晶体中3d~9离子自旋哈密顿参量的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不少功能材料的性能很大程度上取决于掺杂其中的过渡离子的电子结构和杂质缺陷行为,而电子顺磁共振(EPR)谱是研究掺过渡离子晶体和络合物光学和磁学以及局部结构性质的有效手段。3d~9离子是过渡族中具有代表性和非常重要的体系,它在理想立方对称下只有一个基态和一个激发态,因其较简单的能级结构而备受关注。对于掺杂3d~9离子的材料,已有大量EPR实验研究的报道,其实验结果通常用自旋哈密顿参量(各向异性g因子、超精细结构常数和超超精细结构参量等)描述。但是对上述实验结果的理论解释却不太令人满意,主要表现在i)前人工作大多基于简单的二阶微扰公式,且只考虑了中心离子旋轨耦合系数的贡献,而忽略了配体轨道和旋轨耦合作用的影响;ii)由于未能建立自旋哈密顿参量与杂质局部结构的关系,依靠引入较多调节参量来描述低对称畸变;iii)通常直接拟合两个超超精细结构参量实验值来获得未配对自旋密度f_s和f_σ,而未能建立它们与轨道混合系数和体系共价性等的定量关系。
     为了克服上述不足,本工作基于配位场理论,利用四角伸长和斜方(或正交)伸长(或压缩)八面体以及四角四面体中3d~9(Ni~+、Cu~(2+))离子自旋哈密顿参量高阶微扰公式,对一些前人未曾处理或满意解释的3d~9体系进行了系统深入的理论分析,合理地解释了它们的EPR实验结果,并获得了杂质中心的局部结构信息。
     1)研究了PrBa_2Cu_3O_(6+x)和Pr_(0.5)Er_(0.5)Ba_2Cu_3O_(6+x)中Cu~(2+)离子中心以及RbCaF_3中无电荷补偿Ni~+中心I和轴线上分别出现一个和两个F-~离子空位的中心II和III的EPR谱和局部结构。对PrBa_2Cu_3O_(6+x)和Pr_(0.5)Er_(0.5)Ba_2Cu_3O_(6+x)体系,发现Jahn-Teller效应导致Cu-O键长沿C_4轴分别伸长约0.05(A|°)和0.01(A|°)。针对RbCaF_3中的三类Ni~+中心,在离子簇模型基础上考虑了配体轨道和旋轨耦合作用的贡献,建立了四角场参量、分子轨道系数和未配对自旋密度等与杂质局部结构或光谱数据的关系。计算表明,Jahn-Teller效应引起中心I的杂质-配体键长沿C_4轴伸长5%;超超精细结构参量的研究表明,中心I、II和III的未配对自旋密度分别为f_s(≈0.28%、0.30%和0.31%)和f_σ(≈1.55%、2.39%和2.68%)。
     2)针对斜方(或正交)伸长(或压缩)八面体中3d~9离子的自旋哈密顿参量,利用其高阶微扰公式研究了相关体系的EPR谱和局部结构性质。i)合理解释了Y_2BaCuO_5中正交伸长八面体下Cu~(2+)中心的g因子g_x、g_y和g_z,发现Jahn-Teller效应引起配体八面体沿c轴伸长约0.05(A|°),同时沿a和b轴方向的平面键长相对变化约为0.1(A|°)。ii)满意地解释了TiO2:Cu~(2+)的各向异性g因子和超精细结构常数。由于Jahn-Teller效应,平面杂质-配体键将发生弯曲,导致键角比母体值增大约5.8°,从而显著减小了体系的斜方畸变。此外,还满意地解释了该杂质中心的光谱实验数据。iii)建立了正交压缩八面体中3d~9离子自旋哈密顿参量的高阶微扰公式,据此分析了钨酸盐AWO_4(A= Zn、Cd和Mg)中Cu~(2+)的EPR谱和局部结构性质。发现Cu~(2+)替代母体A~(2+)后,由于Jahn-Teller效应和杂质-母体离子尺寸失配,杂质中心的配体八面体平面键长相对母体时略有变化,即CdWO_4、ZnWO_4和MgWO_4中的杂质局部正交畸变可用平面杂质-配体键长相对差值0.096、0.021和0.028(A|°)表述。
     3)在离子簇模型基础上建立了四角畸变四面体中3d~9离子自旋哈密顿参量的微扰公式,并将其中一些重要参数(如四角场参量、分子轨道系数等)与杂质局部结构和光谱数据相联系。将该公式应用于黄铜矿型ABS2硫化物中的四角Ni~+中心,合理地解释了EPR实验结果。杂质Ni~+取代母体A~+离子后,由于尺寸失配,杂质-配体局部键角将有所改变。计算表明,CuAlS_2、CuGaS_2和AgGaS_2的局部键角变化分别为-1.73°、-1.44°和-4.54°。此外,由于体系具有明显的共价性,配体轨道和旋轨耦合作用的贡献不能忽略。
     4)基于离子簇模型,建立了四角伸长八面体中4d7离子g因子和超超精细结构参量的高阶微扰公式,其中相关的分子轨道系数和未配对自旋密度由离子簇模型统一得到,并将该公式应用于AgX(X=Cl, Br)中的四角Pd~(3+)中心。研究表明,Pd~(3+)替代母体Ag~+后,Jahn-Teller效应使[PdX_6]~(3–)基团沿C_4轴分别伸长0.01和0.06(A|°)。有趣的是,四角伸长八面体中4d~7离子的EPR行为与四角压缩八面体中3d~9离子的情形非常类似,例如都表现出~2A_(1g)基态和g_s(≈2.0023)≤g//≤g⊥的各向异性行为。同时,基于统一的理论公式和较少调节参量的超超精细结构参量计算值与实验符合较好,并克服了前人直接拟合超超精细结构参量实验值获得未配对自旋密度的不足。
Properties of various functional materials largely depend on the electronic structures and impurity (or defect) behaviours of the doped transition-metal ions in the hosts. Electron paramagnetic resonance (EPR) is a powerful tool to investigate optical, magnetic and local structure properties of crystals and complexes containing transition-metal ions. 3d~9 ions belong to the typical and important systems of the transition-metal groups and attract extensive interests of researchers due to the relatively simpler energy structure with only one ground state and one excited state under ideal cubic symmetry. Abundant EPR experimental data have been reported for many materials doped with 3d~9 ions, which were usually described as the spin Hamiltonian parameters (anisotropic g factors and the hyperfine structure constants). Up to now, however, theoretical explanations to these experimental results seem not satisfactory yet. i) The previous studies were often based on the simple second-order g formulas by considering only the central ion orbital and spin-orbit coupling contributions, while the influences of the ligand orbital and spin-orbit coupling interactions were not taken into account. ii) The previous treatments did not establish the theoretical relationships between EPR spectra and local structures of the systems but introduced various adjustable parameters to describe the low symmetrical distortions. iii) In the previous studies of the superhyperfine parameters, the unpaired spin densities were normally estimated by fitting the two experimental superhyperfine parameters, failing to connect the unpaired spin densities with the orbital admixture coefficients or covalency of the systems.
     In order to overcome the above shortcomings, the high order perturbation formulas of the spin Hamiltonian parameters based on the ligand-field theory for 3d~9 ions in tetragonally elongated and rhombically (or orthorhombically) elongated (or compressed) octahedra and tetragonally distorted tetrahedra are adopted to the studies of some 3d~9 (e.g., Cu~(2+), Ni~+) centers, which have not been theoretically treated or unsatisfactorily investigated. These EPR experimental results are reasonably interpreted, and information of the local structures of the impurity centers are also acquired.
     1) The EPR spectra and the local structures are theoretically investigated for the Cu~(2+) centers in PrBa_2Cu_3O_(6+x) and Pr_(0.5)Er_(0.5)Ba_2Cu_3O_(6+x) as well as the uncompensated Ni~+ center I and centers II and III with one and two nearest neighbour F– vacancy in RbCaF3. As for PrBa_2Cu_3O_(6+x) and Pr_(0.5)Er_(0.5)Ba_2Cu_3O_(6+x), the Cu-O bonds suffer elongations of 0.05 and 0.01(A|°), respectively, along the C_4 axis due to the Jahn-Teller effect. As regards the three Ni~+ centers in RbCaF_3, the quantitative relationships of the tetragonal field parameters, the molecular orbital coefficients and the unpaired spin densities with the impurity local structures or experimental optical spectral data are established on the basis of the cluster approach including ligand orbital and spin-orbit coupling contributions. It is found that the impurity-ligand bonds in center I experience the relative elongation of 5% along the C_4 axis due to the Jahn-Teller effect. The calculations of the superhyperfine parameters for the centers I, II and III reveal that the unpaired spin densities are f_s(≈0.28, 0.30 and 0.31%) and f_σ(≈1.55, 2.39 and 2.68%), respectively.
     2) The high order perturbation formulas of the spin Hamiltonian parameters for a 3d~9 ion under rhombically (or orthorhombically) elongated (or compressed) octahedra are applied to the studies of the EPR spectra and the local structure properties for the relevant systems. i) The anisotropic g factors gx, gy and gz are reasonably explained for the orthorhombic Cu~(2+) center in Y_2BaCuO_5, and the oxygen octahedron is found to undergo the elongation of about 0.05(A|°) along c axis and the relative planar bond length variation of about 0.1(A|°) along a and b axes due to the Jahn-Teller effect. ii) The g factors and the hyperfine structure constants are satisfactorily interpreted for the rhombic Cu~(2+) center in TiO_2. The planar impurity-ligand bond angle is found to be about 5.8°larger than the host value due to the Jahn-Teller effect via bending the planar bonds, which considerably reduces the rhombic distortion of the system. In addition, the experimental optical spectral data are also uniformly interpreted. iii) The high order perturbation formulas of the spin Hamiltonian parameters for a 3d~9 ion under orthorhombically compressed octahedra are established and applied to the Cu~(2+) centers in AWO_4(A= Zn, Cd and Mg). The planar impurity-ligand bond lengths are found slightly different from those in the hosts, i.e., the orthorhombic distortions can be described by the relative planar bond length variations 0.096、0.021 and 0.028 (A|°) along X and Y axes for CdWO_4, ZnWO_4 and MgWO_4, respectively.
     3) Based on the cluster approach, the perturbation formulas of the spin Hamiltonian parameters for a 3d~9 ion under tetragonally distorted tetrahedra are established, and the related parameters (e.g., the tetragonal field parameters and the molecular orbital coefficients) are correlated with the local structures and the optical spectral data of the systems. These formulas are applied to the tetrahedral tetragonal Ni~+ centers in ABS_2 (A = Cu, Ag; B = Al, Ga), and the EPR and optical spectral data are satisfactorily interpreted. Around the impurity Ni~+ replacing the host A~+, the local impurity-ligand bond angle may be different from the host value due to the size mismatching substitution. It is found that the local bond angles are about 1.73, 1.44 and 4.54°smaller than the host values for CuAlS_2, CuGaS_2 and AgGaS_2, respectively. In addition, the ligand orbital and spin-orbital coupling contributions should be considered in view of the significant covalency of the systems.
     4) The perturbation formulas of the anisotropic g factors and the superhyperfine parameters for a 4d7 ion under tetragonally elongated octahedra are established, and the related molecular orbital coefficients and the unpaired spin densities are determined from the cluster approach in a uniform way. These formulas are applied to the tetragonal Pd~(3+) centers in AgX (X=Cl, Br). From the calculations, the [PdX_6]~(3-) clusters are found to suffer the elongations of about 0.01 and 0.06 (A|°) along the C4 axis for AgX and AgBr, respectively, due to the Jahn-Teller effect. Interestingly, the EPR behaviours for a 4d~7 ion under tetragonally elongated octahedra are quite similar to those for a 3d~9 ion under tetragonally compressed octahedra, e.g., both exhibiting the same ~2A_(1g) ground state and anisotropy of g_s(≈2.0023)≤g//≤g⊥. As compared with the previous works, the calculated superhyperfine parameters based on the uniform formulas and the fewer adjustable parameters in this work show good agreement with the experimental data, and the shortcoming of the unpaired spin densities obtained by fitting the two experimental superhyperfine parameters in the previous treatments is thus overcome.
引文
[1] Weiss J, Takhistov P, D. McClements J. Functional Materials in Food Nanotechnology. J. Food Sci., 2006, 71(9): R107–R116
    [2] Feder M E and Mitchell-Olds T. Evolutionary and ecological functional genomics. Nature Rev. Genetics, 2003, 4: 649-655
    [3] Darder M, Aranda P, Ruiz-Hitzky E. Bionanocomposites: A new concept of ecological, bioinspired, and functional hybrid materials. Adv. Mater., 2007, 19(10): 1309-1319,
    [4] Hawker C J, Bosman A W, Harth E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chem. Rev., 2001, 101 (12): 3661–3688
    [5] Evans K E, Alderson A, Auxetic materials: Functional materials and structures from lateral thinking!,. Adv. Mateir., 2000, 12(9): 617-617
    [6]徐光宪,王祥云.物质结构.第二版.北京:高等教育出版社,1987,280-325
    [7]赵敏光.晶体场和电子顺磁共振理论.北京:科学出版社,1991,99-215
    [8] Lever A B P. Inorganic Electronic Spectroscopy. 2nd., Amsterdam: Elsevier, 1984, 315-316
    [9] Griffith J S. The Theory of Transition Metal Ions. London: Cambridge University press, 1961, 258-287
    [10] Pilbrow J R.Transition Ion Electron Paramagnetic Resonance. Clarendon Press, Oxford, 1990, 3-90
    [11] Dong Huining. Theoretical studies on the gyromagnetic factors and the hyperfine structure constants for the tetragonal copper center in KTaO_3. Z. Naturforsch. 2005, 60a(8-9): 615– 618
    [12] Chow C, Chang K, Willett R D. Electron spin resonance spectra and covalent bonding in the square -planar CuCl4~(2-) and CuBr4~(2-) ions. J. Chem. Phys., 1973, 59(5):2629-2640
    [13] Vrielinck H, Sabbe K, Challens F, et al. Magnetic resonance study of complex in AgCl microcrystals. Spectrochim. Acta Part A, 2000, 56(99): 319-329
    [14] Carranza E L. ESR study on Fe~(3+) and Mn~(2+) ions on trigonal sites in ilmenite structure MgTiO3. J. Phys. Chem. Solids, 1979, 40(6): 413-420
    [15] Fletcher R. Hansen J J, Livermore J. et al. Crystal Structure and Magnetic Properties of [(C_2H_5)_2NH_2]_2(Cu_3Br_8)CuBr_2.C_2H_5OH: Magneto-Structural Correlations in Copper(II) Bromide Salts. Inorg. Chem., 1983, 22(5): 330-334
    [16] Nakamoto. K. Infrared and Raman Spectra of Inorganic and Coordination Compounds. Part A:Theory and Application in Inorganic Chemistry. 5th ed. New York :Wiley Inc Press, 1997, 207 -211
    [17] studenyak I P, Kranjeec M, kovacs Gy S. Fundamental optical absorption edge and exciton-phonon interaction in Cu6PS5Br superionic ferrolastic. Mater. Sci. Eng., 1998, B52: 20~(2-)207
    [18] Müller B, Roussos G. and Schulz H. J. Photoluminescence and excitation spectroscopy of Ni~(2+) and Ni+ centres in ZnS crystals. J. Cryst. Growth, 1985, 72(1-2): 360-363
    [19] Szawelska. H. R, Noras. J. M and Allen. J. W. Optical properties of nickel (d9) in GaP and ZnSe. J. Phys. C: Solid State Phys, 1981, 14(28): 4141-4152
    [20] Brown R, Pendrick V, Kalokitis D. Low-loss substrate for microwave application of high temperature superconductor films. Appl. Phys. Lett., 1990, 57(10):1351-1353
    [21] Ye Jinhua, Zou Zhigang, Matsushita A Y, et al. Unusually large Tc enhancement in superconducting PrBa2Cu3Ox under pressure. Phys. Rev. B, 1998, 58(2): R619–R622.
    [22] Conder K, Rusiecki S and Kaldis E. High accuracy volumetric determination of oxygen in Y-Ba-Cu-O superconductors: YBa2Cu3O6.5+x.Mater. Research Bulletin, 1989, 24(5): 581-587.
    [23] Sung G Y, Suh J Dae. Superconducting and structural properties of in-plane aligned a-axis oriented YBa2Cu3O7-x thin films. Appl. Phys. Lett., 2009, 67(8): 1145-1147
    [24] Saalfrank. P and Ladik. J. Hartree-Fock energy bands of YBa2Cu3O7. Phys. C: Super., 1993, 204(3-4): 279-287
    [25] Puggioni D, Filippetti A, Fiorentini. V. Fermi-surface pockets in YBa_2Cu_3O_6.5: Comparison of ab initio techniques. Phys. Rev. B, 79(6): 064519
    [26] Marco de Lucas M C, Rodriguez F and Moreno M. Photoluminescence of RbCaF_3:Mn~(2+): the influence of phase transitions. J. Phys.: Condens. Matter. 1993, 5(9): 1437-1446
    [27] Villacampa B, Alcala R, Alonso P J. et al. Spectroscopic properties of Ni~(2+) in RbCaF3 and RbCdF3. J. Phys.: Condens. Matter., 1993, 5(6): 747-756
    [28] Lahoz F, Villacampa B and R Alcalá. The Tetragonal to orthorhombic structural phase transition in RbCaF3 single crystals: influence on the local environment of different nickel probes. J. Phys. Chem. Solids, 1997, 58(6): 881-892
    [29] Rousseau J J, Rousseau M and Fayet J. C. EPR Investigations of a Structural Phase Change in RbCaF_3, RbCdF_3, and TlCdF_3. Phys. Status Solidi (b), 1976, 73(2): 625–631
    [30] AlcaláR, Zorita E, Alonso P J, et al. EPR study of Ni~(3+) in RbCaF_3 below the cubic-tetragonal phase transition. Solid State Commun., 1988, 68(1): 167-170.
    [31] Villacampa B, Cases R, AlcaláR. Phonon structure of Cr~(3+) photoluminescence in chromium doped MAF_3 (M = Cd, Ca; A = Rb, Cs) crystals. J. Lumin., 1995, 63(5-6), 289-296
    [32] Zhang Shunru, Liu Honggang, Qu Guiqiang, et al. Investigations of the g -factors and local phase-transition behavior for Ni~(3+) ion in the tetragonal phase of RbCaF3 crystal. Phys. Status Solidi(b), 2008, 245(1): 197–200
    [33] Zheng Wenchen and Wu Shaoyi. Studies of the Local Phase-transition Behaviour for Ni+-II Centers in RbCaF_3 Crystal from EPR Data. Z. Naturforsch. 2000, 55a(5-6): 915–917
    [34] Takeuchi H, Ebisu H and Arakawa M. EPR study of a trigonally symmetric Gd~(3+) centre in RbCaF_3. J. Phys.: Condens. Matter, 1995, 7(7): 1417-1426
    [35] Li Huifang, Kuang Xiaoyu and Wang Huaiqian. Local structural properties of (NiF_6)4? clusters in perovskite fluorides RbMF_3(M = Cd~(2+), Ca~(2+), Mg~(2+)) series: EPR and optical spectra study in tetragonal and trigonal ligand field. Chem. Phys. Lett., 2008, 462(1-3): 133-137
    [36] AlcaláR, Zorita E, and Alonso P J. EPR of Ni~+ centers in RbCaF_3: Application to the study of the 195-K structural phase transition.Phys. Rev. B, 1988, 38(16): 11156-11162
    [37] Villacampa B, AlcaláR, and Alonso P J, et al. EPR study of Ni+ centers in CsCaF3.Phys. Rev. B, 1994, 49(2): 1039-1047
    [38] Marco de Lucas M C, Rodríguez F, and Moreno M. Zero-phonon transitions and the Stokes shift of Mn~(2+)-doped perovskites: Dependence on the metal-ligand distance. Phys. Rev. B., 1994, 50(5): 2760-2765
    [39] AlcaláR and Villacampa B. EPR study of Ni~(3+) centers in CsCaF_3. Solid State Commun., 1994, 90(1): 13-16
    [40] Alonso P J, AlcaláR and Spaeth J M. Ni~(2+) ions in RbCdF3: An EPR study in the cubic and tetragonal phases. Phys. Rev. B, 1990, 41(16): 10902–10905
    [41] Vallin J T and Piper W W. Paramagnetic resonance of Fe~(2+) in KMgF_3. Solid State Commun., 1971, 9(11): 823-825
    [42] Gerritsen H J. Fine Structure, Hyperfine Structure, and Relaxation Times of Cr~(3+) in TiO_2 (Rutile). Phys. Rev. Lett., 1959, 2(4): 153-155
    [43] Gerritsen H J, Harrison S E, Lewis H R. Chromium-Doped Titania as a Maser Material. J. Appl. Phys., 1960, 31(9): 1566-1571
    [44] Gerritsen H J, Lewis H R. Paramagnetic Resonance of V4+ in TiO_2. Phys. Rev., 1960, 119(3): 1010-1012
    [45] Gerritsen H J. Paramagnetic Resonance of Ni~(2+) and Ni~(3+) in TiO_2. Phys. Rev., 1962, 125 (6): 1853-1859
    [46] Güler S, Rameev B, Khaibullin R I. EPR study of paramagnetic Fe~(3+) centers in iron-implanted TiO_2 rutile. Phys. status solidi(a), 2006, 203(7), 1533-1538
    [47] Morikawa. T, Irokawa. Y and Ohwaki. T. Enhanced photocatalytic activity of TiO_2?xNx loaded with copper ions under visible light irradiation. Appl. Catal. A: General, 2006, 314(1): 123-127
    [48] Smestad. G, Bignozzi. C and Argazzi. R. Testing of dye sensitized TiO_2 solar cells I: Experimental photocurrent output and conversion efficiencies. Sol. Energy Mater. Sol. Cells, 1994, 32(3): 259-272
    [49] Ruiz A M, Cornet A and Morante J R. Study of La and Cu influence on the growth inhibition and phase transformation of nano-TiO_2 used for gas sensors. Sens. Actuators B: Chem., 2004, 100(1-2): 256-260
    [50] Ensign T C, Chang T E, and Kahn A H. Hyperfine and Nuclear Quadrupole Interactions in Copper-Doped TiO_2. Phys. Rev., 1969, 188(2): 703–709
    [51] Kobayashi T, Katsuda H, Hayashi K, et al. Single Crystal ESR Study of Y_2BaCuO_5. Jpn. J. Appl. Phys., 1988, 27(3): L670-L673
    [52] Kolbe W, Petermann K and Huber G. Broadband emission and laser action of Cr~(3+) doped zinc tungstate at 1μm wavelength. IEEE J. Quant. Electron., 1985, 21(10): 1596-1599
    [53] Cavalli E, Belletti A and Brik M G. Optical spectra and energy levels of the Cr~(3+) ions in MWO_4 (M=Mg, Zn, Cd) and MgMoO4 crystals. J. Phys. Chem. Solids, 2008, 69(1): 29-34
    [54] Kornylo A, Jankowska-Frydel A, Kuklinski B. Spectroscopic properties of ZnWO_4 single crystal doped with Fe and Li impurities. Radiat. Measurements, 2004, 38( 4-6): 707-710
    [55] Bugai A A, Duliu O G, Krulikovskii B K, et al. ESR at low concentrations: Superhyperfine structure of Fe~(3+) in ZnWO4. Physica Status Solidi (b), 1973, 57(1): K15–K17
    [56] Jia R P, Wu Q S, Zhang G X, et al. Preparation, structural and optical properties of ZnWO4 and CdWO4 nanofilms. J. Mater. Sci., 2003, 42(13): 4887-4891
    [57] Garces N Y, Chirila M M, Murphy H J, et al. Absorption, luminescence, and electron paramagnetic resonance of molybdenum ions in CdWO4. J. Phys. Chem. Solids, 2003, 64(7): 1195-1200
    [58] ?roubek Z, ??ánsky K. Electron Spin Resonance of Cu~(2+) Ion in CdWO4 ZnWO4, and MgWO4 Single Crystals. J. Chem. Phys., 1966, 44(8): 3078-3083
    [59] Kanzari M, Abaab M, Rezig B, et al. Effect of substrate thermal gradient on as-grown CuInS2 properties. Mater. Res. Bull., 1997, 32(8): 1009-1015
    [60] Honeyman W N. Preparation and properties of single crystal CuAlS_2 and CuAlSe_2. J. Phys. Chem. Solids, 1969, 30(8): 1935-1940
    [61] Hu Junqing, Lu Qingyi, Deng Bin, et al. A hydrothermal reaction to synthesize CuFeS2 nanorods. Inorg. Chem. Commun., 1999, 2(12): 569-571
    [62] Alonso M I, Wakita K, Pascual J, et al. Optical functions and electronic structure of CuInSe_2, CuGaSe_2, CuInS_2, and CuGaS_2. Phys. Rev. B., 2001, 63(9), 075203.1-075203.13
    [63] Boyd G, Kasper H, McFee J. Linear and nonlinear optical properties of AgGaS_2, CuGaS_2, and CuInS_2, and theory- of the wedge technique for the measurement of nonlinear coefficients. IEEE J. Quant. Electron., 1971, 7(12): 563-573
    [64] Harasaki A and Kato K. New Data on the Nonlinear Optical Constant, Phase-Matching, and Optical Damage of AgGaS2. Jpn. J. Appl. Phys, 1997, 36(1): 700-703
    [65] Hellstrom E E and Huggins R. A. Silver ionic and electronic conductivity in Ag_9GaS_6, Ag_9AlS_6, AgGaS_2, AgAlS_2, and AgAl_5S_8. J. Solid State Chem., 1980, 35(2): 207-214
    [66] Kaufmann U. Electronic structure of Ni+ in IB-III-VI2 chalcopyrite semiconductors. Phys. Rev. B, 1975, 11(7): 2478-2484.
    [67] Eachus R S, Graves R E. EPR spectroscopic investigations of metal halides doped with transition metal ions. III. Palladium (II)-doped AgCl. J. Chem. Phys., 1976, 65(12): 5445-5452
    [68] Sechkarev B A, Titov F V, Salishcheva O V. Photoprocess in AgBr microcrystals in the presence of Pt(II) and Pd(II) complex ions. Russ. J. Appl. Chem., 2008, 81(5): 1337-1341
    [69] Robbroeck L van, Goovaerts E, Schoemaker D. Electron-Spin-Resonance Study of Co~(2+) and Ni+ Centers in AgCl(Cu, Co, Ni). Phys. Status Solidi (b), 1985, 132(1): 179-187
    [70] Koswig H D, Ulrici W. Pair Formation and Tetrahedral Coordination of Co~(2+) in AgCl and AgBr. Phys. Status Solidi (b), 1970, 39(1): 231-246
    [71] Bunimovich D, Nagli L and Katzir A. IR luminescence of Ni-doped silver bromide crystals. J. Lumin., 1995, 65(1): 41-44.
    [72] Eachus R S, Graves R E, Olm M T. Photochemical studies of palladium(ii)-doped AgBr by EPR spectroscopy. Physica Status Solidi (a), 1980, 57(1): 429–437.
    [73] Sidgwick N V. The electronic theory of valency. The Clarendon press (Oxford) 1927, 1-100
    [74] Pauling L. The nature of the chemical bond. Application of results obtained from the quantum mechanics and from a theory of paramagnetic susceptibility to the structure of molecules. J. Am. Chem. Soc., 1931, 53 (4): 1367–1400
    [75] Bethe H A. Splitting of Terms in Crystals. Ann. Physik., 1929, 3: 133-206
    [76] Van Vleck J H. The Group Relation Between the Mulliken and Slater-Pauling Theories of Valence. J. Chem. Phys., 1935, 3(12): 803-806
    [77] Van Vleck J H. The Theoery of Electric and Mannetic Susceptibilities. Oxford Unin. Press, 1932, 134-138
    [78] Kallies B, Meier R. Electronic structure of 3d[M(H_2O)_6]~(3+) ions from Sc(III) to Fe(III): a quantum mechanical study based on DFT computations and natural bond orbital analyses. Inorg. Chem. 2001, 40(13): 3101-12.
    [79] Racah G. Theory of Complex Spectra I. Phys. Rev., 1942, 61(3-4): 186-197
    [80] Racah G. Theory of Complex Spectra. II. Phys. Rev., 1942, 62(9-10): 438-462
    [81] Waston R E. Hartee-Fock calculations for Mn++ in cubic fields. Phys. Rev., 1960, 117(3): 74~(2-)747
    [82] Sugano S and Tanabe, Y. Absorption spectra of Cr~(3+) in Al2O3 Part A. Theoretical Studies of the Absorption Bands and Lines. J. Phys. Soc. Japan, 1958, 13(8): 880-899
    [83] Sugano S and Peter, M. Effect of Configuration Mixing and Covalency on the Energy Spectrum of Ruby. Phys. Rev., 1961, 122(2): 381-386
    [84] Orgel L E. Spectra of Transition-Metal Complexes. J. Chem. Phys., 1955, 23(6): 1004-1014
    [85] Ballhausen C J. Introduction to Ligand Field theory. NewYork: McGrawHill, 1962, 88-97
    [86] Griffith J S. Theory of Transition Metal Ions. London:Cambridge University Press, 1961, 37-64
    [87] Warren J H. Ab initio molecular orbital theory. Acc. Chem. Res., 1976, 9 (11): 399-406
    [88] Bail A L, Duroy H and Fourquet J L. Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Materials Research Bulletin, 1988, 23(3): 447-452
    [89] Rombouts S, Heyde K. When can an A-particle fermion wavefunction be written as a slater determinant? J. Phys. A: General Physics., 1994, 27(9): 3293-3298
    [90] Burns R G. Mineralogical. Applications of Crystal Field Theory. London:Cambridge University Press, 1993, 234-236
    [91]赵敏光.晶体场和电子顺磁共振理论.北京:科学出版社,1991,99-215
    [92]赵敏光.晶体场理论-不可约张量算符.成都:四川教育出版社,1988, 229-241
    [93] Burns R G. Mineralogical. Applications of Crystal Field Theory. London:Cambridge University Press, 1993, 234-236
    [94] Abragam A, Bleanely B. Electron Paramagnetic Resonance of Transition Ions. London: Oxford University Press, 1970, 89-96
    [95]裘祖文.电子自旋共振波谱.北京:科学出版社,1980, 12-46
    [96] Damnjanovi? M, Milo?evi? I, Vukovi? T, et al. Wigner–Eckart theorem in the inductive spaces and applications to optical transitions in nanotubes. Phys. A: Math. Gen., 2004, 37(13): 4059-4068
    [97] Konig E, Schnakig R. Zero-field splitting of S(d5)ions tetrahonal and rhombic symmetry. Phys. Status Solidi, 1976, 77(2): 657-663
    [98] Newman D J, Ng B. The superposition model of crystal field. Rep. Prog. Phys., 1989, 52 (3): 699-763
    [99] Zheng W C, Wu S Y. Calculations of the spin-lattice coupling coeffients Fij and Zij for MgO:Co~(2+) crystal. Commun. Theor. Phys., 2001, 36(4):487-490
    [100] Sugano S,Tanabe Y,Kamimura H. Multiplets of Transition-Metal Ions in Crystal. Academic Press,New York.1970, 53-186
    [101] Zheng Wenchen, Wu Shaoyi, Dong Huining, et al. Spin Hamiltonian parameters and local structures for Co~(2+) ions in calcite-type trigonal carbonates MCO3 (M=Co, Cd and Ca). J. Magn. Magn. Mater., 2004, 268(1-2): 264-270
    [102] Wu Shaoyi, Gao Xiuying and Dong Huining. Investigations on the angular distortions around V~(2+) in CsMgX3 (X=Cl, Br, I). J. Magn. Magn. Mater., 2006,301(1): 67-73
    [103] Zheng Wenchen. Local tetragonal distortions of the octahedral environment for substituting Cr~(3+), Mn~(2+)and Fe~(3+) ions in Rb2ZnF4 crystals. Phys. B: Condens. Matter, 1997, 233(~(2-)3): 125-129
    [104] Du Maolu, Zhao Minguang. Gyromagnetic Factor and Spin–Orbit Coupling of Ligands in CsVX3 (X = Cl, Br, I), Phys. Status Solidi (b), 1989, 153(1): 249-255
    [105] Huang P, Ping Hu and Zhao M. G. Theoretical examination of optical and EPR spectra for Cu~(2+) ion in K2PdCl4 crystal. J. Phys. Chem. Solids, 2003, 64(3): 523-525
    [106]唐晟,董会宁. YAG:V~(2+)晶体电子顺磁共振参量和V~(2+)杂质中心缺陷结构的理论研究.四大学学报(自然科学版), 2003, 40(3): 600-602
    [107] Radcliffe J M. Some properties of coherent spin states. J. Phys. A: Gen. Phys., 1971, 4(3): 313-323
    [108] Richard P H, Juan Yguerabide, and Lubert S. Dependence of the kinetics of singlet-singlet energy transfer on spectral overlap. Proceedings of the National Academy of Sciences of the United States of America, 1969, 63(1): 23-30
    [109] Anupam G. Topologically quenched tunnel splitting in spin systems without Kramers' degeneracy. Eur. Lett., 1993, 22(3): 205-210
    [110]Yamazaki I, Mason H S. Identification, by electron paramagnetic resonance spectroscopy, of free radicals generated from substrates by peroxidase. The Journal of Biological Chemistry, 1960, 235(3): 2444-2449
    [111] Liu K J, Gast P, Moussavi M. Lithium Phthalocyanine: A Probe for Electron Paramagnetic Resonance Oximetry in Viable Biological Systems. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(12): 5438-5442
    [112] Jeschke G and Polyhach Y. Distance measurements on spin-labelled biomacromolecules by pulsed electron paramagnetic resonance. Phys. Chem. Chem. Phys., 2007, 9(16): 1895-1910
    [113] Valentin C Di, Finazzi E and Pacchioni G. Density Functional Theory and Electron Paramagnetic Resonance Study on the Effect of N-F Codoping of TiO_2. Chem. Mater., 2008, 20 (11): 3706-3714
    [114]李福珍,李兆明,杜懋陆.ZnS:Co~(2+)和CdTe:Co~(2+)中配体对g因子的贡献.波谱学杂志, 1998, 15(2): 145-150
    [115] Newman D J. Theory of lanthanide crystal fields. Adv. phys., 1971, 20(84): 197-256
    [116]陈太红,肖顺文,陈元莉. Ni(IO3)2·2H2O晶体的局部结构、吸收谱和漫反射光谱的研究.人工晶体学报, 2007, 36(6): 1377-1381
    [117] Gallay R, Klink J J and Moser J. EPR study of vanadium (4+) in the anatase and rutile phases of TiO_2. Phys. Rev. B., 1986, 34(5): 3060–3068
    [118] Wei Lihua, Wu Shaoyi, Zhang Zhihong, et al. Investigations on the local structure and g factors for the interstitial Ti~(3+) in TiO_2. Pramana, 2008, 71(1): 167-173
    [119] Li Fuzhen and Li Zhaomin. New expressions for g-factors of the mixed ground state of 3d9 ions with a compressional tetragonal symmetry and its application to NaCl:Ni+(I). Chin. Phys. 2002, 11(9): 940-943.
    [120] Zhang Dongting, He Lv, Yang Weiqing, et al. Studies of the spin-Hamiltonian parameters, d–d transitions and defect structures for two tetragonal Cu~(2+) centers in Ba2ZnF6:Cu~(2+) crystal. J. Lumin., 2009, 129(11): 1371-1374
    [121] Mei Yang and Zheng Wenchen. Investigations of the spin-Hamiltonian parameters and the tetragonal distortion due to Jahn–Teller effect for Cu~(2+) in trigonal CsCdCl3 and CsMgCl3 crystals. Phys. B: Condens. Matter., 2009, 404(8-11): 1446-1449.
    [122]Wei Wanghe, Wu Shaoyi, Dong Huining. Investigations of the defect structure for Cu~(2+) in SrLaAlO_4. Z. Naturforsch. A, 2005, 60(7): 541-544.
    [123] Wu Shaoyi, Zhang Huaming, Xu Pei, et al. Studies on the defect structure for Cu~(2+) in CdSe nanocrystals. Spectrochim. Acta Part A: Molecular and Biomolecular Spectroscopy, 2010, 75(1): 230-234.
    [124] Galinin M D D. Luminescence Centers of Rare Earth Ions in Crystal Phosphors. London: Nova Science Publishers, 1998, 234-275
    [125] Macfarlane R M. Zero Field Splittings of t 3/2 Cubic Terms. J. Chem. Phys., 1967, 47(6): 2066-2073
    [126] Mulliken R S. Electronic Population Analysis on LCAO-MO Molecular Wave Functions. IV. Bonding and Antibonding in LCAO and Valence-Bond Theories. J. Chem. Phys., 1955, 23(12): 2343-2346.
    [127] Du Maolu. Theoretical investigation of the g factor in RX:V~(2+)(R=Na, K, Rb; X=Cl, Br). Phys. Rev. B., 1992, 46(9): 5274-5279
    [128]董会宁,邬劭轶,郑文琛. Co~(2+)离子在MgF_2和ZnF_2晶体中的各向异性g因子的理论研究.波谱学杂志, 2002, 3(19): 275-280
    [129] Mulliken R S. Self-Consistent Field Atomic and Molecular Orbitals and Their Approximations as Linear Combinations of Slater-Type Orbitals. Rev. Mod. Phys, 1960, 32(2): 232-238
    [130] Wu Shaoyi, Zheng Wenchen. Theoretical studies of the g factors for Co~(2+) in MgO and CaO crystals . Z. Naturforsch. A, 2001, 56(3): 249-252
    [131] Barriuso M T and Moreno M. Determination of the Ni+-F- distance for square-planar and linear centers in LiF:Ni+and NaF:Ni+. Solid State Commun., 1984, 51(5): 335-338
    [132] Studzinski P, Casas-Gonzales J and Spaeth J M. ENDOR investigation of tetragonal Ni+ centres in CaF_2. J. Phys. C: Solid State Phys., 1984, 17(30): 5411-5419
    [133] Barriuso M T, Aramburu J A and Moreno M. Covalency in NiF65-: the Jahn-Teller centre in LiF:Ni~+ revisited. J. Phys.: Condens. Matter, 1990, 2(3): 771-777
    [134] Maeda A, Noda T, Matsumoto H, et al. Study on the preparation of 90-K superconductor LaBa_2Cu_3Oy. J. Appl. Phys., 1988, 64(8): 4095-4102
    [135] Likodimos V, Guskos N, and Palios G, et al. EPR study of localized Cu~(2+) paramagnetic ions and Cu~(2+) pairs in the oxygen-deficient PrBa2Cu3O6+x and Pr0.5R0.5Ba2Cu3O6+x (R=Y,Er) compounds Phys. Rev. B, 1995, 52(10): 7682–7688
    [136] Feng Wenlin, Yang Weiqing, Zheng Wenchen, et al. Investigations of the spin-Hamiltonian parameters and tetragonal distortion due to the Jahn–Teller effect for Cu(H2O)6~(2+) clusters in C(NH2)3Al(SO4)2·6H2O: Cu~(2+) crystal. Phys. B: Condens. Matter, 2010, 405(8): 2018-2020
    [137] Wu Shaoyi, Fu Qiang, Lin Jizi et al. Theoretical studies of the local structures and the EPR paramaters for Ru~(3+) in the garnets. Opt. Mater., 2007, 29(8): 1014-1018
    [138] Wu S Y and Zheng W C. Theoretical investigation of the zero-field splittings and g factors for the Cr~(3+) ions at the rhombic defect site in the AgCl crystal. J. Phys.: Condens. Matter, 1998, 10(98): 7545-7551
    [139] Zheng Wen-Chen and Wu Sha-Yi. Electron paramagnetic resonance parameers of V~(2+) ions in both Cd~(2+) sites of CsCdCl3 crystal. Spectrochim Acta Part A: Molecular and Biomolecular Spectroscopy, 2002, 58(1): 79-82
    [140] Chakravarty, A.S.: Introduction to the Magnetic Properties of Solids. Wiley, New York,1980, 62-88
    [141] Parker I H. Cu~(2+) in ammonium fluoride-a tetrahedral site. J. Phys. C, 1971, 4(11): 2967-2978
    [142] Ardelean I, Peteanu M, Burzo E, et al. EPR and magnetic susceptibility studies of Cu~(2+) ions in TeO_2-B2O3-PbO glasses. Solid State Commun., 1996, 98(4): 351-355
    [143] Keeble D J, Li Z and Harmatz M. Electron paramagnetic resonance of Cu~(2+) in PbTiO_3. J. Phys. Chem. Solids, 1996, 57(10): 1513-1515
    [144] Kalkan H and K?ksal F. Electron Paramagnetic Resonance study of Cu~(2+) in Cd(HCOO)_22H_2O single crystal. Solid State Commun., 1997, 103(3): 137-140
    [145] Gau T S and Yu J T. Electron paramagnetic resonance of Cu~(2+) in KHCO_3 crystals. Solid State Commun., 1991, 78(2): 123-127
    [146] Dong Huining, Keeble D J, Wu Shaoyi. Theoretical Explanations of the Spin Hamiltonian Parameters for Cu~(2+) Ion in LaSrAl1-xCuxO4 Solid Solution. Condens. Matter Phys., 2007, 21(18-19): 3174-3176
    [147] Owen J and Thornley J H M. Covalent bonding and magnetic properties of transition metal ions. Rep. Prog. Phys., 1966, 29: 675-728
    [148] Wei Lihua, Wu Shaoyi, Zhang Zhihong, et al. Theoretical study of the superhyperfine parameters for Cu2?+? in K2PdX4 (X = Cl, Br). Hyperfine Interact., 2008,181(1-3): 169-177
    [149] Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A: Cryst. Phys., Diffract., Theoretical and General Crystallography, 1976, 32(5): 751-767
    [150] Moreno M. Microscopic characterization of impurities in insulators through EPR. J. Phys. Chem. Solids, 1990, 51(7): 835-859
    [151] Moreno M, Barriuso M T and Aramburu.J. A. Impurity-ligand distances derived from magnetic resonance and optical parameters. Appy. Magn. Res., 1992, 3(2): 283-304
    [152] Villacampa B, AlcaláR, and Alonso P J. EPR study of Ni~+ centers in CsCaF_3. Phys. Rev. B., 1994, 49: 1039-1047.
    [153] Ammeter J H, Buergi H B, Thibeault J C, et al. Counterintuitive orbital mixing in semiempirical and ab initio molecular orbital calculations. J. Am. Chem. Soc., 1978, 100 (12): 3686-3692.
    [154] Fernandez P G, Barriuso MT, Aramburu J A, et al.Optical transitions of a D4h complex with one electron in a1g (≈3z2?r2): study of RhCl64?. Chem. Phys. Lett., 2003, 374(1-2): 151-156
    [155] Abell G C and Bowman R C. EPR studies of paramagnetic rhodium centers in LiH and LiD. J. Chem. Phys., 1979, 70(6): 2611-2619.
    [156] Lin Jizi, Wu Shaoyi, Fu Qiang. Theoretical studies on the EPR parameters of the interstitial V4+ in rutile. Radiat Eff. Defects Solids, 2006, 161(10): 571-577
    [157] Chakravarty A S, Korenman V. Introduction to the Magnetic Properties of Solids. Physics Today, 1981, 34(10): 100-118
    [158] McGarvey B R. The isotropic hyperfine interaction. J. Phys. Chem., 1967, 71 (1): 51-66
    [159] Wu Shaoyi, Gao Xiuying, Lin Jizi, et al. Studies on the local structures of the substitutional and interstitial Ni~(3+) centers in rutile. Chem. Phys., 2006, 328(1-3): 26-32
    [160] Dong H N, Wu S Y, Li P. Theoretical explanation of EPR parameters for Cu~(2+) ion in TiO_2 crystal. Phys. Status Solidi (b), 2004, 241(8): 1935-1938.
    [161] Müller K A, Takashige M, and Bednorz J G. Flux trapping and superconductive glass state in La2CuO4-y: Ba. Phys. Rev. Lett., 1987, 58(11): 1143-1146
    [162] Chakraverty. B. K, Feinberg. D, Hang. Z. et al. Squeezed bipolaronic states and high temperature superconductivity in BaLaCuO systems. Solid State Communications, 1987, 64(8): 1147-1151
    [163] Sun J Z, Webb D J, Naito M, et al. Superconductivity and magnetism in the high-Tc superconductor YBaCuO. Phys. Rev. Lett., 1987, 58(15): 1574-1576
    [164] Ginsberg. D.M. Physical Properties of High Temperature Superconductors II. World Scientific, Singapore (1990)
    [165] Chakravarty. A. S. Introduction to the Magnetic Properties of Solids. Wiley, New York (1980)
    [166] Zhang Huaming, Wu Shaoyi, Xu Pei et al. Investigations of the EPR parameters and local structures for the substitutional Cu~(2+) centers in the tungstates. Eur. Phys. Appl. Phys., 2010, 50(3): 30901-30906
    [167] Petrosyan A K, Khachatryan R M, Sharoyan E G. Jahn-Teller Effect in EPR and Optical Absorption Spectra of Cu~(2+) in LiNbO3 Single Crystals. Phys. status solidi (b), 1984, 122(2): 725-734
    [168] Abragam A and Pryce M H L. Theory of the Nuclear Hyperfine Structure of Paramagnetic Resonance Spectra in Crystals. Proc. R. Soc. London. Ser. A, 1951, 205(1080): 135-153
    [169] Maki A H, McGarvey B R. Electron Spin Resonance in Transition Metal Chelates. I. Copper (II) Bis-Acetylacetonate. J. Chem. Phys., 1958, 29(1): 31-34
    [170] Ruiz-Fuertes J, Sanz-Ortiz M N, J González,et al. Optical absorption and Raman spectroscopy of CuWO4. J. Phys.: Conf. Ser., 2010, 215(1): 012048-010252
    [171] Levkovskii P T and Pashkovskii M V. Effect of an external constant electric field on the EPR spectrum of Cr~(3+) ions in synthetic ferberite. Theor. Exp. Chem., 1970, 4(1): 88-89
    [172] Wei Lihua, Wu Shaoyi, Zhang Zhihong, etal. Investigations on the local structure and the EPR parameters for Cu~(2+)-doped GaN. Mod. Phys. Lett. B, 2008, 22(18): 1739-1747
    [173]黎明,赵北君,朱世富,等. AgGaS_2晶体红外光谱的研究.功能材料2004(增刊), 35:3387-3389
    [174] Wu Shaoyi, Wei Lihua, Zhang Zhihong, et al. Studies of the spin Hamiltonian parameters and local structure for ZnO:Cu~(2+).Spectrochim. Acta Part A, 2008, 71(4): 1307-1310
    [175] Kool Th W, Lenjer S and Schirmer O F. Jahn–Teller and off-center defects in BaTiO_3: Ni~+, Rh~(2+), Pt~(3+) and Fe~(5+)as studied by EPR under uniaxial stress. J. Phys.: Condens. Matter, 2007, 19(49): 496214-496228
    [176] Wei Lihua, Wu Shaoyi, Hu Yuexia, et al. Inveatigations of the EPR parameters and local structure for one Cu~(2+) center in CdS. Defect and Diffusion Forum,2008, 280-281:15-20
    [177] Wattts R K. Electron Paramagnetic Resonance of Ni+ and Ni~(3+) in ZnSe. Phys. Rev., 1969, 188(2): 568-571
    [178] Kaufmann U. Electronic structure of Ni~+ in IB-III-VI2 chalcopyrite semiconductors. Phys. Rev. B, 1975, 11(7): 2478-2484
    [179] Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst., 1976, A32(5): 751-767
    [180] Wu Shaoyi, Wei Wanghe and Dong Huining. Calculation of the EPR parameters and the local structure for Fe+ on the Zn~(2+) site of ZnSiP_2. Z. Naturforsch. A, 2004, 59(11): 769-772
    [181] Raizman A, Schoenberg A, and Suss J.T. Jahn-Teller effect in the EPR spectrum of Pt~(3+) in MgO. Phys. Rev. B, 1979, 20, 1863-1866
    [182] Zhang Huaming, Wu Shaoyi, Xu Pei. Studies of the local structures and spin Hamiltonian parameters for the two Rh~(2+) centers in AgBr. Can. J. Phys., 2011, 89(7): 177-183
    [183] Zhang Zhihong Wu Shaoyi Wei Lihua et al. Investigations of the Defect Structures and EPR Parameters for the Tetragonal and Cubic Ni~(2+) Centers in AgX (X=Cl, Br). Defect and Diffusion Forum, 2008, 272(12): 117-122
    [184] Zheng Wenchen, Wu Shaoyi. Theoretical Studies of EPR Parameters and Microstructure of the Rhombic Co~(2+)–VAg Centre in AgCl. Phys. Stat. solidi (b), 2000, 220(2): 941-949
    [185] H?hne M, Stasiw M. ESR Investigation of Ni+ in Illuminated AgCl and AgBr. Phys. Status solidi (b), 1969, 33(1): 405-409
    [186] Eachus R S, Graves R E. EPR study of the Rh~(2+) center in AgBr. J. Chem. Phys., 1973, 59(4): 2160-2161
    [187] Morrison C A. Crystal fields for transition-metal ions in laser host materials. Berlin, Springer-Verlag. Press, 1992, 56-80
    [188] Barriuso M T,Fernández P G, Aramburu. J. A. et al. DFT Study of the Jahn–Teller Impurity Rh~(2+) in Octahedral Symmetry. Int. J. Quantum Chem., 2003, 91(2): 202–207

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700