curved deformable interfaces in solids at equilibrium. Philisophical Magazine A 1998,78(5):1093-1109
    [195]Shenoy VB. Atomistic calculations of elastic properties of metallic fcc crystal surfaces. Physical Review B.2005,71(9):094104
    [196]Miller RE, Shenoy VB. Size-dependent elastic properties of nanosized structural ele-ments Nanotechnology 2000,11:139-147
    [197]Desikan R, Lee I, Thundat T. Effect of nanometer surface morphology on surface stress and adsorption kinetics of alkanethiol self-assembled monolayers. Ultramicroscopy. 2006,106(8-9):795-799
    [198]Stoleru VG, Pal D, To web E. Self-assembled (In,Ga) As/GaAs quantum-dot nanostruc-tures:strain distribution and electronic structure. Physica E.2002,15:131-152
    [199]Deneke Ch, Muller C, Jin-Phillipp NY, Schmidt OG. Diameter scalability of rolled-up In(Ga)As/GaAs nanotubes. Semiconductor Science and Technology.2002,17: 1278-1281
    [200]Zang J, Liu F. Modified Timoshenko formula for bending of ultrathin strained bilayer films. Applied Physics Letters.2008,92:021905
    [201]Pai PL, Ting CH. Selective electroless copper for VLSI interconnection. IEEE Electron Devices Society.1989,10:423-425
    [202]Suo Z. Electromigration-induced Dislocation Climb and Multiplication in Conducting Lines. Acta Metallurgica et Materialia.1994,42(11):3581-3588
    [203]Baker SP, Joo YC, Knaub M P, Artz E. Electromigration Damage in Mechanically De-formed Al Conductor Lines:Dislocations as Fast Diffusion Paths. Acta Materialia. 2000,48:2199-2208
    [204]Liu HY, Zhu QS, Zhang L, Wang ZG, Shang JK. Enhanced stress relaxation of Sn-3.8Ag-0.7Cu solder by electrical current. Journal of Materials Research.2010,25(6): 1172-1178
    [205]Burton B. Greenwood GW. The Contribution of Grain-Boundary Diffusion to Creep at Low Stresses. Metal Science.1970,4(1):215-218
    [206]Burton B. Bastow BD. The diffusional creep of binary copper alloys. Acta Metallurgica. 1973.21(1):13-20
    [207]Hershkowitz M. Blech IA. Komem Y. Stress relaxation in thin aluminum films. Thin Solid Films.1985.130:87-93
    [208]Koleshko VM. Belitsky VF. Kiriushin IV. Stress relaxation in thin aluminum films. Thin Solid Films.1986.142:199-212
    [209]Glickman E, Nathan M. On the unusual electromigration behavior of copper intercon-nects. Journal of Applied Physics.1996,80(7):3782-3791
    [210]Lee D. Structural changes during the superplastic deformation. Metallurgical and Mate-rials Transactions B.1970,1(1):309-311
    [211]Spingarn JR. Diffusional creep and diffusionally accommodated grain rearrangement. Acta Metallurgica.1978,26(1389-1398)
    [212]Frost H J, Ashby MF. Deformation-Mechanism Maps (Pergamon Press, Oxford,1982)
    [213]Surholt T, Herzig Chr. Grain boundary self-diffusion in Cu polycrystals of different purity. Acta Metallurgica.1997,45(9):3817-3823
    [214]Horvath J, Birringer R, Gleiter H. Diffusion in nanocrystalline material. Solid State Communications.1987,62(5):319-322

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700