锂离子电池锡基负极材料的制备及储能行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前商品化锂离子电池负极材料所广泛使用的碳材料存在比容量低(372mAh g-1,837mAh cc-1)及安全性欠佳的问题。金属锡具有更高的理论比容量(994mAh g-1,7200 mAh cc-1)且无安全隐患,是一种很有发展潜力的负极材料,但由于在脱嵌锂过程中伴随着巨大的体积变化,导致活性物质粉化、脱落,从而与集流体失去电接触,容量迅速衰减。这成为制约金属锡作为锂离子电池负极材料的致命缺点。为了提高锡的循环稳定性,国内外科研工作者采用的方法一般有:①引入非活性元素,制备活性/非活性合金体系;②引入其它活性元素,制备活性/活性合金体系;③锡基负极材料的纳米化;④锡基负极材料的薄膜化;⑤锡基纳米材料的碳包覆;⑥锡基氧化物;⑦锡基材料的形貌控制,如采用多孔材料和空心核壳结构等,但单一方法很难取得显著的效果。本论文针对锡铜合金体系,综合薄膜化、纳米化、形貌控制等方法制备新型锡基负极材料,希望可以缓冲锡的体积膨胀,从而提高锡基材料的循环稳定性,开展的主要研究工作如下:
     (1)综合利用活性/非活性体系、薄膜材料和多孔材料的优点,制备了三维多孔的锡铜合金负极。以孔径为100~200μm的多孔铜为集流体和铜源,使用化学镀锡工艺均匀包覆厚度为0.7μm的金属锡层,通过在真空条件下150℃热处理2小时,得到了三维多孔Cu6Sn5合金负极,合金层的厚度为1.2μm。不同热处理条件下还制备了三维多孔结构的Sn-Cu6Sn5和Cu6Sn5复合电极。在0~2.0 V的电位区间,电流密度100 mA g-1的条件下进行恒流充放电测试,结果显示三维多孔Cu6Sn5负极显示出最为优异的电化学性能,循环100圈后仍保持404 mAh g-1的比容量。相比于Sn-Cu6Sn5复合负极,Cu6Sn5更好的循环稳定性归因于Cu6Sn5的形成及活性材料与集流体之间更好的结合力。而Cu6Sn5复合负极较差的循环性能则因为其较差的可逆性,这可以从其放电曲线中得到较好的解释。
     (2)纳米材料虽然因其更小的应力,可有效缓冲锡基材料充放电过程中巨大的体积变化,但纳米材料在充放电过程中容易发生团聚,导致循环性能变差。因此,设计并合成了一种新型的空心核壳结构Cu6Sn5@Ti02纳米管阵列负极材料。首先在60 V恒电位条件下氧化钛箔制备长度为2μm,管径为100 nm的Ti02纳米管阵列,然后通过化学镀铜和化学镀锡工艺将Cu6Sn5合金层包覆在Ti02纳米管内壁上,化学镀后Ti02纳米管的管径从100 nm减至约50 nm,但仍然保持中空的结构。这种独特的“管中管”结构有望可以缓冲锡的体积膨胀、防止锡基颗粒的电化学团聚,并且可以大大减小锂离子的扩散途径。电化学测试结果显示该材料比容量为空白Ti02纳米管阵列比容量的3倍,60次循环后的容量保持率为85%,且表现出优异的倍率性能。
     (3)进一步以碳纳米管为载体,利用化学镀锡和化学镀铜工艺制备了Cu6Sn5@CNTs复合粉体材料。Cu6Sn5合金层被均匀地镀覆在碳纳米管外壁。材料的首次放电容量为614 mAh g-1,首次可逆充电容量为371 mAh g-1,对应的首次库伦效率为60%,相比于纯碳纳米管有较大的提高。但循环性能却仍不理想,20次循环后容量仅为223 mAh g-1。这可能是由于Cu6Sn5合金层是包覆在碳纳米管管壁的外部,在充放电过程中由于体积变化和应力增加,容易从碳纳米管上脱落。这种外包覆方式与内包覆相比,在提高锡基材料循环稳定性方面还是有较大的差距,材料结构需进一步优化。
     (4)除了在锂离子电池锡基负极材料方面的研究工作,在电化学电容器方面也开展了一些工作。电化学电容器是一种适于快速充放电的储能装置,与电池相比,具有非常高的功率密度,但能量密度却非常低。通常认为这是由于活性材料较低的利用效率造成的。因此,提高电极材料的利用率是提高电容器比能量的关键。本部分工作利用阴极沉积法和后续热处理制备了孔径为2-3 nm的无序多孔结构Mn02薄膜,并将其沉积在三维多孔集流体上。TEM和XPS分析结果显示MnO2的无序多孔结构是在热处理过程中失水形成的。由于集流体的大孔结构和活性物质Mn02的介孔结构,活性物质的利用率得到较大的提高。在5 Ag-1的电流密度下材料的比容量为385 Fg-1,并表现出优异的倍率性能和循环寿命。
Lithium ion batteries have a variety of applications ranging from portable electronic devices to electric vehicles. The most common used anode materials in lithium ion batteries are still carbonaceous materials, however, alternative anode materials with higher specific capacities are in great demand to increase the energy density of batteries. Meanwhile, safety concerns of carbonaceous materials due to their low lithiated potentials close to lithium also require searching for new anode materials. Among them, tin provides much higher theoretical capacity (994 mAh g-1, 7200 mAh cc-1) than graphite (372 mAh g-1,837mAh cc-1), and behaves a slightly higher discharge voltage (0-400 mV) than metallic lithium which could reduce safety concerns during cycling, however, pure tin presents a limited cycle life due to pulverization and delamination from copper foil current collector caused by volume expansion and contraction associated with the lithiation and delithiation. In this thesis, some work have been done to improve tin's cycling performance by tunning of its structure and morphology. The main contents are as follows:
     (1) A binder-free three-dimensional (3D) porous Cu6Sn5 anode was prepared for lithium ion batteries. In this novel approach, tin was deposited by electro less-plating on copper foam which was served as anode current collector as well as the source of copper for Cu6Sn5 alloy formation. With optimized post-treatment condition, Cu6Sn5 alloy with thickness of 1.2μm was formed on the surface of copper foam network.3D porous Sn-Cu6Sn5 and Cu3Sn-Cu10Sn3-Cu6Sn5 composite anodes were also prepared for comparison. Electrochemical tests showed that 3D porous Cu6Sn5 anode exhibits the best electrochemical performance in terms of specific capacitance and cycleability, which delivers a rechargeable capacity of 404 mAh g-1 over 100 cycles. The cycling performance may be further improved by employing a copper foam current collector with smaller pores and larger surface area which requires further investigation.
     (2) Core-shell Cu6Sn5-coated TiO2 nanotube arrays as a novel design for anode material in lithium ion batteries was prepared by electroless plating techniques. In this design, Cu6Sn5 layer was coated on the inner wall surface of TiO2 nanotubes, the hollow structure of the nanotubes was still remained although the inner diameter of the nanotubes decreased from 100 nm to 50 nm. The as-prepared Cu6Sn5-coated TiO2 nanotube arrays combines the merits of the high specific capacity of tin and the structure stability of TiO2 nanotubes, and the nanotublar structure allows both facile strain relaxation of tin and rapid mass transport, leading to greatly enhanced electrochemical performances in terms of specific capacity, cycle life and rate capability. Owing to the versatility of our morphology design, the preparation process by electroless plating techniques is also helpful for making other nanotublar composite materials and 3D batteries.
     (3) Cu6Sn5@CNTs hybrid composite, namely Cu6Sn5 overlaying on the exterior surface of carbon nanotubes, was prepared by electroless plating techniques. As for this material, there are several factors favorable to the improvement of cycling stability of tin:①Tubular structure of CNTs could adsorb the reaction-induced stress;②The 3-D porous structure formed by CNTs could also accommodate drastic volume variation during electrochemical reactions;③The Cu6Sn5@CNTs anode has fibrous textures that can hinder the cracking or crumbling of the electrode. However, due to the stripping of Cu6Sn5 layer from CNTs caused by reaction-induced stress, we did not obtain an ideal cycling performance.
     (4) Besides the research work on tin-based anode materials, some work on electrochemical capacitor has also been done. A hierarchical porous MnO2-based electrode was prepared and its electrochemical performance for electrochemical capacitors was investigated. In this work, porous MnO2 film with pore size of 2-3 nm in diameter was deposited on a three-dimensional porous current collector by cathodic electrodeposition associated with subsequent controlled heat treatment at 200℃for 2 hours. Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) showed that the heat treatment has a great effect on the formation of the porous structure of MnO2 layer, and the disordered porous structure was caused by dehydration during the heat treatment. Cyclic voltammetry (CV) and galvanostatic charge-discharge tests showed that both energy and power densities are enhanced due to the unique hierarchical porous structure. The electrode delivers a high specific capacitance of 385 F g-1 at a high current density of 5 A g-1 within a potential window of -0.05~0.85 V, and also exhibits excellent rate capability and electrochemical stability.
引文
[1]杨遇春,二次锂电池进展[J],电池,1993,23(5):230-233
    [2]J. O. Besenhard, M. Winter, Advances in Battery Technology:Rechargeable Magnesium Batteries and Novel Negative-Electrode Materials for Lithium Ion Batteries [J], Chemphyschem,2002,3,155-159
    [3]毕道治,电动车电池的开发现状及展望[J],电池工业,2000(2):56-63.
    [4]金明钢,我国固态锂离子电池工业发展近况[J],电池工业,2000,2(88-92).
    [5]赵健,杨维芝,赵佳明,锂离子电池的应用开发[J],电池工业,2000(1):31-36.
    [6]W. S. Harris, Ph. D. Thesis UCRL-8381, University of California [D], Berkeley, 1958
    [7]M. S. Whittingham, Electrochemical energy storage and intercalation chemistry [J]. Science,1976,192:1126
    [8]M. Armand. Materials for Advanced Batteries [M]. New York:Plenum Press, 1980,145
    [9]J. M. Taraseon, M. Armand. Issues and challenges facing rechargeable lithium batteries [J], Nature,2001,414:359-367
    [10]T. Nagaura, K. Tozawa, Lithium ion rechargeable battery [J]. Prog. Batteries Solar Cells,1990,9:209
    [11]G. Amatucci, J. M. Tarascon. Optimization of insertion compounds such as LiMn2O4 for Li-ion batteries [J], Journal of The Electrochemical Society,2002, 149(12):K31-K46
    [12]R. Koksbang, J. Barker, H. Shi, M. Y. Saidi. Cathode materials for lithium rocking chair batteries [J], Solid State lonics,1996,84:1-21.
    [13]周恒辉,慈云祥,刘昌炎,锂离子电池电极材料研究进展[J],化学进展,1998,10(1):85-93
    [14]黄可龙,王兆翔,刘素琴,锂离子电池原理与关键技术[M],北京:化学工业出版社,2008:34-35
    [15]M. Wakihara, Recent developments in lithium ion batteries [J], Materials Scicence & Engineering R,2001,33,109-134
    [16]J. R. Dahn, Phase diagram of LixC6 [J]. Phys. Rev.,1991, B44,9170-9177
    [17]T. Ohzuku, Y. lwakoshi, K. Sawai, Formation of Lithium-Graphite Intercalation Compounds in Nonaqueous Electrolytes and Their Application as a Negative Electrode for a Lithium Ion (Shuttlecock) Cell [J], J. Electrochem. Soc.,1993,140: 2490-2497
    [18]M. Endo, C. Kim, K. Nishimura, et al, Recent development of carbon materials for Li ion batteries [J], Carbon,2000,38:183-197
    [19]M. Winter, J. O. Besenhard, P. Novak, et al, Insertion Electrode Materials for Rechargeable Lithium Batteries [J]. Advanced Materials,1998,10:725-763
    [20]D. Aurbach, Y Ein-Eli, O. Chusid, et al, The Correlation Between the Surface Chemistry and the Performance of Li-Carbon Intercalation Anodes for Rechargeable "Rocking Chair" Type Batteries [J], J. ElectrocherrL Soc.,1994,141:603-610
    [21]G. Chung, H. Kma, S. Yu, et al., Origin of graphite exfoliation, all investigation of the important role of solvent cointercalation [J]. J. Electrochem. Soc.,2000, 147(12):4391-4398
    [22]L. J. Fu, H. Liu, C. Li, et al., Surface modifications of electrode materials for lithium ion batteries [J], Solid State Sciences,2006,8:113-128
    [23]T. Tsumura, A. Katanosaka, I. Souma, et al., Surface modification of natural graphite particles for lithium ion batteries [J], Solid State lonics,2000,135:209-212
    [24]M. Yoshio, H. Wang, K. Fukuda, et al., Effect of carbon coating on electrochemical performance of treated natural graphite as Lithium-ion battery anode material [J], J. Electrochem. Soc.,2000,147(4):1245-1250
    [25]G. X. Wang, J. Yao, H. K. Liu, et al., Electrochemical characteristics of tin-coated MCMB graphite as anode in Lithium-ion cells [J], Electrochimica Acta, 2004,50,517-522
    [26]H. Huang, E. M. Kelder, J. Schoonman, Graphite-metal oxide composites as anode for Li-ion batteries [J], J power Sources,2001,97-98:114-117
    [27]Y. P. Wu, C. Jiang, C. Wan, R. Holze, Anode materials for lithium ion batteries from mild oxidation of natural graphite [J], J. Appl. Electrochem,2002,32: 1011-1017
    [28]T. Nakajima, J. Li, K. Naga, et al., Surface structure and electrochemical properties of surface-fluorinated petroleum cokes for lithium ion battery [J], J Power Sources,2004,133:243-251
    [29]C. S. Wang, G. T. Wu, X. B. Zhang, et al., Lithium insertion in carbon-silicon composite materials produced by mechanical milling [J], J. Electrochem. Soc.,1998, 145(8):2751-2758
    [30]A. M. Wilson, J. R. Dahn, Lithium insertion in carbons containing nano-dispcrsed silicon [J], J. Electrochem. Soe.,1995,142(2):326-332
    [31]J. M. Chen, Cokes as negative electrodes in secondary batteries [J]. J Power Sources,1995,54,494-495
    [32]K. Sekai, Plasticized carbon electrodes of interest for lithium rocking chair batteries [J]. J Power Sources,1993,45,333-341
    [33]孙颢,蒲薇华,何向明,锂离子电池硬碳负极材料研究进展[J].化工新型材料,2005,33(11):7-10
    [34]M. W. Verbmgge, B. J. Koch, Lithium intercalation of carbon-fiber microelectrodes [J], J Electrochem Soc,1996,143,24-31
    [35]E. Buoel, J. R. Dhan, Reduction of the irreversible capacity in hard-carbon anode materials prepared from sucrose for li-ion batteries [J]. J Electrochem. Soc,1998, 145(6):1977-1981
    [36]M. Winter, J. O. Besenhard, Electrochemical Lithiation of Tin and Tin-Based Intermetallies and Composites [J], Electrochimica Acta,1999,45:31-50
    [37]J. L. Tirado, Inorganic materials for the negative electrode of lithium-ion batteries:state-of-the-art and future prospects [J], Materials Scicence & Engineering R,2003,40,103-136
    [38]O. Mao, J. R. Dahn. Mechanically Alloyed Sn-Fe(-C) Powders as Anode Materials for Li-Ion Batteries Ⅲ. Sn2Fe:SnFe3C Active/Inactive Composites [J], Journal of the Electrochemical Society,1999,146(2):423-427
    [39]M. Winter, J. O. Besenhard, Insertion electrode materials for rechargeable lithium batteries [J], Adv. Mater.,1998,10:725-763
    [40]K. D. Kepler, J. T. Vaughey, M. M. Thackeray, Copper-tin anodes for rechargeable lithium batteries:an example of the matrix effect in an intermetallic system [J], J. Power Sources,1999,81-82:383-387
    [41]D. Larcher, L. Y. Beaulieu, D. D. Macneil, In situ X-ray study of electrochemical reactions with lithium of tin(Ⅱ) phosphate chloride [J], J. Electrochem. Soc,2000,1 47(5):1658-1662
    [42]J. T. Vaughey, K. D. Kepler, R. Benedek, et al., NiAs-versus zinc-blende-type intermetallic insertion electrodes for lithium batteries:lithium extraction from Li2CuSn [J], Electrochem. Commun.,1999,1:517-521
    [43]J. Wolfenstine, S. Campos, D. Foster, Nano-scale Cu6Sn5 anodes [J], J. Power Sources,2002,109:230-233
    [44]G. X. Wang, L. Sun, D. H. Bradhurst, Lithium storage properties of nanocrystalline eta-Cu6Sn5 alloys prepared by ball-milling [J], J. Alloy. Compd.,2000, 299:L12-L15
    [45]Y. Liu, J. Y. Xie, J. Yang, Morphology-stable alloy/C composites for lithium insertion [J], J. Power Sources,2003,119-121:572-575
    [46]J. Wolfenstine, S. Campos, Effect of Fe on the cycle life of Cu6Sn5 anodes [J], Materials Letters,2002,57:24-27
    [47]S. D. Beanie, J. R. Dahn, Single bath, pulsed electrodeposition of copper-tin alloy negative electrodes for lithium-ion secondary batteries [J], J. Electrochem. Soc., 2003,150(7):A894-A898
    [48]G. M. Ehrlich, C. Durand, X. Chen, et al., Metallic negative electrode materials for rechargeable nonaqueous batteries [J], J. Electrochem. Soc.,2000,147(3): 886-891
    [49]Y. L. Kim, H. Y. Lee, S. W. Jang, et al., Nanostructured Ni3Sn2 thin film as anodes for thin film rechargeable lithium batteries [J], Solid State Ionics,2003,160: 235-240
    [50]Q. F. Dong, C. Z. Wu, M. G. Jin, et al., Preparation and performance of nickel-tin alloys used as anodes for lithium-ion battery [J], Solid State Ionics,2004, 167:49-54
    [51]H. Y. Lee, S. W. Jang, S. M. Lee, et al., Lithium storage properties of nanocrystalline Ni3Sn4 alloys prepared by mechanical alloying [J], J. Power Sources, 2002,112:8-12
    [52]H. Mukaibo, T. Sumi, T. Yokoshima, et al., Electrodeposited Sn-Ni alloy film as a high capacity anode material for lithium-ion secondary batteries [J], Electrochem. Solid State Lett.,2003,6(10):A218-220
    [53]J. Hassoun, S. Panero, B. Scrosati. Electrodeposited Ni-Sn intermetallic electrodes for advanced lithium-ion secondary batteries [J], J. Power Sources,2006, 160:1336-1341
    [54]J. J. Zhang, Y. Y. Xia. Co-Sn alloys as negative electrode materials for rechargeable lithium batteries [J], J. Electrochem. Soc.,2006,153:A1466-A1471
    [55]N. Tamura, Z. Y. Kato, A. Mikami, et al., Study on Sn-Co alloy anodes for lithium secondary batteries [J], J. Electrochem. Soc.,2006,153:A1626-A1632
    [56]N. Tamura, M. Fujimoto, M. Kamino, et al., Mechanical stability of Sn-Co alloy anodes for lithium secondary batteries [J], Electrochimica Acta,2004,49:1949-1956
    [57]F. S. Ke, L. Huang, H. B. Wei, et al., Fabrication and properties of macroporous tin-cobalt alloy film electrodes for lithium-ion secondary batteries [J], J. Power Sources,2007,170:450-455
    [58]J. Xie, X. B. Zhao, G. S. Gao, et al., Electrochemical performance of nanostructured amorphous Co3Sn2 intermetallic compound prepared by a solvothermal route [J], J. Power Sources,2007,164:386-389
    [59]O. Mao, J. R. Dahn, Mechanically Alloyed Sn-Fe(-C) Powders as Anode Materials for Li-Ion Batteries [J], J. Electrochem. Soc.,1999,146(2):414-422
    [60]L. Sonoda, H. Kobayashi, K. Komoto, et al., Advanced lithium secondary batteries using tin-iron alloy negative electrodes prepared by electroplating [J], Electrochemistry,2003,71:1096-1098
    [61]H. Kim, Y. J. Kim, D. G. Kim, et al., Mechanochemical synthesis and electrochemical characteristics of Mg-Sn as an anode material for Li-ion batteries [J], Solid State Ionics,2001,144:41-49
    [62]M. M. Thackeray, J. T. Vaughey, A. J. Kahaian, K. D. Kepler, R. Benedek, Intermetallic insertion electrodes derived from NiAs-, Ni2In-, and Li2CuSn-type structures for lithium-ion batteries [J], Electrochemistry Communications,1999,1, 111-115
    [63]A. Westgren, G. Phragmen, Zeitschrift fur anorganische und allgemeine Chemie, 1928,175,80-89
    [64]K. D. Kepler, J. T. Vaughey, M. M. Thackeray, LixCu6Sn5 (0< x< 13):An Intermetallic Insertion Electrode for Rechargeable Lithium Batteries [J], Electrochemical and Solid-State Letters,1999,2 (7),307-309
    [65]S. Sharma, L. Fransson, E. Sjostedt, L. Nordstrom, B. Johansson, K. Edstrom, A Theoretical and Experimental Study of the Lithiation of η'-Cu6Sn5 in a Lithium-Ion Battery [J], Journal of The Electrochemical Society,2003,150(3), A330-A334
    [66]Y. Y. Xia, T. Sakai, T. Fujieda, Masashi Wada, Hiroshi Yoshinaga, Flake Cu-Sn Alloys as Negative Electrode Materials for Rechargeable Lithium Batteries [J], Journal of The Electrochemical Society,2001,148(5):A471-A481
    [67]D. G. Kim, H. Kim, H. J. Sohn, T. Kang, Nanosized Sn-Cu-B alloy anode prepared by chemical reduction for secondary lithium batteries [J], Journal of Power Sources,2002,104(2),221-225
    [68]N. Tamura, R. Ohshita, M. Fujimoto, S. Fujitani, M. Kamino, I. Yonezu, Study on the anode behavior of Sn and Sn-Cu alloy thin-film electrodes [J], J. Power Sources,2002,107,48-55
    [69]W. H. Pu, X. M. He, J. G. Ren, C. R. Wan, C, Y. Jiang, Electrodeposition of Sn-Cu alloy anodes for lithium batteries [J], Electrochimica Acta,2005,50(20), 4140-4145
    [70]C. Arbizzani, M. Lazzari, M. Mastragostino, Lithiation/delithiation performance of Cu6Sn5 with carbon paper as current collector [J], Journal of the Electrochemical Society,2005,152(2), A289-A294
    [71]J.Yang, M. Wachtler, M. Winter, J. O. Besenhard, Sub-Microcrystalline Sn and Sn-SnSb Powders as Lithium Storage Materials for Lithium-Ion Batteries [J], Electrochem. Solid State Lett,1999,2:161
    [72]Y. Yang, Takeda, N. Imanishi, O. J. Yamamoto, Ultrafine Sn and SnSb0.14 Powders for Lithium Storage Matrices in Lithium-Ion Batteries [J], J. Electrochem. Soc.,1999,146:4009
    [73]Rom, M. Wachtler, I. Papst, M. Schmied, J. O. Besenhard, F. Hofer, M. Winter, Electronmicroscopical characterization of Sn/SnSb composite electrodes for lithium-ion batteries [J]. Solid State Ionics,2001,143:329
    [74]Wachtler, M. Winter, J. O. Besenhard, Anodic materials for rechargeable Li-batteries [J], J. Power Sources,2002,105:151
    [75]M. Wachtler, J. O. Besenhard, M. Winter, Tin and tin-based intermatallics as new anode materials for lithium-ion cell [J], Journal of Power Sources,2001,94(2): 189-193
    [76]I. A. Coutney, W. R. Mckinnon, J. R. Dahn, On the aggragation of tin in SnO composite glasses caused by the reversible reaction with lithium [J], Journal of Electrochemistry Society,1999,146(1):59-68
    [77]T. Zhang, L. J. Fu, J. Gao, Nanosized tin anode prepared by laser-induced vapor deposition for lithium ion battery [J], Journal of Power Sources,2007,174,770-773
    [78]S. C. Nam, Y. S. Yoon, W. I. Cho, et al., Reduction of irreversibility in the first charge of tin oxide thin film negative electrodes [J]. J Electrochem Soc,2001,148(3): A220-A223
    [79]L. Y. Beaulieu, K. C. Hewitt, J. R. Dahn, et al.. The electrochemical reaction of Li with amorphous Si-Sn alloys [J]. J Electrochem Soc,2003,150(2):A149-A156
    [80]T. Brousse, R. Retoux, Thin-film crystalline SnO2-lithium electrode [J], J Electrochem Soc,1998,145(1):1-41
    [81]X. M. He, W. H. Pu, L. Wang, Synthesis of spherical nano tin encapsulated pyrolytic polyacrylonitrile composite anode material for Li-ion batteries [J], Solid State Ionics,2007,178,833-836
    [82]M. Noh, Y. Kwon, H. Lee, et al., Amorphous carbon-coated tin anode material for lithium secondary battery [J]. Chem. Mater.,2005,17:1926-1929
    [83]N. C. Li, C. R. Martin, A high-rate, high capacity, nanostructured Sn-based anode prepared using sol-gel template synthesis [J], J. Electrochem. Soc,2001,148(2): A164-A1701
    [84]S. Han, B. Jang, T. Kim, S. M. Oh, T. Hycon, Simple synthesis of hollow tin dioxide microspheres and their application to lithium-ion battery anodes [J]. Adv. Funct. Mater.,2005,15:1845-1850
    [85]K. T. Lee, Y. S. Jung, S. M. Oh. Synthesis of tin-encapsulated sphedcal hollow carbon for anode material in lithium secondary batteries [J], J. Am. Chem. Soc.,2003, 125:5652-5653
    [86]G. L. Cui, Y. S. Hu, L. J. Zhi, et al., A one-step approach towards carbon-encapsulated hollow tin nanoparticles and their application in lithium batteries [J], Small,2007,3:2066-2069
    [87]X. W. Lou, C. M. Li, L. A. Archer, Designed Synthesis of Coaxial SnO2@carbon Hollow Nanospheres for Highly Reversible Lithium Storage [J], Adv. Mater.2009,21, 2536-2539
    [88]H. C. Shin, M. Liu, Three-dimensional porous copper-tin alloy electrodes forrechargeable lithium batteries [J], Adv. Funct. Mater,2005,15(4):582-586
    [89]F. S. Ke, L. Huang, H. H. Jiang, H. B. Wei, F. Z. Yang, S. G Sun. Fabrication and properties of three-dimensional macroporous Sn-Ni alloy electrodes of hign preferential (110) orientation for lithium ion batteries [J], Electrochem. Commun., 2007,9:228-232
    [90]L. Yuan, Z. P. Guo, K. Konstantinov, H. K. Liu, S. X. Dou. Nano-structured spherical porous SnO2 anodes for lithium-ion batteries [J], J. Power Sources,2006, 159:345-348
    [1]严凤霞,王筱敏.现代光学仪器分析选论[M].上海:华东师范大学出版社,1992.
    [2]马礼敦.高等结构分析[M].上海:复旦大学出版社,2001.
    [3]吴浩青,李永舫.电极过程动力学[M].北京:高等教育出版社,1998.
    [4]阿伦.J.巴德,拉里.R.福克纳.电化学方法原理和应用(第二版)[M].北京:化学工业出版社,2005.
    [5]田昭武.电化学研究方法[M].北京:科学出版社,1984.
    [6]查全性,等.电极过程动力学导论(第三版)[M].北京:科学出版社,2002.
    [1]M. Winter, J. O. Besenhard, Insertion electrode materials for rechargeable lithium batteries [J], Adv. Mater.,1998,10:725-763
    [2]J. T. Vaughey, K. D. Kepler, R. Benedek, et al., NiAs-versus zinc-blende-type intermetallic insertion electrodes for lithium batteries:lithium extraction from Li2CuSn, Electrochem. Commun.,1999,1:517-521
    [3]J. Wolfenstine, S. Campos, D. Foster, Nano-scale Cu6Sn5 anodes, J. Power Sources,2002,109:230-233
    [4]G. X. Wang, L. Sun, D. H. Bradhurst, Lithium storage properties of nanocrystalline eta-Cu6Sn5 alloys prepared by ball-milling, J. Alloy. Compd.,2000, 299:L12-L15
    [5]J. Wolfenstine, S. Campos, Effect of Fe on the cycle life of Cu6Sn5 anodes, Materials Letters,2002,57:24-27
    [6]S. D. Beanie, J. R. Dahn, Single bath, pulsed electrodeposition of copper-tin alloy negative electrodes for lithium-ion secondary batteries, J. Electrochem. Soc.,2003, 150(7):A894-A898
    [7]M. Winter, J. O. Besenhard, Electrochemical Lithiation of Tin and Tin-Based Intermetallies and Composites[J], Electrochimica Acta.1999,45:31-50
    [8]N. Tamura, R. Ohshita, M. Fujimoto, S. Fujitani, M. Kamino, I. Yonezu, Study on the anode behavior of Sn and Sn-Cu alloy thin-film electrodes, J. Power Sources, 2002,107,48-55
    [9]H. C. Shin, M. Liu, Three-dimensional porous copper-tin alloy electrodes forrechargeable lithium batteries, Adv. Funct. Mater,2005,15(4):582-586
    [10]K. D. Kepler, J. T. Vaughey, M. M. Thackeray, Copper-tin anodes for rechargeable lithium batteries:an example of the matrix effect in an intermetallic system [J], J. Power Sources,1999,81-82:383-387
    [11]D. Larcher, L. Y. Beaulieu, D. D. MacNeil, J. R. Dahn, In Situ X-Ray Study of the Electrochemical Reaction of Li with η'-Cu6Sn5, J. Electrochem. Soc.2000,147, 1658
    [12]L. Fransson, E. Nordstrom, K. Edstrom, L. Haggstrom, M. M. Thackeray, Structural Transformations in Lithiated η'-Cu6Sn5 Electrodes Probed by In Situ Mossbauer Spectroscopy and X-Ray Diffraction, J. Electrochem. Soc.2002,149, A736-A742
    [13]S. Sharma, L. Fransson, E. Sjostedt, L. Nordstrom, B. Johansson, and K. Edstromb, A Theoretical and Experimental Study of the Lithiation of η'-Cu6Sn5 in a Lithium-Ion Battery, J. Electrochem. Soc.,2003,150, A330-A334
    [14]Y. Y. Xia, T. Sakai, T. Fujieda, Masashi Wada, Hiroshi Yoshinaga, Flake Cu-Sn Alloys as Negative Electrode Materials for Rechargeable Lithium Batteries[J], Journal of The Electrochemical Society,2001,148(5):A471-A481
    [1]Y. M. Wu, Z. H. Wen, J. H. Li, Hierarchical Carbon-Coated LiFePO4 Nanoplate Microspheres with High Electrochemical Performance for Li-Ion Batteries [J], Adv. Mater.,2011,23,1126-1129
    [2]H. C. Shin, W. Cho, H. Jang, Electrochemical properties of carbon-coated LiFePO4 cathode using graphite, carbon black, and acetylene black [J], Electrochimica Acta,2006,52,1472-1476
    [3]C. Arbizzani, S. Beninati, M. Mastragostino, A three-dimensional carbon-coated LiFePO4 electrode for high-power applications [J], J Appl Electrochem,2010,40: 7-11
    [4]Y. Z. Dong, Y.M. Zhao, Y. H. Chen, Z. F. He, Q. Kuang, Optimized carbon-coated LiFePO4 cathode material for lithium-ion batteries [J], Materials Chemistry and Physics,2009,115,245-250
    [5]G. J. Wang, J. Gaoa, L. J. Fua, N. H. Zhao, Y. P. Wu, T. Takamura, Preparation and characteristic of carbon-coated Li4Ti5O12 anode material [J], Journal of Power Sources,2007,174,1109-1112
    [6]M. Satoshi, K. Yoshihiro. United States Patent Application [P],20060 121 348, 2006.
    [7]Q. Fan, P. J. Chupas, M. S. Whittingham, Characterization of amorphous and crystalline tin-cobalt anodes [J]. Electrochem. Solid-State Lett.,2007,10:A274-A278
    [8]M. Noh, Y. Kwon, H. Lee, et al., Amorphous carbon-coated tin anode material for lithium secondary battery [J]. Chem. Mater.,2005,17:1926-1929
    [9]K. T. Lee, Y. S. Jung, S. M. Oh, Synthesis of tin-encapsulated sphedcal hollow carbon for anode material in lithium secondary batteries [J], J. Am. Chem. Soc., 2003,125:5652-5653
    [10]G. L. Cui, Y. S. Hu, L. J. Zhi, et al., A one-step approach towards carbon-encapsulated hollow tin nanoparticles and their application in lithium batteries [J], Small,2007,3:2066-2069
    [11]X. W. Lou, C. M. Li, L. A. Archer, Designed Synthesis of Coaxial SnO2@carbon Hollow Nanospheres for Highly Reversible Lithium Storage [J], Adv. Mater.2009,21, 2536-2539
    [12]D. Deng, M. G. Kim, J. Y. Lee, J. Cho, Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries [J], Energy Environ. Sci.,2009,2,818.
    [13]D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen, E. C. Dickey, Titanium oxide nanotube arrays prepared by anodic oxidation [J], J. Mater. Res.2001,16,3331
    [14]G. F. Ortiz, I. Hanzu, T. Djenizian, P. Lavela, J. L. Tirado, P. Knauth, Alternative Li-Ion Battery Electrode Based on Self-Organized Titania Nanotubes [J], Chem. Mater.2009,21,63
    [15]G. F. Ortiza, I. Hanzua, P. Knautha, P. Lavela, J. L. Tirado, T. Djenizian, TiO2 nanotubes manufactured by anodization of Ti thin films for on-chip Li-ion 2D microbatteries [J], Electrochim. Acta,2009,54,4262.
    [16]L. G. Xue, Z. H. Fu, Y. Yao, T. Huang, A. S. Yu, Three-dimensional porous Sn-Cu alloy anode for lithium ion batteries [J], Electrochim. Acta,2010,55, 7310-7316
    [17]N. Tamura, R. Ohshita, M. Fujimoto, S. Fujitani, M. Kamino, I. Yonezu, Study on the anode behavior of Sn and Sn-Cu alloy thin-film electrodes [J], J. Power Sources,2002,107,48-55
    [18]D. Larcher, L. Y. Beaulieu, D. D. MacNeil, J. R. Dahn, In Situ X-Ray Study of the Electrochemical Reaction of Li with η'-Cu6Sn5[J], J. Electrochem. Soc.2000,147, 1658
    [19]L. Fransson, E. Nordstrom, K. Edstrom, L. Haggstrom, M. M. Thackeray, Structural Transformations in Lithiated η'-Cu6Sn5 Electrodes Probed by In Situ Mossbauer Spectroscopy and X-Ray Diffraction [J], J. Electrochem. Soc.2002,149, A736-A742
    [1]Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, A. G. Rinzler, Transparent, conductive carbon nanotube films [J], Science 2004,305,1273.
    [2]P. Cherukuri, S. M. Bachilo, S. H. Litovsky, R. B. Weisman, Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells [J], J. Am. Chem. Soc.2004,126,15 638.
    [3]M. P. Rossi, H. Ye, Y. Gogotsi, S. Babu, P. Ndungu, J. C. Bradley, Environmental scanning electron microscopy study of water in carbon nanopipes [J], Nano Lett.2004, 4,989.
    [4]A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, M. J. Heben. Storage of hydrogen in single-walled carbon nanotubes [J], Nature,1999, 386(6623):377-379
    [5]E. Frackowiak, S. Gautier, H. Gaucher, S. Bonnamy, F. Beguin. Electrochemical storage of lithium multiwalled carbon nanotubes [J], Carbon,1999,37(1):61-69.
    [6]B. Gao, A. Kleinhammes, X. P. Tang, C. Bower, L.,Fleming Y. Wu, O. Zhou, Electrochemical intercalation of single-walled carbon nanotubes with lithium [J], Chem Phys Lett,2000,307(3-4):153-157
    [7]G. T. Wu, C. S. Wang, X. B. Zhang, H. S. Yang, Z. F. Qi, P. M. He, W. Z. Li. Structure and lithium insertion properties of carbon nanotubes [J], J Electrochem Soc, 1999,146(5):1696-1701
    [8]A. S. Claye, J. E. Fischer, C. B. Huffman, A. G. Rinzler, R. E. Smalley, Solid-state electrochemistry of the Li single wall carbon nanotube system, J Electrochem Soc,2000,147(8):2845-2852
    [9]K. H. An, W. S. Kim, Y. S. Park, J. M. Moon, D. J. Bae, S. C. Lim, Y. S. Lee, Y. H. Lee. Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes [J], Adv Funct Mat,2001,11(5):387-392
    [10]W. X. Chen, J. Y. Lee, Z. L. Liu, The nanocomposites of carbon nanotube with Sb and SnSb0.5 as Li-ion battery anodes, Carbon,2003,41,959-966
    [1]B. E. Conway, Transition from "Supercapacitor" to "Battery" Behavior in Electrochemical Energy Storage [J], J Electrochem Soc,1991,138:1539-1548
    [2]B. E. Conway, Electrochemical Supercapacitors-Scientific Fundamental and Technological Applications,1999, Plenum, New York.
    [3]A. Rudge, J. Davey, I. Raistrick, S. Gottesfeld, Conducting polymers as active materials in electrochemical capacitors [J], J Power Sources,1994,47:89-107
    [4]M. Ishikawa, M. Morita, M. Ihara, Y. Matsuda, Electric Double-Layer Capacitor Composed of Activated Carbon Fiber Cloth Electrodes and Solid Polymer Electrolytes Containing Alkylammonium Salts [J], J Electrochem Soc,1994,141: 1730-1734
    [5]M. N. Patel, X. Q. Wang, B. Wilson, D. A. Ferrer, S. Dai, K. J. Stevenson, K. P. Johnston, Hybrid MnO2-disordered mesoporous carbon nanocomposites:synthesis and characterization as electrochemical pseudocapacitor electrodes [J], J Mater Chem, 2010,20:390-398
    [6]J. P. Zheng, Theoretical Energy Density for Electrochemical Capacitors with Intercalation Electrodes [J], J Electrochem Soc,2005,152:A1864-A1869
    [7]R. Kotz, M. Carlen, Principles and applications of electrochemical capacitors [J], Electrochim Acta,2000,45:2483-2498
    [8]C. Q. Bian, A. S. Yu, H. Q. Wu, Fibriform polyaniline/nano-TiO2 composite as an electrode material for aqueous redox supercapacitors [J], Electrochem Commun,2009, 11:266-269
    [9]M. S. Wu, P. J. Chiang, J. T. Lee, J. C. Lin, Synthesis of Manganese Oxide Electrodes with Interconnected Nanowire Structure as an Anode Material for Rechargeable Lithium Ion Batteries [J], J Phys Chem B,2005,109:23279-23284
    [10]J. K. Chang, S. H. Hsu, W. T. Tsai, I. W. Sun, A novel electrochemical process to prepare a high-porosity manganese oxide electrode with promising pseudocapacitive performance [J], J Power Sources,2008,177:676-680
    [11]M. Toupin, T. Brousse, D. Belanger, Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor [J], Chem Mater,2004,16: 3184-3190
    [12]S. C. Pang, M. A. Anderson, T. W. Chapman, Novel Electrode Materials for Thin-Film Ultracapacitors:Comparison of Electrochemical Properties of Sol-Gel-Derived and Electrodeposited Manganese Dioxide [J], J Electrochem Soc, 2000,147:444-450
    [13]H. Y. Lee, J. B. Goodenough, Supercapacitor Behavior with KCl Electrolyte [J], J Solid State Chem,1999,144:220-223
    [14]C. Z. Yuan, B. Gao, L. H. Su, X. G. Zhang, Interface synthesis of mesoporous MnO2 and its electrochemical capacitive behaviors [J], J Colloid Interface Sci,2008, 322:545-550
    [15]P. Simon, Y. Gogotsi, Materials for electrochemical capacitors [J], Nat Mater, 2008,7:845-854
    [16]S. Devaraj, N. Munichandraiah, The Effect of Nonionic Surfactant Triton X-100 during Electrochemical Deposition of MnO2 on Its Capacitance Properties [J],2007, J Electrochem Soc,154:A901-A909
    [17]S. Ghosh, O. Inganas, Conducting polymer hydrogels as 3D electrodes: Applications for supercapacitors [J], Adv Mater,1999,11:1214
    [18]F. Beguin, K. Szostak, G. Lota, E. Frackowiak, A self-supporting electrode for supercapacitors prepared by one-step pyrolysis of carbon [J], Adv Mater,2005,17: 2380
    [19]D. Choi, G. E. Blomgren, P. N. Kumta, Fast and Reversible Surface Redox Reaction in Nanocrystalline Vanadium Nitride Supercapacitors [J], Adv Mater,2006, 18:1178.
    [20]L. Cao, F. Xu, Y. Y. Liang, H. L. Li, Preparation of the Novel Nanocomposite Co(OH)2/Ultrastable Y Zeolite and Its Application as a Supercapacitor with High Energy Density [J], Adv Mater,2004,16:1853-1857
    [21]K. R. Prasad, K. Koga, N. Miura, Electrochemical Deposition of Nanostructured Indium Oxide:High-Performance Electrode Material for Redox Supercapacitors [J], Chem Mater,2004,16:1845-1847
    [22]P. Soudan, J. Gaudet, D. Guay, D. Belanger, R. Schulz, Electrochemical Properties of Ruthenium-Based Nanocrystalline Materials as Electrodes for Supercapacitors [J], Chem Mater,2002,14:1210-1215
    [23]Z. R. Tian, W. Tong, J. Y. Wang, N. G. Duan, V. V. Krishnan, S. L. Suib, Manganese Oxide Mesoporous Structures:Mixed-Valent Semiconducting Catalysts [J], Science,1997,276:926
    [24]M. Liu, G. J. Zhang, Z. R. Shen, P. C. Sun, D. T. Ding, T. H. Chen, Synthesis and characterization of hierarchically structured mesoporous MnO2 and Mn2O3 [J], Solid State Sci,2009,11:118
    [25]D. K. Kwon, T. Akiyoshi, H. Lee, M. T. Lanagan, Synthesis and Electrical Properties of Stabilized Manganese Dioxide (α-MnO2) Thin-Film Electrodes [J], J Am Ceram Soc,2008,91:906-909
    [26]J. Y. Luo, Y. Y. Xia, Effect of Pore Structure on the Electrochemical Capacitive Performance of MnO2 [J], J Electrochem Soc,2007,154:A987-A992
    [27]Y. G. Wang, Y. Y. Xia, Hybrid Aqueous Energy Storage Cells Using Activated Carbon and Lithium-Intercalated Compounds [J], J Electrochem Soc,2006,153: A450-A454
    [28]C. C. Yu, L. X. Zhang, J. L. Shi, J. J. Zhao, J. H. Gao, D. S. Yan, A Simple Template-Free Strategy to Synthesize Nanoporous Manganese and Nickel Oxides with Narrow Pore Size Distribution, and Their Electrochemical Properties [J], Adv. Funct. Mater.2008,18,1544-1554

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700