高温煤气化炉中煤灰熔融、流动和流变行为特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤灰在高温下的熔融性、流动性与流变性对煤气化炉的设计、稳定运行、操作参数的确定以及评价煤种适应性有着重要的意义。相关问题广泛地存在于气化炉的实际操作过程中。本论文利用本课题组自主研发的多气氛灰熔融仪、高温粘度计和高温流变仪及世界著名的热力学软件FactSage、X-射线衍射仪、X-荧光分析仪和电子扫描电镜对我国53种典型煤种中煤灰样的高温特性、化学组分、矿物组成和微观结构进行了系统而深入的研究。在本篇论文中系统研究了化学组分对煤灰熔融温度、临界温度与全液相温度的影响,揭示了不同液相相对含量下对应温度分别与熔融温度和临界温度之间存在的相关性;通过矿物分析、微观结构和元素分析发现了不同气氛对煤灰熔融温度影响的主要原因;利用热力学软件FatSage计算出的热力学数据,建立了多套煤灰高温特性模型用于预测其熔融温度、临界温度和在不同剪切速率下的粘度;系统研究了煤灰高温流变特性,并对其流型进行数学模拟;考察了来自同一煤种的灰烬与灰渣的差异性与相似性,论证了用实验室制得的灰烬预测从真实气化炉中排出灰渣高温特性的合理性。
     (1)利用多气氛灰熔融仪测定了氧化物CaO、Fe2O3、MgO和SiO2/Al2O3对煤灰熔融温度的影响,并利用热力学软件FactSage计算了添加有上述氧化物后煤灰样品的全液相温度和不同温度下的矿物组成,绘制了不同组分的三元相图。研究结果表明:煤灰样品的熔融温度随上述氧化物含量增加的变化趋势与热力学软件FactSage计算出的煤灰样品全液相温度的变化趋势相似,但计算得到的全液相温度均高于其熔融温度。
     (2)测定了我国21种煤灰样品在惰性气氛(Ar>99.99 vo1.%)和强还原气氛(H2>99.99 vo1.%)下的熔融温度。研究结果表明:由于在强还原气氛下煤灰样品中熔点较低的氧化铁全部被还原为熔点较高的单质铁,同时煤灰样品在高温下的微观结构由网状结构变为钢架结构使得三角灰锥在高温下不易变形,以上两个因素使得煤灰样品在强还原气氛(H2>99.99 vo1.%)下的熔融温度总是高于在惰性气氛(Ar>99.99 vo1.%)下的熔融温度。
     (3)利用热力学软件FactSage计算得到的60组人工配灰样品在惰性气氛(Ar>99.99vo1.%)和强还原气氛(H2>99.99 vo1.%)下的全液相温度与样品在这两种气氛下的熔融温度进行线性回归,得到了全液相熔融温度模型,在本模型中充分考虑了煤灰中矿物质对熔融温度影响这一因素,最后利用该模型成功的预测了我国煤灰样品在在惰性气氛(Ar>99.99 vo1.%)和强还原气氛(H2>99.99 vo1.%)中的熔融温度。
     (4)利用高温粘度计测定了氧化物CaO、Fe2O3、MgO和SiO2/Al2O3对煤灰样品临界温度的影响,比较了由热力学软件FactSage计算得到的不同液相相对含量下对应温度与煤灰样品临界温度的关系。研究结果表明:煤灰样品的临界温度均随着CaO、Fe2O3、MgO和SiO2/Al2O3含量的增加先减小达到最低值而后又增大,呈凹形曲线变化。
     (5)借助主要化学组分相同的人工配灰样品与煤灰样品在高温下流动特性具有相似性这一特点,利用高温粘度计测定了40组人工配灰样品的临界温度,并将热力学软件FactSage计算出的人工配灰样品在不同液相相对含量下对应的温度与其临界温度进行线性相关性比较,利用相关性最好的模型预测了我国煤灰样品的临界温度。研究结果表明:人工配灰样品在高温下的临界温度与热力学软件FactSage计算得到的不同液相相对含量对应的温度的线性相关性随着液相相对含量的增加在不断增加,其中人工配灰样品的全液相温度与其临界温度的线性相关性最好(R>0.900),同时具有良好的精度(σ=29℃),获得的全液相临界温度模型也成功的对我国煤灰样品的临界温度进行了很好的预测性。
     (6)利用高温流变仪测定了我国45种煤灰样品在不同固体结晶粒子相对含量和不同剪切速率下的粘度,利用热力学软件FactSage计算了煤灰样品的全液相温度、在不同温度下煤灰样品中固体结晶粒子的相对体积含量和矿物组成,根据煤灰样品在不同温度下固体结晶粒子的相对体积含量的不同,将其粘温曲线图进行分段模拟。研究结果表明:对煤灰样品在高温下形成的熔渣中的固体粒子体积相对含量分别为0 vo1.%、0-10.00vo1.%和10.00-40.00 vo1.%三个区间段的粘度分别进行模拟,得到的高温粘度模型可以很好的预测我国煤灰样品高温粘度,其中多数煤灰样品高温粘度的实验值与预测值的绝对差值在实验误差范围之内。
     (7)利用高温流变仪测定了煤灰的高温流变特性,研究了温度对煤灰流型的影响,剪切速率对粘度的影响,以及温度对煤灰屈服应力的影响。研究结果表明:当温度高于煤灰的全液相温度时,煤灰的流型均表现为牛顿型流体,然而随着温度的降低,固体结晶粒子的不断析出,其流型变为Bingham流体、Casson流体和Herschel-Bulkley流体,同时随着固体结晶粒子相对含量的增加,煤灰样品在高温下剪切稀化现象越来越明显,同时煤灰样品的屈服应力也随着温度的降低在不断增加。
     (8)利用多气氛灰熔融仪和高温粘度计研究了来自同一煤种经实验室制的灰烬与经气化炉直接排出灰渣的高温熔融性与流行性的差异性与相似性。研究结果表明:取白同一煤种的灰烬与灰渣的化学组分与物相结构有一定的差异性,其中灰烬中的主要氧化物A12O3和Fe2O3与微量氧化物TiO2、Na2O、K2O和SO3均高于灰渣,同时灰烬的物相结构为晶态特征,而灰渣为非晶态特征,并且在灰烬的微观结构中颗粒是成团聚状,而灰渣中的颗粒无团聚呈几何形分布,灰烬的熔融温度与临界温度总是高于灰渣,同时灰烬粘度滞后性比灰渣的更加明显,但两者在高温下的差异性均在气化炉操作条件浮动范围内,同时助熔剂对灰烬与灰渣的高温熔融性与流动性的影响是相似的,因此利用实验室制的灰烬可以较好的反映从气化炉中排出灰渣的高温熔融性与流动性。
The development of next generation of coal fired power stations using integraed gasification-combined cycle addressed a number of problems concerning the increase of emissions of greenhouse gases, sulphur dioxide, nitrogen oxides and particulates from pulverised coal fired power stations. In entrained flow gasifiers the coal ash should be liquid and fluid enough to be tapped. The fusiblity, flow charactersitics and rheological properites of the molten coal ash are, therefore, very important factors affecting the gasification regimes and operating costs. It is, therefore, important to study the properties of coal ash at ultra high temperature for selection of coals, flux additions and coal blending to optimise industrial operations, and to reduce operating costs. In this work, we studied the fusibility, flow characteristic and rheological properties of various ashes derived from fifty-three Chinese coal ash at the ultra high temperature. The Chemical analysis, mineralogical analysis, microstructural analysis, and the other physical properties at high temperature were ananlzed with X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), fusion temperature furance, the high temperature rotational viscometer, the high temperature rheometer, and thermodynamic software package FactSage. The effect of chemical composition on ash fusion temperature, the temperature of critical viscosity, and liquidus temperature of coal ash samples were systematically studied. The main contents are listed as follows:
     (1) The ash fusion temperatures (AFTs) of coal mineral matter at high temperature are important parameters for all gasifiers. Experiments have been conducted in which mixtures of selected coal ashes and SiO2, Al2O3, CaO, Fe2O3, MgO were subjected to the standard test for ash fusibility. The computer software package FactSage has been used to calculate the liquidus temperatures of coal ash samples and the proportions of the various phases present as a function of temperature. The results show that the AFTs of coal ash samples first decrease with increasing CaO, Fe2O3, and MgO contents, then reach a minimum value, before increasing again. However, for the effect of S/A ratio, its AFTs are always increased with increasing S/A ratios. The measured AFTs all show variations with mixture composition that correlated closely with liquidus temperatures for the appropriate pseudo-ternary phase diagrams. The liquidus and AFTs generally showed parallel compositional trends, but are displaced from each other because of the influence of additional basic components in the coal ash. The liquidus temperatures of coal ash samples are always higher than its AFTs.
     (2) The ash fusion temperatures of twenty-one typical Chinese coal ash samples were measured in Ar and H2 atmospheres. Since the iron oxides in coal ash samples fused under a H2 atmosphere are reduced to metallic iron, and lead to changes of mineral species and micro-morphology, the AFTs in a H2 atmosphere are always higher than those with an Ar atmosphere.
     (3) The computer software package FactSage was used to calculate the temperatures corresponding to different proportions of liquid phase and predict phase the equilibria of and sixty synthetic ash samples. Empirical liquidus models were derived to correlate the AFTs under both Ar and H2 atmospheres of sixty synthetic ash samples with their liquidus temperatures calculated by FactSage. These models were used to predict the AFTs of twenty-one Chinese coal ash samples in Ar and H2 atmospheres and then the AFT differences between the atmospheres was analyzed. The results show that for both atmospheres, there was an apparently linear correlation and good agreement between the AFTs of synthetic ash samples and the liquidus temperatures calculated by FactSage (R> 0.89,σ<30℃). These models predict the AFTs of coal ash samples with a high level of accuracy (SE<30℃).
     (4) The viscosity and the temperature of critical viscosity values of eighteen synthetic slag samples formed from mixtures of five oxides (SiO2, Al2O3, CaO, Fe2O3, and MgO) have been measured. Moreover, the effects of these oxides on the temperature of critical viscosity values and the microstructure seen in metallurgical microscopy of synthetic slag samples have been analyzed. The computer software package FactSage has been used to calculate the temperatures corresponding to different proportions of liquid phase of synthetic slag samples. The results show that the temperature of critical viscosity values of synthetic slag samples decrease with increasing CaO, Fe2O3 and MgO contents and with increasing SiO2/Al2O3 ratio (named S/A ratio), then reach a minimum value, before increasing again. These curves are similar to the variations in the temperatures corresponding to liquid phase contents> 80.00 wt.% seen with increasing contents of these oxides and with an increase in the S/A ratio. Moreover, most of the temperature of critical viscosity values of the synthetic slag samples lie between the temperatures corresponding to liquid phase contents of 80.00 wt.% and 100.00 wt.%, respectively.
     (5) The temperatures of critical viscosity of eight coal ash samples and forty synthetic ash samples have been measured. The computer software package FactSage has been used to calculate the temperatures corresponding to different proportions of liquid phase of synthetic ash samples. Empirical liquidus model has been derived to correlate the temperature of critical viscosity of the forty synthetic ash samples with their liquidus temperatures calculated by FactSage. The liquidus model was then used to predict the temperature of critical viscosity of the eight coal ash samples. The results show that there was an apparently linear correlation and good agreement between the temperature of critical viscosity of the synthetic ash samples and the liquidus temperatures calculated by FactSage (R> 0.900,σ< 30℃). This model predicts the temperature of critical viscosity of coal ash samples with a high level of accuracy. Meanwhile, the temperature of critical viscosity is a result of many complex factors; hence, the adequacy of liquidus model in the paper is limited by a range of conditions.
     (6) The viscosities of forty-five coal ash samples at high temperature have been measured under different temperatures and shear rates. The computer thermodynamic software package FactSage has been used to predict liquidus temperatures, volume fractions of crystallized solid particles (φ), and the compositions of remaining liquid phase for 45 coal ash samples. The flow properties of completely liquid and partly crystallized coal ash samples have been predicted by three viscosity models. The Urbain formalism has been modified to describe the viscosities of fully liquid slag and homogeneous remaining liquid phase in coal ash samples. The modified Einstein equation and Einstein-Roscoe equation have been used to describe the viscosities of heterogeneous coal ash samples ofφ<10.00 vol.% andφ≥10.00 vol.%, respectively. These three models provided a good description of the experimental data of fully liquid and heterogeneous coal ashes samples. The new models also predicted flow properties of mixtures of coal ashes with CaO, Fe2O3, MgO, SiO2, and Al2O3.
     (7) The rheological characteristic of two coal ash from entrained gasifiers at high temperature was studied. Slag samples have been analyzed by X-ray fluorescence, X-ray diffraction, and scanning electron microscopy. The rheological behavior of the slag has been investigated experimentally using a high-temperature rheometer at temperatures. The effects of the shear rate and temperature on the rheological behavior of the slags have been explored. Moreover, the observed rheological behavior of the slag has been correlated with its solid-phase content, as calculated with the aid of the computer software package FactSage. The results show that the sensitivity of the slag viscosity to temperature decreases with increasing rotation speed. Above its liquidus temperature calculated by FactSage, the slags behave as a Newtonian fluid; below its liquidus temperature, however, the rheological behavior of the slags becomes non-Newtonian owing to its increased solid-phase content. Meanwhile, Slags containing a number of crystalline particles shows dramatic shear-thinning and thixotropic behavior. Moreover, the shear-thinning behavior of the slags becomes ever more distinct as the temperature is decreased. The yield stress values of the slag and the number and particle size of the crystalline particles in the slag increase with decreasing temperature.
     (8) The physical properties of ash and slag were analyzed with X-ray fluorescence, X-ray diffraction and scanning electron microscopy. The fusion temperature and the experiment viscosity were measured for the ash and slag with the addition of fluxing CaO. Ash and slag have properties that were approximated by the SiO2-Al2O3-FeO-CaO system. The computer software package FactSage was used to predict the proportion of solid phase and the mineral phase formed as a function of the composition and the temperature of the SiO2-Al2O3-FeO-CaO system. The results show that the fusion temperatures and the temperature of critical viscosity (Tcv) of ash are always higher than that of slag. Also, the viscosity of ash is always higher than that of slag at the slag tapping temperature range of 1400-1500℃, and the hysteresis between the heating and cooling cycles for ash is more obvious than that of slag because of different physical properties. The fusion temperature and Tcv of ash and slag decrease with increasing CaO content, whereas those values increase rapidly with CaO content higher than 35%. Also, the sensitivity of the viscosity of the ash and slag with temperature decreases with increasing CaO content because the sensitivity of the phase equilibria of in the SiO2-Al2O3-FeO-CaO system to temperature excursions decreases with increasing CaO content.
引文
[1]International Energy Outlook 2008[M]. www.eia.doe.gov/cabs/China/Full.html
    [2]崔君鸣,常毅军.中国能源保障与煤炭新格局的形成[M].北京:煤炭工业版社.2010.
    [3]Higman C, Burgt M. Gasification[M]. Burlington:Elsevier Science,2008.
    [4]Williams A, Pourkashanian M, Jones J M. Combustion and gasification of coal[M]. New York:Taylor & Francis.2000.
    [5]Brooks C T, Stroud H J F, Tart K R. British Gas/Lurgi slagging gasifier. In:Meyers R A. Handbook of synfuels Technology [M]. New York:McGraw-Hill,1984.
    [6]van der Burgt M J. Technical and economic aspects of Shell-Koppers coal gasification process[C]. California:1978.
    [7]Speich P. Braunkohle-auf dem Weg zur grobtechnischen veredelung[M]. VIK: Mitteilungen,1981.
    [8]Schlinger W G. The Texaco coal gasification process. In:Meyers R A. Handbook of synfuels Technology [M]. New York:McGraw-Hill,1984.
    [9]谢克昌.中国煤化工技术的发展和创新[J].应用化工.2006,35:1-22.
    [10]张荣光.常压循环流化床煤气化试验与模型研究[D].中国科学院工程热物理研究所,2005.
    [11]任沛建,蔡元,张志斌,et al国产第一套粉煤气化制合成氨原料气工业化示范装置建设试验总结[J].小氮肥.2003:31(4):1-6.
    [12]Huang Y, Rezvanil S, Wright-Mcllveen D, Minchener A, Hewitt N. Techno-economic study of CO2 capture and storage in coal fired oxygen fed entrained flow IGCC power plants[J]. Fuel Processing Technology.2008,89(9):916-925.
    [13]钱伯章.中国煤气化技术市场简况[J].化肥工业.2008,35(4):66-67.
    [14]Gasification Technologies Council[M]. www.gasification.org.
    [15]Zheng L, Furinsky E. Comparison of Shell, Texaco, BGL, and KRW gasifiers as part of IGCC plant computer simulations [J]. Energy Conversion and Management.2005, 46(11-12):1767-1779.
    [16]许世森,张东亮,任永强.大规模煤气化技术[M].北京:化学工业出版社.2007.
    [17]William A, Pourkashanian M, Jone J M, et al. Combustion and gasification of coal [M]. NewYork:Taylor & Francis,2009.
    [18]Souza-Santos M L. Solid fuels combustion and gasification[C]. NewYork:Marcel Dekker,2004.
    [19]Guo R, Wang Y H, Shi D C. Application of RBM strategy in Texaco coal gasification system[C]. SanYa:2009.
    [20]Du M, Hao Y L, Liu S. Numberical study on coal gasification in Texaco entrained-flow coal gasifier[C]. Wuhan:2009.
    [21]Guo R, Guo W W, Hu H J. Texaco coal gasification quality prediction by neural estimator based on MSA and dynamic PCA[C]. Qingdao:2008.
    [22]Romano M C, Campanari S, Spallina V, et al. Sofc-based hybrid cycle integrated with a coal gasification plant[C]. Orlando:2009.
    [23]Roll H, Hedden K. Entrained flow gasification of coarsely ground Chinese reed[J]. Chemical Engineering and Processing.1994,33(5):353-361.
    [24]Doering E L, Cremer G A. Advances in the Shell coal gasification process[J].Fuel and Energy Abstracts.1995,36(6):418-418.
    [25]Tang H. The evaluation of Shell coal gasification process and its ways of improvement [J]. Coal Chemical Industry.2005,12(6):9-14.
    [26]Henri C, Brigitte N P D. Coal science and techology[M]. Amsterdam:Elsevier,1990.
    [27]Lolja S A, Haxli H, Gjyli D. Ash composition of the main Albanian coals[J]. Fuel 2000, 79(2):207-209.
    [28]Stanislav V V, Kunihiro Kitano, Shohei T, et al. Influence of mineral and chemical composition of coal ashes on their fusibility [J]. Fuel Processing Technology.1995,45(1): 27-51.
    [29]Thompson D, Argent B B. Coal ash composition as a function of feedstock composition[J]. Fuel.1999,78(5):539-548.
    [30]Wen C Y, Chaung T Z. Entraniment coal gasification modeling[J]. Industrial Engineering Chemistry Process Design and Development.1979,18(4):684-695.
    [31]中华人民共和国国家标准,煤灰熔融性测定方法.GB/T219-2008.
    [32]Wall T F, Creelman R A, Gupta R P, et al. Coal ash fusion temperatures-New characterization techniques, and implications for slagging and fouling[J]. Progress in Energy and Combustion Science.1998,24(4):345-353.
    [33]Selvig W A, Fieldner A C. Fusibility of ash from Pennsylvania coals[J]. Chemical and Metallurgical Engineering.1919,20(1):629.
    [34]Fieldner A C, Selvig W A, Parker W L. Comparison of the standard gas furnace and micropyrometer methods for determining the fusibility of coal ash[J]. Journal of Indusrial and Engineering Chemsity.1922,14(8):695-698.
    [35]Fieldner A C, Selvig W A. The fusibility of coal ash[J]. Fuel in Science and Practice. 1926,5(2):24-33.
    [36]Fieldner A C, Hall A E. Fusibility of coal ash in various atmospheres[J]. Journal of Industrial and Engineering Chemistry.1915,7(6):399-406.
    [37]Fieldner A C, Field A L. The fusibility of coal ash in mixtures of hydrogen and water vapor[J]. Journal of Industrial and Engineering Chemistry.1915,7(9):742-747.
    [38]Selvig W A, Raliff W C, Fieldner A C. Fusibility of coal ash[J]. Chemical and Metallurgical Engineering.1919,20(2):274-276.
    [39]Fieldner A C, Porter H C. Coal and coke[J]. Proceedings, American Society for Testing and Materials.1926,26:412-419.
    [40]Fieldner A C, Cooper H M, Osgood F D. Fusibility of coal ash[J]. Bureau of Mines Information Circular.1925,345:73-90.
    [41]Kosaka Y, Toda H, Kitagawa C. Fusibility of coal ash, relation between the chemical composition and the fusibility of Japanese coal ashes[J]. Kogyo Kagaku Zasshi.1936, 39(3):36-38.
    [42]Kosaka Y, Toda H, Kitagawa C. Fusbility of coal ash, relation between the chemical composition and the fusibility of Japanese coal ashes[J]. Fuel.1937,16:333-336.
    [43]Kosaka Y, Toda H. Fusibility of coal ash. IX. Fluxing effects of lime, silica and some basic constituents upon coal ash[J]. Kogyo Kagaku Zasshi.1939,42(suppl. binding): 332-334.
    [44]Kosaka Y, Toda H. Fusibility of coal ash. X. Relation between the chemical composition and the fusilbity of coal ashes[J]. Kogyo Kagaku Zasshi.1939,42:334-336.
    [45]Yoshaburo K, Hachiro T. The fusibility of coal ash.V. Relation between the chemical compostion and the fusibility of Japanese coal ashes[J]. Kogyo Kagaku Zasshi.1936,39: 36-38.
    [46]Kosaka Y, Toda H. Fusibility of coal ash. VIII. Fluxing effects of CaO and Fe2O3 on coal ash[J]. Kogyo Kagaku Zasshi.1937,40(suppl. binding):180-182.
    [47]Yoshaburo K, Hachiro T, Chojiro K. The fusibility of coal ash. VI. Relations between the fusibility and certain characteristics of Japanese coal ashes[J]. Kogyo Kagaku Zasshi. 1936,39:38-40.
    [48]Hidero U, Shouhei T, Takashi T, Saburo I, Sogo S. Basic properties and fusibility of coal ash[J]. Nenryo Kyokaishi.1985,64(10):830-839.
    [49]Bryant G W, Browning G J, Gupta S K, et al. Thermomechanical analysis of coal ash: The influence of the material for the samples assembly[J]. Energy Fuels.2000,14(2): 326-335.
    [50]Gupta S K, Gupta R P, Bryant G W, et al. Thermomechanical analysis and alternative ash fusiblity temperatures[C]. Hawaii.1997.
    [51]Bryant G W, Browning G J, Emanuel H, et al. The fusiblity of blended coal ash[J]. Energy Fuels.2000,14(2):316-325
    [52]修洪雨,黄镇宇,岑可法,et al. CaO对煤灰主要成分熔融特征的影响[J].电站系统工程.2005,21(2):20-22.
    [53]兰泽全,周俊虎,岑可法,et al.水煤浆混合灰熔融性试验研究[J].热力发电.2003,32(4):13-16.
    [54]景妮洁,工勤辉,岑可法,et al.气化条件下压力影响灰熔融性的实验研究[J].热科学与技术.2010,9(1):75—78.
    [55]Wu X J, Zhang Z X, Piao G L, et al. Behavior of mineral matters in Chinese coal ash melting during char-CO2/H2O gasification reaction[J]. Energy Fuels.2009,23(5): 2420-2428.
    [56]Li J, Du M F, Zhang Z X, et al. Selection of fluxing agent for coal ash and investigation of fusion mechanism:a first-principles study[J]. Energy Fuels.2009,23(1):704-709.
    [57]Zhao B T, Zhang Z X, Wu X J. Prediction of coal ash fusion temperature by least-squares support vector machine model[J]. Energy Fuels.2010,24(5):3066-3071.
    [58]Aho M, Ferrer E. Importance of coal ash composition in protecting the boiler against chlorine deposition during combustion of chlorine-rich biomass[J]. Fuel.2005,84(2-3): 201-212.
    [59]Block C, Dams R. Inorganic composition of Belgian coals and coal ashes[J]. Environmental Science & Technology.1975,9(2):146-150.
    [60]Gupta S K, Gupta R P, Bryant G W, et al. The effect of potassium on the fusibility of coal ashes with high silica and alumina levels[J]. Fuel.1998,77(11):1195-1201.
    [61]van Dyk J C. Understanding the influence of acidic components (Si, Al, and Ti) on ash flow temperature of South African coal sources[J]. Minerals Engineering.2006,19(3): 280-286.
    [62]李帆,邱建荣,郑楚光.煤中矿物质对灰熔融温度影响的三元相图分析[J].华中理工大学学报.1996,24(10):96-99.
    [63]毛军,徐明厚,李帆.碱性矿物质对煤灰熔融性影响的研究[J].华中科技大学学报(自然科学版).2003,31(4):59-62.
    [64]Mitsuho H, Ninomiya Y, Asami M. Effect of limestone and iron ore additives on ash fusion behavior[J]. Journal of Fuel Scoiety.1988,67(5):330-336。
    [65]Vorres K S. Metling behavior of coal ash materials from coal ash composition[J]. Journal of Engineering for Power-Transactions of the ASME.1977,101:118-123.
    [66]Vassilev S V, Kitano K, Takeda S, et al. Influnece of mineral and chemical composition of coal ashes on their fusibility [J]. Fuel Processing Technology.1995,45(1):27-51.
    [67]Bryer R D, Taylor T E. An examination of the relationship between ash chemistry and ash fusion temperatures in various coal size and gravity fractions using polynomial regression analysis[J]. Journal of Engineering for Gas Turbines and Power.1976,98: 528.
    [68]Lolja S A, Haxhi H, Dhimitri R, et al. Correlation between ash fusion temperatures and chemical composition in Albanian coal ashes[J]. Fuel.2002,81(17):2257-2261.
    [69]Winegartner E C, Rhodes B T. An empirical study of the relation of chemical properties to ash fusion temperatures [J]. Journal of Engineering for Gas Turbines and Power.1975, 97(3):395-401.
    [70]Seggiani M. Empirical correlations of the ash fusion temperatures and temperature of critical viscosity for coal and biomass ashes[J]. Fuel.1999,78(9):1121-1125.
    [71]Ozbayoglu G, Ozbayoglu M E. A new approach for the prediction of ash fusion temperatures:A case study using Turkish lignites[J]. Fuel.2006,85(4):545-552.
    [72]孙琴月,朱学栋,唐黎华,et al煤灰熔融温度多项式模型的偏回归函数分析[J].华东理工大学学报(自然科学版).2005,31(1):18-21.
    [73]Vorres K S. Mineral matter and ash in coal[M]. Washington, DC:American Chemical Society.1986.
    [74]Qiu J R, Li F, Zheng C. Mineral transformation during combustion of coal blends[J]. International Journal of Energy Research.1999,23(5):453-463.
    [76]Waanders F B, Govender A. Mineral associations in coal and their transformation during gasification[J]. Hyperfine Interact.2005,166(1):687-691.
    [77]Huggins F E, Kosmack D A,.Huffman G P. Correlation between ash-fusion temperatures and ternary equilibrium phase diagrams[J]. Fuel.1981,60(7):577-584.
    [78]Hirato M, Ninomiya Y. Study of fusibility of coal ash with additives-estimation of ash fusion temperature and fusion behavior of blending coal ashes [J]. Journal of Fuel Society of Japan.1989,68(5):393-398.
    [79]www.gasification.org
    [80]Vargas S, Frandsen F J, Dam-Johansen K. Rheological properties of high-temperature melts of coal ashes and other silicates[J]. Progress in Energy and Combustion Science. 2001,27(3):237-429.
    [81]Reid W T, Cohen P. The flow characteristics of coal ash slags in the solidification range[J]. ASME Transactions.1944,66:83-97.
    [82]Corey R C. Measurement and significance of the flow properties of coal ash slag. Washington US Department of the interior, Bureau of Mines, Report No.618,1964.
    [83]Watt J D, Fereday F. The flow properties of slags formed from the ashes of British coals[J]. Journal of the Institute Fuel.1969,42:131-134.
    [84]Vorres K S, Greenberg S, Poeppel R. Mineral matter and ash in coal[C]. Washington DC, 1986.
    [85]Nowok J W, Benson S A. Inorganic transformations and ash deposition during combustion[M]. New York:ASME,1991.
    [86]Singer J G. Combustion---fossil power[M]. US Rand:McNally,1991.
    [87]Mill K C,Broadbent C P. Evaluation of "slags" program for the prediction of physical properties of coal gasification slags[C]. Solihull,1993.
    [88]Endell K, Kley R. Dependence of the Viscosity temperature relationship of acid blast-furnace slags on the chemical composition[J]. Stahl und Eisen.1939,59:677-685.
    [89]Endell K. Slag attack of refractories [J]. Berichte der Deutschen Keramischen Gesellschaft.1938,19:491-513.
    [90]Boow J. Viscosity/temperature characteristics of some Australian coal ash slags in the range of 1100 °to 1600℃[J]. Journal of the Institute of Fuel.1965,38(288):3-12.
    [91]Boow J. Measurements of the viscosity of supercooled slags at 750.deg. to 1100.deg[J]. Fuel.1969,48(2):171-178.
    [92]Boow J. Sodium/ash reactions in the formation of fireside deposits in pulerized-fuel-fire boilders[J]. Fuel.1972,51(3):170-173.
    [93]Khromykh G I, Likhacheva L A, Novitskii N V, et al. Study of the thermotechnical properties of coals form the Nikol'sk deposit in the Buryat ASSR[J]. Elektricheskie Stantsii.1977,3(1):33-35.
    [94]Schobert H H, Streeter R C, Diehl E K. Flow properties of low-rank coal ash slags [J]. Fuel.1985,64(11):1611-1617.
    [95]Streeter R C, Diehl E K, Schobert H H. Measurement and prediction of low-rank coal slag viscosity[J]. Division of Fuel Chemistry.1983,28(4):174-195.
    [96]Jung B, Schobert H H. Improved prediction of coal ash slag viscosity by thermodynamic modeling of liquid-phase composition[J]. Energy Fuels.1992,6(4):387-398.
    [97]Folkedahl B C, Schobert H H. Effects of atmosphere on viscosity of selected Bituminous and low-rank Coal ash slags[J]. Energy Fuels.2005,19(1):208-215.
    [98]Nowok J W. Viscosity and structural state of iron in coal ash slags under gasification conditions[J]. Energy Fuels.1995,9(3):534-539.
    [99]Hurley J P, Watne T M, Nowok J W. The effects of atmosphere and additives on coal slag viscosity[J]. Division of Fuel Chemisty.1996,41(2):691-694.
    [100]Nowok J W, Benson S A, Steadman E N, et al. The effect of surface tension/viscosity ratio of melts on the sintering propensity of amorphous coal ash slag[J]. Fuel.1993, 72(7):1005-1061.
    [101]Nowok J W, Hurley J P, Stanley D C, et al. Local structure of a lignitic coal ash slag and its effect on viscosity [J]. Energy Fuels.1993,7(6):1135-1140.
    [102]Nowok J W. Viscosity and phase transformation in coal ash slags near and below the temperature of critical viscosity[J]. Energy Fuels.1994,8(6):1324-1336.
    [103]Nowok J W, Hurley J P, Steadman E N. A new approach to calculating coal ash viscosity[C]. Washington, D. C,1994.
    [104]Hurst H J, Novak F, Patterson J H. Viscosity measurements and empirical predictions for fluxed Australian bituminous coal ashes[J]. Fuel.1999,78(15):1831-1840.
    [105]Patterson J H, Hurst H J. Ash and slag qualities of Australian bituminous coals for use in slagging gasifiers[J]. Fuel.2000,79(3):1671-1678.
    [106]Hurst H J, Novak F,. Viscosity measurements and empirical predictions for some model gasifier slags[J]. Fuel.1999,78(4):439-444.
    [107]Hurst H J, Novak F, Patterson J H. Phase diagram approach to the fluxing effect of additions of CaCO3 on Australian coal ashes[J]. Energy Fuels.1996,10(6):1215-1219.
    [108]Kondratiev A, Jak E. Predicting coal ash slag flow characteristics [J]. Fuel.2001,80(14): 1989-2000.
    [109]Kondratiev A, Jak E. Applications of the coal ash slag viscosity model for the slagging gasification technologies[C]. Pittsburgh:2001.
    [110]Jak E, Kondratiev A, Hayes P C. Development and applications of the thermodynamic and viscosity models for complex coal ash slag systems[C]. Pittsburgh:2004.
    [111]Buhre B J P, Browning G J, Wall T F, et al. Measurement of the viscosity of coal-derived slag using thermodmechanical analysis[J]. Energy Fuels.2005,19(3): 1078-1083.
    [112]Bryant G W, Lucas J A, Wall T F, et al. Use of Thermomechanical analysis to quantify the flux additions necessary for slag flow in slagging gasifiers fired with coal[J]. Energy Fuels.1998,12(2):257-261.
    [113]Browning G J, Bryant G W, Wall T F, et al. An empirical method for the prediction of coal ash slag viscosity[J]. Energy Fuels.2003,17(3):731-737.
    [114]Van Dyk J C, Keyser M J, Waanders F B, et al. Manipulation of the ash flow temperature and viscosity of a carbonaceous Sasol waste stream[J]. Fuel.2010,89(1): 229-236.
    [115]Van Dyk J C, Benson S A, Laumb M L, et al. Coal and coal ash characteristics to understand mineral transformations and slag formation [J]. Fuel.2009,88(6):1057-1063.
    [116]Van Dyk J C, Waanders F B, Benson S A, et al. Viscosity predictions of the slag composition of gasified coal, utilizing FactSage equilibrium modeling[J].2008,88(1): 67-74.
    [117]Song W J, Zhu Z B. Prediction of temperature of critical viscosity for synthetic coal ash slags[C]. Washtington D C,2009.
    [118]Song W J, Tang L H, Zhu Z B, et al. Fusibility and flow propertises of coal ash and slag[J]. Fuel.2009,88(2):297-304.
    [119]宋文佳,唐黎华,朱子彬,et al. Shell气化炉中灰渣的熔融性与流动特性[J].化工学报.2009,60(7):1781—1786.
    [120]Song W J, Sun Y M, Zhu Z B, et al. Measurement and simulation of flow properties of coal ash slag in coal gasification [J]. AIChE Journal.2011,57(3):808-825.
    [121]Song W J,Dong Y H, Zhu Z B, et al. Prediction of temperature of critical viscosity for coal ash slag[J]. AIChE Journal.2010. DOI:10.1002/aic.12500.
    [122]Hibbard M J. Mineralogy:a geologist's point of view[C]. Boston:McGraw-Hill,2002.
    [123]Yoder C H. Lonic compound:applications of chemistry to mineralogy [C]. Hoboken, N. J.:Wiley-Interscience,2006.
    [124]Liu Y P, Wu M G, Qian J X. Predicting coal ash fusion temperature based on its chemical composition using ACO-BP neural network[J]. Thermochimica Acta.2007, 454(1):64-68.
    [125]Lillie H R. High-temperature viscosities of soda-silica glasses[J]. Journal of the the American Ceramic Society.1939,22(11):367-374.
    [126]Shartsis L, Spinner S, Capps W J. Density, expansivity, and viscosity of molten alkali silicats[J]. Journal of the American Ceramic Society.1952,35(6):103-160.
    [127]Bockris J O M, Mackenzie J D, Kitchener J A. Viscous flow in silica and binary liquid silicates[J]. Transactions of the Faraday Society.1955,51:1734-1748.
    [128]Wilhenlm E. Silicate science[M]. New York:Academic Press,1976.
    [129]Babcock C L. Silicate glass technology methods[M]. New York:Wiley,1977.
    [130]Stein D J, Spera F J. Experimental rheometry of melts and super-cooled liquids in the system NaAlSiO4-SiO2[J]. American Mineralogist.1993,78(7-8):710-723.
    [131]Goto A, Oshima H, Nishida Y. Empirical method of calculating the viscosity of peraluminous silicate melts at high temperatures [J]. Journal of Volcanology and Geothermal Research.1997,77(1-4):319-327.
    [132]Bottinga Y, Weill D F. The viscosity of magmatic silicate liquid, a model calculation[J]. American Journal of Science.1972,272:438-475.
    [133]Verein D E. Slag atlas[M]. Stahleisen:Dussldorf,1981.
    [134]Wall T. Impact of mineral impurities in solid fuel combustion[M]. New York:Kluwer Academic/Plenum Publishers,1999.
    [135]Mysen B O, Virgo D, Scarfe C M, et al. Viscosity and structure of iron-and aluminum-bearing silicate melts at latm[J]. American Mineralogist.1985,70(3-4): 487-498.
    [136]Grokhovsky V I, Oshtrakh M I, Milder O B. Mossbauer spectroscopy of iron meterorite dronino and products of its corrosion[J]. Hyperfine Interact.2005,166(1-4):671-677.
    [137]Turdogan E T, Bills P M. A critical review of viscosity of CaO-MgO-Al2O3-SiO2 melts[J]. American Ceramic Society Bulletin.1960,39(11):682-687.
    [138]Scholze H, Kreidl N J, Uhlmann V R, et al. Viscosity and relaxation[M]. New York: Academic Press,1986.
    [139]Mysen B O. Structure and properties of silicate melts[M]. Amsterdam:Elsevier,1988.
    [140]Alexander V D, Glebov L B, Tsechomsky V A. Physics and chemistry of photochromic glasses[M]. New York, CRC Press,1997.
    [141]Klein L C, Fasano B V. Wu J M. Viscous flow behavior of four iron-containg silicates with alumina[J]. Journal of Geophysical Research.1983,88(1 A):880-886.
    [142]Rein W T. External corrosion and deposita-Boilers and gas turbines[M]. New York: American Elaevier Publishing Co.,1944.
    [143]Sage W L, Mcilroy J B. Relationship of coal ash viscosity to chemical composition[J]. Combustion.1959,31(121):41-48.
    [144]Vorres K S. Mineral matter and ash in coal[M]. Washington, D.C.:American Chemistry Society,1986.
    [145]Huang L Y, Norman J S, Pourkashanian M W. Prediction of ash deposition on superheater tubes from pulerized coal combustion [J]. Fuel.1996,75(3):271-278.
    [146]Quon D H H, Wang S S B, Chen T T. Viscosity measurements of slags from Westerm Canadian coals[J]. Journal of Engineering for Gas Turbines and Power.1985,107(3): 803-806.
    [147]Shaw H R. Viscosities of magmatic silicate liquids:an empirical method of prediction[J]. American Journal of Science.1972,272:870-893.
    [148]Brane S, Bogdan B, Bullen P, et al. Density and viscosity of the silicate melts for the production of the mineral wool firbes[J]. International Journal of Microstructure and Materials Properties.2005,1(1):61-73.
    [149]Urbain G. Viscosity estimation of slags[J]. Steel Research.1987,58(2):111-116.
    [150]Mills K C. Viscosities of molten slags[M]. Belin:Springer-Verlag,1995.
    [151]Sridhar S. Estimation models for molten slag and alloy viscosities[J]. Jow Journal of the minerals, metals and materials society.2002,54(11):46-50.
    [152]Kalmanovitch D P, Frank M. An effective model of viscosity for ash deposition phenomena[C]. Santa Barbara,1988.
    [153]许世森,王保民,李广宇.一种预测煤灰粘度特性的数学模型[J].热力发电.2007,7:5—8.
    [154]史铁钧,吴德峰.高分子流变学基础[M].化学工业出版社,2008.
    [155]Tanner R I, Walters K. Rheology[M]. Amsterdam:Elsevier,1998.
    [156]Macosko C W. Rheology:Principle, Measurements, and Applications[M]. Wurzburg: Wiley-VCH,1993.
    [157]Bournonville B, Nzihou A. Rheology of non-Newtonian suspensions of fly ash:effect of concentration, yield stress and hydrodynamic interactions [J]. Powder Technology.2002, 128(2-3):148-158.
    [158]Nevers M D. Fluid mechanics for chemical engineers[M]. Boston:McGraw-Hill/Higher Education,2005.
    [159]Chhabra R P. Bubbles, drops, and particles in Non-Newtonian Fluids[M]. New York: Taylor & Francis,2006.
    [160]Bird R B, Stewart W E, Lightfoot E N. Transprot phenomena[J]. Singapore:Wiley, 1960.
    [161]Arpe H J, Biekert E, Davis H T. Ullmann's encyclopedia of industrial chemistry[M]. Wurzburg:Wiley-VCH,1990.
    [162]Kroschwitz J, Howe-Grant M. Encyclopedia of chemical technology:recycling, oil to silicon[M]. New York:Wiley,1997.
    [163]Schramm G. A practical approach to rheology and rhemometry[M]. Gebrueder Haake GmbH,1998.
    [164]Beamesderfer L, Morriss J M. Viscous fluid flow[M]. Singapore:McGraw-Hill,1991.
    [165]Perry R H, Green D W, Maloney J O. Perry's chemical engineers handbooks[M]. Singapore:McGraw-Hill,1984.
    [166]Tanner R I, Walters K. Rheology[M]. Amsterdam:Elsevier,1998.
    [167]Mewis J, Spaull A J B. Rhology of concentrate dispersions [J]. Advances in Colloid and interface Science.1976,6(3):173-200.
    [168]Metzner A B, Reed J C. Flow of non-newtonian fluids-correlation of the laminar, transition, and turbulent-flow regions[J]. AIChE Journal.1955,1(4):434-440.
    [169]Schobert H H, Jung B J. Thermodyamic and rheological modeling of coal ash behavior[J]. Division of Fuel Chemistry.1988,33(2):28-33.
    [170]Tonmukayakul N, Nguyen Q D. Rheological characterization of coal ash at high temperatue[C]. Cambridge,2000.
    [171]Tonmukayakul N, Nguyen Q D. A new rheometer for direct measurement of the flow properties of coal ash at high temperatures[J]. Fuel.2002,81(4):397-404.
    [172]Song W, Tang L, Zhu Z, et al. Rheological characteristic of Chinese Shenmu coal ash salg under high-temperature[J]. CIESC Journal.2010,61(2):310-316.
    [173]Song W, Tang L, Zhu Z, et al. Flow properties and rheology of slag from coal gasification[J]. Fuel.2010,89(7):1709-1715.
    [174]Einstein A. Eine neue Bestimmung der Molekuldimensionen[J]. Annals of Physics (Leipzig).1906,19:289-306.
    [175]Einstein A. Eine neue Bestimmung der Molekuldimensionen[J]. Annals of Physics (Leipzig).1911,34:591-592.
    [176]Eirich F R, Bunzl M. H.The viscosity of suspensions and solutions of spheres[J]. Kolloid-Zeitschrift.1936,74(2):276-285.
    [177]Vand V. Viscosity of Solutions and Suspensions [J]. Journal of Physical and Colloid Chemistry.1948,52(2):277-299.
    [178]Eirich F R. Rheology, Theory and Application[M]. New York:Academic Press,1969.
    [179]Batchelor G K. The Effect of Brownian motion on the bulk stress in a suspension of spherical particles[J]. Journal of Fluid Mechanics.1977,83(1):97-117.
    [180]Cinchocki B, Felderhof B U. Long-time self-diffusion coefficient and zero-frequency viscosity of dilute suspensions of spherical Brownian particles [J]. Journal of Chemical Physics.1988,89(6):3705-3709.
    [181]Woutersen A T J M. De Kruif C G. The viscosity of semidilute bidiperse suspensions of hard sphere[J]. Journal of Rheology.1993,37(4):681-693.
    [182]Selim, M S, Al-Naafa M A, Jones M C. Brownian diffusion of hard spheres at finite concentrations[J]. AIChE Journal.1993,39(1):3-16.
    [183]Mooney M. The viscosity of a concentrated suspension of spherical particles[J]. Journal of colloid.1951,6(2):162-170.
    [184]Roscoe R. The viscosity of suspensions of rigid spheres[J]. British Journal of Applied Physics.1952,3(8):267-269.
    [185]Krieger L M. Rheology of Monodisperse Lattics[J]. Advances in Colloid and Interfere Science.1972,3:111-136.
    [186]Quemada D. Concentrated colloidal suspensions at low Ionic strength:a hard-sphere model of zero shear viscosity, involving the hard-sphere phase transitions [J]. Europhysics Letter[J].1994,25(2):149-155.
    [187]Jones D A R, Leary B, Boger D V. The rheology of a concentrated colloidal suspension of hard spheres[J]. Journal of Colloid and Interface Science.1991,147(2):479-495.
    [188]Jones D A R, Leary B, Boger D V. The rheology of a sterically stabilized suspension at high concentration[J]. Journal of Colloid and Interface Science.1992,150(1):84-96.
    [189]卢寿慈.工业悬浮液-性能,调制及加工[M].北京:化学工业出版社,2003.
    [190]Wildemuth C R, Williams M C. Viscosity of suspensions molded with a shear dependent maximum packing fraction.[J]. Rheologica Acta.1984,23(6):627-635.
    [191]Strand S R, Kim S. Dynamics and rheology of a dilute suspension of dipolar nonspherical particles in an external field, steady shear flows[J]. Rheologica Acta.1992, 31(1):94-117.
    [192]Raichur A M, Cohen M S. Fragile networks and rheology of concentrated suspensions[J]. Rheologica Acta 1992,31(4):333-344.
    [193]Lyklema J. Murthy P S, Schraa G. The rheology of a concentrated colloidal suspension of hard sphere[J]. Journal of Colloid and Interface Science.1991,147(2):479-495.
    [194]Powell R L. Rheology of suspensions of rodlike particles[J]. Journal of Statistical Physics.1991,62(5-6):1073-1094.
    [195]艾国强,金山同.助熔剂对保护渣融化温度的影响[J].炼钢,1999,15(6):49-52.
    [196]中华人民共和国国家标准,煤灰高温粘度特性试验方法.DL/T660-2007.
    [197]Qian T. Chemical engineering rheology[M]. Shanghai:East China University of Science and Technology Press.2004.
    [198]Tanner R I, Walters K. Rheology-an historical perspective[M]. Amsterdam:Elsevier. 1998.
    [199]Schramm G. A practical approach to rheology and rheometry[M]. Gebrueder:HAAKE GmbH.1994.
    [200]Bale C W, Chartrand P, Pelton A D. FactSage thermochemical software and database[J]. Calpad.2002,26(2):189-228.
    [201]曹战民,宋晓艳,乔芝郁.热力学模拟计算软件FactSage及其应用[J].稀有金属.2008,32(2):216-219.
    [202]曹战民,朱骏,乔芝郁.气相氢还原合成Nb3Sn粉末过程的热力学模拟[J].稀有金属.2008,32(4):478-481.
    [203]www.factsage.com
    [204]Fabrichnaya O, Saxena S K, Richet P. Thermodynamic Data, Models, and Phase Diagrams in Multicomponent Oxide Systems[M]. Verlag Berlin Heidelberg:Spring. 2004.
    [205]Baxter L L. Ash deposition during biomass and coal combustion:A mechanistic approach[J]. Biomass and Bioenergy.1993,4(2):85-102.
    [206]Wall T F. Mineral matter transformations and ash deposition in pulverised coal combustion[J]. Symposium on Combustion.1992,24(1):1119-1126.
    [207]Jenkins B M, Baxter L L, Miles Jr T R, et al. Combustion properties of biomass[J]. Fuel Processing Technology.1998,54(1-3):17-46.
    [208]Chen C, Horio M, Kojima T. Numerical simulation of entrained flow coal gasifiers. Part Ⅰ:modeling of coal gasification in an entrained flow gasifier[J]. Chemical Engineering Science.2000,55(18):3861-3874.
    [209]Guo X, Dai Z, Gong X, et al. Performace of an entrained-flow gasification technology of pulverized coal in pilot-scale plant[J]. Fuel Processing Technology.2007,88(5): 451-459.
    [210]Huggins F E, Kosmack D A,.Huffman G P. Correlation between ash-fusion temperatures and ternary equilibrium phase diagrams[J]. Fuel.1981,60(7):577-584.
    [211]Vincent R. Gray. Prediction of ash fusion temperature from ash composition for some New Zealand coals[J]. Fuel.1987,66(9):1230-1239.
    [212]van Dyk J C. Understanding the influence of acidic components (Si, Al, and Ti) on ash flow temperature of South African coal sources[J]. Minerals Engineering.2006,19(3): 280-286.
    [213]陈鹏.中国煤炭性质、分类和利用[M].北京:化学工业出版社.2007.
    [214]孙琴月.氧化和还原气氛下煤灰熔融特征温度的研究[D].华东理工大学,2004.
    [215]Vamvuka D, Zografos D. Predicting the behavior of ash from agricultural wastes during combustion[J]. Fuel.2004,83(14-15):2051-2057.
    [216]Bonar J A, Kennedy C R, Swaroop R B. Coal ash slag attack and corrosion of refractories [J]. The Bulletin of the American Ceramic Society.1980,59(4):473-478.
    [217]Zhang L, Sato A, Ninomiya Y. CCSEM analysis of ash from combustion of coal added with limestone[J]. Fuel.2002,81(11-12):1499-1508.
    [218]van Dyk J C, Baxter L L, van Heerden J H P, et al. Chemical fractionation tests on South African coal sources to obtain species-specific information on ash fusion temperatures (AFT)[J]. Fuel.2005,84(14-15):1768-1777.
    [219]Seggiani M, Pannocchia G. Prediction of coal ash thermal properties using partial least-squares regression[J]. Industrial & Engineering Chemistry Research.2003,42(20): 4919-4926.
    [220]Higman C, Maarten V B. Gasification[M]. Burlington:Gulf Professional Publishing, 2003.
    [221]Gupta S K, Gupta R P, Wall T F, et al. The effect of potassium on the fusibility of coal ashes with high silica and alumina levels [J]. Fuel.1998,77(11):1195-1201.
    [222]Bryant G W, Browning G J, Gupta S K, et al. Thermomechanical analysis of coal ash: the influence of the material for the sample assembly[J]. Energy Fuels.2000,14(2): 326-335.
    [223]Bryant G W, Browning G J, Emanuel H, et al. The fusibility of blended coal ash[J]. Energy Fuels.2000,14(2):316-325.
    [224]Grokhovsky V I, Oshtrakh M I, Milder O B, et al. Mossbauer spectroscopy of iron meteorite dronino and products of its corrosion[J]. Hyperfine Interact.2005,166: 671-677.
    [225]Llyod W G, Riley J T, Zhon S, et al. Ash fusion temperatures under oxidizing conditions[J]. Energy Fuels.1995,7(4):490-494.
    [226]Lolja S A, Haxhi H, Martin D J, et al. Correlations in the properties of Albanian coals[J]. Fuel.2002,81(9):1095-1100.
    [227]Reifenstein A P, Kahraman H, Coin C D A, et al. Behaviour of selected minerals in an improved ash fusion test:quartz, potassium feldspar, sodium feldspar, kaolinite, illite, calcite, dolomite, siderite, pyrite and apatite[J]. Fuel.1999,78(12):1449-1461.
    [228]Bryant G, Bailey C, Wall T, et al. Iron in coal and slagging-the significance of the high temperature behavior of siderite grains during combustion[M]. Impact of mineral impurities in solid fuel combustion. New York:Kluwer Academic/Plenum Publishers, 1999.
    [229]Li H X, Ninomiya Y, Dong Z B, et al. Application of the FactSage to predict the ash melting behavior in reducing conditions [J]. Chinese Journal of Chemical Engineering. 2006,14(6):784-789.
    [230]van Dyk J C, Melzer S, Sobiecki A. Mineral matter transformation during Sasol-Lurgi fixed bed dry bottom gasification-utilization of HT-XRD and FactSage modelling [J]. Minerals Engineering.2006,19(10):1126-1135.
    [231]Goni C, Helle S, Garcia X, et al. Coal blend combustion:fusibility ranking from mineral matter composition[J]. Fuel.2003,82(15-17):2087-2095.
    [232]Jak E. Prediction of coal ash fusion temperatures with the F*A*C*T thermodynamic computer package[J]. Fuel.2002,81(13):1655-1668.
    [233]Qiu J, Li F, Zheng Y, et al. The influences of mineral behavior on blended coal ash fusion characteristics[J]. Fuel.1999,78(8):963-969.
    [234]Vorres K S, Greenbergt S. Viscosity of synthetic coal ash slags[M]. Washington, DC: American Chemical Society,1986.
    [235]van der E E, Comans R N J. Modeling arsenic and selenium leaching from acidic fly ash by sorption on iron hydroxide in the fly ash matrix[J]. Environ. Sci. Technol.1996, 30(2):517-523.
    [236]Folgueras M B, Diaz R M, Xiberta J, et al. Influence of sewage sludge addition on coal ash fusion temperatures [J]. Energy Fuels.2005,19(6):2562-2570.
    [237]Kahraman H, Reifenstein A P, Coin C D A. Correlation of ash behavior in power stations using the improved ash fusion test[J]. Fuel.1999,78(12):1463-1471.
    [238]Choi Y C, Li X Y, Park T J, et al. Numerical study on the coal gasification characteristics in an entrained flow coal gasifier[J]. Fuel.2001,80(15):2193-2201.
    [239]Stahl K, Neergaard M. IGCC power plant for biomass utilization, varnamo, Sweden[J]. Biomass and Bioenergy.1998,15(3):205-211.
    [240]Choi Y, Park T J, Kim J H, et al. Experimental studies of 1 ton/day coal slurry feed type oxygen blown, entrained flow gasifier[J]. Korean Journal of Chemical Engineering.2001, 18(4):493-498.
    [241]Schobert H H, Witthoeft C. The petrochemistry of coal ash slags Part 3. Behavior of the rosebud slag-limestone system[J]. Fuel Processing Technology.1981,5(1-2):157-164.
    [242]Bryers R W. Fireside slagging, foulding, and high temperature corrosion of heat transfer suface due to impurities in steam raising fuels [J]. Progress in Energy and Combustion Science.1996,22(1):29-120.
    [243]Zheng L G, Furinsky E. Comparison of Shell, Texaco, BGL and KRW gasifiers as part of IGCC plant computer simulations [J]. Energy Conversion and Management.2005, 46(11-12):1767-1779.
    [244]Kinaev N N, Patterson J H. Viscous behavior of Australian coal ash slags with high iron and low silica/alumna ratio [C]. Twenty-First Annual international Pittsburgh Coal Conference. September 2004, Osaka, Japan.
    [245]Baxter L L. Ash deposition during biomass and coal combustion:A mechanic approach[J]. Bimass and Bioenergy.1993,4(2):85-102.
    [246]M. Seggiani. Empirical correlations of the ash fusion temperatures and temperature of critical viscosity for coal and biomass ashes[J]. Fuel,1999,78(9):1121-1125.
    [247]Sage W L, McIlory J B. Relationship of coal-ash viscosity to chemical composition [J]. Combustion.1959,31(5):41-48.
    [248]Corey R C. Measurement and significance of the flow properties of coal-ash slag[C]. Washington US Department of the Interior, Bureau of Mines, Report NO.618,1964.
    [249]Appendix B:Determination of coal-ash properties. In:J.G. Singer, editor. Combustion-fossil power,4th ed. US Rand McNally,1991.
    [250]Innes K. Coal quality handbook for IGCC, Technology assessment report 8, Cooperative research centre for black coal utilization[M]. Newcastle, NSW.1999:62.
    [251]Seggiani M. Modeling and simulation of time varying slag flow in a prenflo entrained-flow gasifier[J]. Fuel.1998,77(14):1611-1621.
    [252]Ely F G, Barnhart D H. Coal ash-its effect on boiler availability. In:Lowry HH Chemistry of coal utilization[M]. NewYork:Wiley, Inc.,1963.
    [253]Groen J C, Brooker D D, Welch PJ, et al. Gasification slag rheology and crystallization in titanium-rich, iron-calcium-aluminosilicate glasses[J]. Fuel Processing Technology. 1998,56(1-2):103-127.
    [254]Bryers R W. Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels[J]. Progress in Energy and Combustion Science.1996,22(1):29-120.
    [255]Forsbacka L, Holappa L, Iida T, et al. Experimental study of viscosities of selected CaO-MgO-Al2O3-SiO2 slags and application of the Iida model[J]. Scandinavian Journal of Metallurgy.2003,32(5):273-280.
    [256]Sridhar S, Du S, Seetharaman S, et al. Viscosity estimation models for ternary slags[J]. Steel Research.2001,72(1):3-10.
    [257]Shaw H R. Viscosity of magmatic silicate liquids:an empirical method of prediction[J]. Amerian Journal of Science.1972,272:870-893.
    [258]Senior C L, Srinivasachar S. Viscosity of ash particles in combustion systems for prediction of particle sticking[J]. Energy Fuels.1995,9(2):277-283.
    [259]Kondratiev A, Jak E. Review of experimental data and modeling of the viscosities of fully liquid slags in the Al2O3-CaO-'FeO'-SiO2 system[J]. Metallurgical and Materials Transactions B.2001,32(6):1015-1025.
    [260]Weymann H D. Temperature dependence of viscosity[J]. Kolloid Z Z Polymer.1962, 181:131-137.
    [261]Jak E, Degterov S, Zhao B, et al. Coupled experimental and thermodynamic modeling studies for metallurgical smelting and coal combustion slag systems[J]. Metallurgical and Materials Transactions B.2000,31(4):621-630.
    [262]Seetharaman S, Sichen D. Viscosities of high temperature systems-a modeling approach[J]. ISIJ International.1997,37(2):109-118.
    [263]Nakamoto M, Lee J, Tanaka T. Model for estimation on viscosity of molten silicate slag[J]. ISIJ International.2005,45(5):651-656.
    [264]Borm M, Green H S. A general kinetic theory of liquids. Ⅲ. Dynamical properties [J]. Proceeding s of the Royal Society.1947,190:455-474.
    [265]Mills K C, Rhine J M. The measurement and estimation of the physical properties of slags formed during coal gasification[J]. Fuel.1989,68(2):193-199.
    [266]Ishibashi H, Sato H. Viscosity measurements of subliquidus magmas:Alkali olivine basalt from the Higashi-Matsuura district, Southest Japan[J]. Journal of Volcanology and Geothermal Research.2007,160(3-4):223-238.
    [267]Champallier R, Bystricky M, Arbaret L. Experimental investigation of magma rheology at 300 Mpa:From pure hydrous melt to 76 vol.% of crystals[J]. Earth and Planetary Science Letters.2008,267(3-4):571-583.
    [268]Caricchi L, Burlini L, Ulmer P, Gerya T, Vassalli M, Papale P. Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics [J]. Earth and Planetary Science Letters.2007,264(3-4):402-419.
    [269]Roscoe R. The viscosity of suspensions of rigid spheres[J]. British Journal of Applied Physics.1952,3(8):267-269.
    [270]Goodwin J W. A specialist periodical report colloid science[M]. London:The chemical society,1975.
    [271]Annen K, Gruninger J, Stewart G. Method for extending viscosity predicted formulas [J]. Proceeding Flames Research.1983,12:1-3.
    [272]Oh M S, Brooker D D, de Paz E F, et al. Effect of crystalline phase formation on coal slag viscosity[J]. Fuel Processing Technology.1995,44(1-3):191-199.
    [273]Urbain G, Boiret M. Viscosities of liquid silicates[J]. Ironmaking and steelmaking.1990, 17:255-260.
    [274]Wright S, Zhang L, Sun S, et al. Viscosity of a CaO-MgO-Al2O3-SiO2 melt containing spinel particles at 1646 K[J]. Metallurgical and Materials Transactions B.2000,31(1): 97-104.
    [275]Einstein A. Eine neue bestimmung der molekuldimensionen[J]. Annals of Physics.1906, 324(2):289-306.
    [276]Einstein A. Investigations on the theory of the Brownian movement[M]. New York: Dover,1956:49-54.
    [277]Jeffrey D, Acrivos A. The rheological properties of suspensions of rigid particles[J]. AIChE Journal.1976,22(3):417-432.
    [278]Bournonville B, Nzihou A. Rheology of non-Newtonian suspensions of fly ash:effect of concentration, yield stress and hydrodynamic interactions[J]. Powder Technology. 2002,128(1):148-158.
    [279]Lorenz C D, Ziff R M. Precise determination of the critical percolation threshold for the three-dimensional "Swiss cheese" model using a growth algorithm[J]. Journal of Chemical Physics.2001,114:3659-3661.
    [280]Chong J S, Christiansen E B, Baer A D. Rheology of concentrated suspensions [J]. Journal Applied Polymer Science.1971,15(8):2007-2021.
    [281]Lejeune AM, Richet P. Rheology of crystal-bearing silicate melts:an experimental study at high viscosities[J]. Journal of Geophysical Research.1995,100(B3): 4215-4229.
    [282]Folkedahl B C. A study of the viscosity of coal ash and slag[D]. The Pennsylvania State University,1997.
    [283]Hurst H J, Patterson, J H, Quintanar A. Viscoisty measurements and empirical predictions for some model gasifier slags[J]. Fuel.2000,79(14):1797-1799.
    [284]Scott G W. A survey of general and applied rheology[M]. London:Pitman Publishing Corporation,1944.
    [285]Ward C R. Analysis and significance of mineral matter in coal seams[J]. International Journal of Coal Geology.2002,50(1-4):135-138.
    [286]Li B. Enhanced fine coal dewatering by size enlargement using asphalt emulsion[D]. University of Kentucky,2005.
    [287]Henrich E, Weirich F. Pressurized entrained flow gasifier for biomass[J]. Environmental Engineering Science.2004,21(1):53-64.
    [288]Johson E K. A non-newtonian flow model for coal-ash slag[J]. Journal of Engineering for Gas Turbines and Power,1984,106(4):777-781.
    [289]Gupta S K, Wall T F, Creelman, et al. Ash fusion temperatures and the transformations of coal ash particles to slag[J]. Fuel Processing Technology.1998,56(1-2):33-43.
    [290]Acosta A, Iglesias I, Aineto M, et al. Thermal and sintering characterization of IGCC slag[J]. Journal of Thermal Analysis and Calorimetry.2002,67(1):249-255.
    [291]Sondreal E A, Ellman R C. US Bureau of Miners Report GFERC/Rl-75-1,1975, Pittsburgh.
    [292]Rhinehart R R, Attar A A. Ash fusion temperature:a thermodynamically-based model[M]. ASME. Petroleum Division (publication) PD, vol.8. NewYork:ASME,1987.
    [293]Qiu J R, Li F, Zheng C G. Mineral transformation during combustion of coal blends[J]. International Journal of Energy Research.1999,23(5):453-463.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700