介孔沸石材料的催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微孔材料、介孔材料等多孔材料已经广泛的应用于工业催化、吸附等领域。但微孔沸石由于其较小的孔径限制了其在大分子催化反应上的进一步应用;而介孔分子筛最大的弱点是水热稳定性差、催化活性较低。现实迫切需要发展综合微孔沸石和介孔分子筛材料优点的新型材料,即根据应用需要和结构特点来合成介孔沸石材料。
     本论文从几个不同的角度出发,包括降低合成成本,简化操作程序,绿色环保等方面,从而开发出简单高效的介孔沸石材料的合成方法,同时重点考察介孔沸石材料的催化性能,通过其在几个不同的催化反应中所表现的特性,希望可以更好的对介孔沸石材料进行比较深入的研究。
     第一章为绪论部分,首先简单概述了多孔材料的发展历史及其催化性能研究的一些进展情况;然后重点介绍了介孔沸石材料的合成方法及催化性能的相关研究进展;并对本文涉及的几个典型催化反应进行了较详细的介绍。
     第二章中采用阳离子聚合物做为介孔模板,通过一步水热的方法合成出介孔Beta沸石,通过调节加入聚合物的量可以调节所合成样品的介孔孔容,样品在酸量上也有所区别。
     第三章中仔细研究了该介孔Beta沸石的催化活性,该样品在苯和异丙醇的烷基化反应中展示了很好的催化活性,而且具有较好的催化剂寿命,并对其原因进行了探讨。
     第四章中以一类面包做为介孔模板,通过一步水热的方法合成出介孔ZSM-5沸石,该合成方法非常简单,模板原料易得,成本较低。该材料在1,3,5-三异丙苯的裂化反应中展示了优良的催化活性,样品即使在水热处理后依然具有很好的活性。第五章是结论及展望。
Nowadays, porous materials are of interest for catalysis, adsorption, separation and other applications. Zeolites as solid acid catalysts have been widely used in industry as heterogeneous catalysts, However, relatively small and sole micropores in zeolites strongly influence the mass transport, which severely limit their performance of industrial catalysts. Ordered mesoporous aluminosilicates were synthesized to solve the diffusion limitation of microporous zeolites. But these mesoporous aluminosilicates exhibited lower hydrothermal stability, weaker acidity, and lower catalytic activities than microporous zeolites which was attributed to their amorphous framework, which limited the performance of mesoporous aluminosilicates in catalytic field.
     To overcome these limitations, various methods such as synthesis of nanosized zeolites, invention of various ultralarge-pore zeolites and ordered mesoporous materials with higher hydrothermal stability had been successfully pursued. To change the amorphous walls of mesoporous materials, a series of ordered mesoporous aluminosilicates were synthesized by assembly of preformed nanosized zeolite precursors as aluminosilicate sources with surfactant micelle. Compared with conventional zeolites, the hydrothermal stability of these mesoporous aluminosilicates was still low, which was attributed to the semi-crystallized mesoporous walls. Some efforts have been devoted to the development of mesoporous zeolites, with the aim of combining the advantages of the high acidity and high hydrothermal stability of the crystalline zeolite and the facile diffusion of bulky molecules in mesoporous materials.
     Mesoporous zeolite materials, which are defined as the zeolite crystalline materials containing a large amount of mesopores, not only inherit excellent acidity and hydrothermal stability, but also improve the adsorption and diffusion of large molecules. Mesoporous zeolite materials have much effective and potential applications in catalysis, especially catalytic reaction over large molecules.
     Recently, mesoporous zeolites from carbon templates had been successfully synthesized, but their applications are still limited by the complexity of synthetic procedure and hydrophobicity of carbon templates.
     The aims of the present paper are: to develop facile, low cost and efficient routes to novel mesoporous zeolites. To characterize the structure and properties of mesoporous zeolites. To analyze the interaction factors during the synthetic system. To investigate the applicability of mesoporous zeolites to catalysis.
     We demonstrate here a unique, facile, controllable, and universal route for the synthesis of mesoporous zeolites. More importantly, these novel mesoporous zeolites exhibit excellently catalytic properties, compared with conventional zeolites.
     Mesoporous Beta zeolite is synthesized from a mixture of small organic ammonium salts and mesoscale cationic polymers as template. The route involves a one-step hydrothermal synthesis, and the templated mixture is homogeneously dispersed in the synthetic gel. Mesoporous Beta exhibited a better catalytic activity in reactions of alkylation of benzene with isopropanol than conventional Beta.
     Mesoporous ZSM-5 zeolite with hydrothermal stability and high catalytic activities has been successfully synthesized from a mesoporous template of bread. The bread with environmental benignity, abundant porosity, and good hydrophilicity is suitable and beneficial for the facile synthesis of zeolites with mesoporosity. Mesoporous ZSM-5 is much more active than conventional ZSM-5 in catalytic cracking of bulky molecules (1, 3, 5-tri-isopropylbenzene). Moreover, mesoporous ZSM-5 zeolite exhibited high hydrothermally stability.
     We develop some kinds of facile, low cost and efficient routes to synthesis of mesoporous zeolites. These mesoporous zeolites have a large amount of mesopores and not only inherit excellent acidity and hydrothermal stability, but also improve the adsorption and diffusion of organic molecules. These mesoporous zeolite materials is much more effective and active in some different catalysis than conventional zeolites.
引文
[1] IUPAC Manual of Symbols and Terminology, Pure Appl.Chem [J]. 1972,31:578.
    [2] Barer R M. Synthesis and reactions of mordenite [J]. J. Chem. Soc.,1948, 10:2158.
    [3] Barrer R M, Denny P J. J. Chem. Soc. 1961, 971.
    [4] MiltonR M. U. S. Pat [P], 1959, 282243.
    [5] Breck D W. U. S. Pat [P], 1964, 3130007.
    [6] Breck D W. U. S. Pat [P], 1965, 3216789.
    [7] Sand L B. U. S. Pat [P], 1969, 3436174.
    [8] Flanigen E M. Molecular Sieve Zeolite Technology-The First twenty-five years. Proc. of the fifth Intl. Conf. on Zeolites [C]. Heyden, Rees L.V.C.(Ed.) 1980: 760-780
    [9] Wilson S T, Lok B M, Flanigen E M. U.S. patent [P]. 1982,4310440
    [10] Davis M E, Saldarriaga C, Montes C, et al. A molecular sieve with eighteen-membered rings [J]. Nature, 1988, 331: 698-699.
    [11] Weisz P B. Chemtech 1973,3:498.
    [12] Weisz P B. Molecular shape selective catalysis [J]. Pure Appl. Chem. 1980, 52(9): 2091-2103.
    [13] Haag W, Chen N Y. In Catalyst Design Progress and Perspectives. John Wiley & Sons: New York, 1987, Chapter 6.
    [14] Gorring R L. Diffusion of normal paraffins in zeolite T: Occurrence of window effect [J]. J. Catal, 1973, 31:13.
    [15] Post M F M. Diffusion in zeolite molecular sieves. Stud. Surf. Sci. Catal. 1991, 58:391.
    [16] Derouane, E. G.; Gabelica. A novel effect of shape selectivity: Molecular traffic control in zeolite ZSM-5 [J]. J. Catal, 1980, 65:486.
    [17] Corma A, Romanach M,Sanchez F. Auguet, A. SP 8900384, 1989.
    [18] Janssen M J G,Mortier W J,van Oorschot W M. WO Patent Appl [P]. 18851, 1991.
    [19] Zubowa H L,Richter M,Roost U,et al. Synthesis and catalytic properties of substituted AlPO4-31 molecular sieves [J]. Catal. Lett. 1993, 19:67.
    [20] Gaffney A M,Jones A. U.S. Patent [P]. 1992,5107050.
    [21] Gajda G J. US. Patent [P]. 1992,5132484.
    [22] Weisz P B. Polyfunctional Heterogeneous Catalysis [J]. Adv. Catal. 1962, 13:137.
    [23] Guisnet M,Alvarez F,Gianetto G,Perot G. Hydroisomerization and hydrocracking of n-heptane on PtH zeolites. Effect of the porosity and of the distribution of metallic and acid sites [J]. Catal. Today, 1987, 1:415.
    [24] Koradia P B,Kiouski J R,Asim M Y. Optimization of SiO2/Al2O3 mole ratio of mordenite for n-pentane isomerization [J]. J. Catal, 1980, 66:290.
    [25] Guisnet M,Fouche V,Belloum M,et al. Isomerization of n-hexane on platinum dealuminated mordenite catalysts I. Influence of the silicon-to-aluminium ratio of the zeolite [J]. Appl. Catal, 1991, 71:283.
    [26] Des Courieres T. Proc. 10th. Int. Congr. Cutul. Akademiai Kiado: Budapest [C], 1993,p 1007.
    [27] Leu L J,Hou L Y,Kang B C,et al. Synthesis of zeoliteβand catalytic isomerization of n-hexane over Pt/H-βcatalysts [J]. Appl. Catal, 1991, 69:49.
    [28] Jacobs P A,Martens J A,Weitkamp J,Beye H K. Shape- selectivity changes in high-silica zeolites [J]. Faraday Discuss. Chem. Soc. 1981, 72, 353.
    [29] Chen N Y,Degnan T F,Weisz P B. EP 363531, 1990.
    [30] Schweizer A E. US. Patent [P]. 4992617 and 4992402, 1991.
    [31] Brehm A,Kromminga T,Stoeckel V. DECHEMA Mongr. 1989, 118:171.
    [32] Coq B,Rajaofanova V,Chauvin B,Figueras F. Hydroconversion of n-heptane over dealuminated zeolite ? catalysts [J]. Appl. Catal, 1991, 69:341.
    [33] Martens J A,Tielen M,Jacobs P A. Stud. Surf. Sci. Cutul. 1989, 46:49.
    [34] Parton R,Uytterhoeven L,Martens J A,et al. Synergism of ZSM-22 and Y zeolites in the bifunctional conversion of n-alkanes [J]. Appl. Catal, 1991, 76:131.
    [35] Corma A,Sastre E. Evidence for the presence of a bimolecular pathway in the isomerization of xylene on some large-pore zeolites [J]. J. Catal, 1991, 129:177.
    [36] Martens J A,Perez-Pariente J,Sastre E,et al. Isomerization and disproportionation of m-xylene: Selectivities Induced by the Void Structure of the Zeolite Framework [J]. Appl. Catal, 1988, 45:85.
    [37] Csicsery S M. The reactions of 1-methyl-2-ethylbenzene : I. Exploring the structure of intracrystalline void space and the catalytic properties of molecular sieves and other catalysts [J]. J. Catal, 1987, 108:433.
    [38] Solinas V,Monaci R,Marougiu B,Forni L. Isomerisation of 1-methylnaphthalene over synthetic zeolites [J]. Appl. Catal, 1984, 9:109.
    [39] Weitkamp J,Neuber N. Stud. Surf. Sci. 1991, 60:291.
    [40] Matsuda T,Yogo K,Mogi Y,Kikuchi E. Shape Selective Catalysis by ZSM-5 in Disproportionation of 2-Methylnaphthalene [J]. Chem. Lett. 1990, 1085.
    [41] Weitkamp J,Emst S. Large pore molecular sieves: Chapter 5 Catalytic test reactions for probing the pore width of large and super-large pore molecular sieves [J]. Catal. Today, 1994, 19:107.
    [42] Chen N Y,Ketkar A B,Nace P M,et al. EP 186446B1, 1991.
    [43] Bonetto L,Camblor M A,Corma A,Perez-Pariente J. Optimization of zeolite-βin cracking catalysts. Influence of crystallite size [J]. Appl. Catal. 1992, 82:37.
    [44] Bonetto L,Corma A,Herrero E. Proc. Int. Zeol. Conf. 1992, 10.
    [45] Madon R J. Role of ZSM-5 and ultrastable Y zeolites for increasing gasoline octane number [J]. J. Catal, 1991, 129:275.
    [46] Chu Y F,Chester A W. Reactions of isobutane with butene over zeolite catalysts [J]. Zeolites, 1986, 6:195.
    [47] Corma A,Martinez A,Martinez C. Isobutane/2-butene alkylation on ultrastable Y zeolites: Influence of zeolite unit cell size [J]. J. Catal, 1994, 146:185.
    [48] Corma A,Gmez V,Martinez A. Zeolite beta as a catalyst for alkylation of isobutane with 2-butene. Influence of synthesis conditions and process variables [J].Appl. Catal, 1994, 119:83.
    [49] Corma A,Martinez A,Martinez C. Isobutane/2-butene alkylation on MCM-22 catalyst. Influence of zeolite structure and acidity on activity and selectivity [J]. Catal. Lett. 1994, 28:187-201.
    [50] Leonowicz M E,Lawton J A,Lawton S L,Rubin M K. MCM-22: A Molecular Sieve with Two Independent Multidimensional Channel Systems [J]. Science, 1994, 264:1910.
    [51] Wilson S T,Lok B M,Flanigen E M. U.S. Patent [P]. 4310440, 1982.
    [52] Dessau R M,Schlenker J L.,Aiggins J B. Framework topology of AlPO4-8: the first 14-ring molecular sieve [J]. Zeolites 1990, 10(6):522-524.
    [53] Richardson Jr J W,Vogt E T C. Structure determination and rietveld refinement of aluminophosphate molecular sieve AlPO4-8[J]. Zeolites 1992, 12(1):13-19.
    [54] Esterman M,McCuster L B,Baerlocher C,et al. A synthetic gallophosphate molecular sieve with a 20-tetrahedral-atom pore opening [J]. Nature,1991, 352:320-323.
    [55] Merrouche A,Patarin J,Kessler H,et al. Synthesis and characterization of cloverite: a novel gallophosphate molecular sieve with three-dimensional 20-membered ring channels [J]. Zeolites,1992, 12(3):226-232.
    [56] Chen J, Natarajan S, Wright P A. Preparation and Characterization of a New Layered Magnesium Phosphate: MgHPO4·1.2H2O [J]. J. Solid State Chem. 1993, 103(2): 519-522.
    [57] Huo Q,Xu R,Li S,et al. Synthesis and characterization of a novel extra large ring of aluminophosphate JDF-20[J]. J. Chem. Soc., Chem. Commun. 1992, 875.
    [58] Freyhardt C C,Tsapatsis M,Lobo R F,et al. A high-silica zeolite with a 14-tetrahedral-atom pore opening [J]. Nature 1996, 381:295-298.
    [59] Balkus Jr K J,Gabrielov A G,Sandler N. Mater. Res. Soc. Symp. Proc. 1995, 368:369-375.
    [60] Cartlidge S,Nissen H U,Wessicken R. Ternary mesoporous structure of ultrastablezeolite CSZ-1[J]. Zeolites 1989, 9(4):346-349.
    [61] Corma A. Stud. Surf. Sci. Catal. 1989, 49:49.
    [62] Vaughan D E. Pillared clays-a historical perspective [J]. Catal. Today 1988, 2(2-3):187-198.
    [63] Clearfield A,Roberts B D. Pillaring of layered zirconium and titanium phosphates [J]. Inorg. Chem. 1988, 27(18): 3237-3240.
    [64] Burwell D A,Thompson M E. Synthesis of amide- and ester-functionalized zirconium phosphonates [J]. Chem. Mater. 1991, 3(4):730-737.
    [65] Rosenthal G L,Caruso J. Synthesis and reactivity of a new microporous Lewis base [J]. Inorg. Chem. 1992, 31(14): 3104-3106.
    [66] Occelli M L,Ines R A,Hwu F S S,Hightowr J W. Sorption and catalysis on sodium-montmorillonite interlayered with aluminum oxide clusters [J]. Appl. Catal. 1985, 14:69-82.
    [67] Castillo M L,Gil A,Grange P. Selective catalytic reduction of NO by NH3 on titanium pillared montmorillonite [J]. Catal. Lett. 1996, 36(3-4):237-239.
    [68] Chen J P,Yang R T. Mechanism of poisoning of the V2O5/TiO2 catalyst for the reduction of NO by NH3 [J]. J. Catal. 1990, 125(2):411-420.
    [69] Chen J P,Hansladen M C,Yang R T. Delaminated Fe2O3-Pillared Clay: Its Preparation, Characterization, and Activities for Selective Catalytic Reduction of No by NH3 [J]. J. Catal. 1995, 151(1), 135-146.
    [70] Rajadhyaksha R A, Knozinger H. Ammonia adsorption on vanadia supported on titania-silica catalyst: An infrared spectroscopic investigation [J]. Appl. Catal. 1989, 51(1):81-92.
    [71] Tzou M S,Pinnavaia T J. Chromia pillared clays [J]. Catal. Today 1988, 2(2-3):243-259.
    [72] Kresge C T,Leonowicz M E,Roth W J,et al. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-crystal Template Mechanism [J]. Nature,1992, 359:710.
    [73] Beck J S, Vartuli J C, Roth W J, et al. A New Family of Mesoporous Molecular-Sieves Prepared with Liquid-Crystal Templates [J]. J Am Chem Soc 1992, 114:10834-10843.
    [74] Monnier A, Schuth F, Huo Q et al. Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures [J]. Science 1993, 261:1299-1303.
    [75] Huo Q S, Margolese D I, Ciesla U, et al. Generalized Synthesis of Periodic Surfactant Inorganic Composite-Materials [J]. Nature 1994, 368: 317-321.
    [76] Huo Q S, Margolese D I, Ciesla U, et al. Organization of Organic-Molecules with Inorganic Molecular- Species into Nanocomposite Biphase Arrays [J]. Chem Mat 1994, 6:1176-1191.
    [77] Inagaki S, Fukushima Y, Kuroda K. Synthesis of Highly Ordered Mesoporous Materials from a Layered Polysilicate [J]. J Chem Soc-Chem Commun 1993: 680-682.
    [78] Yanagisawa T, Shimizu T, Kuroda K et al. The Preparation of Alkyltrimethylammonium-Kanemite Complexes and Their Conversion to Microporous Materials. Bull Chem Soc Jpn 1990, 63: 988-992.
    [79] Goltner C G, Antonietti M. Mesoporous materials by templating of liquid crystalline phases [J]. Adv Mater 1997, 9: 431.
    [80] Goltner C G, Henke S, Weissenberger M C et al. Mesoporous silica from lyotropic liquid crystal polymer templates [J]. Angew. Chem. Int. Ed. 1998, 37:613-616.
    [81] Vartuli J C, Schmitt K D, Kresge C T et al. Development of a Formation Mechanism for M41s Materials. Zeolites and Related Microporous Materials: State of the Art 1994, 1994, 53-60.
    [82] Vartuli J C, Kresge C T, Leonowicz M E et al. Synthesis of Mesoporous Materials - Liquid-Crystal Templating Versus Intercalation of Layered Silicates [J]. Chem Mat, 1994, 6:2070-2077.
    [83] Ying J, Mehnert C, Wong M. Synthesis and Applications ofSupramolecular-Templated Mesoporous Materials [J]. Angew. Chem. Int. Ed. 1999, 38:56-77.
    [84] Yiu, H, Botting, C, Botting, et al. Size selective protein adsorption on thiol-functionalised SBA-15 mesoporous molecular sieve [J]. Phys. Chem. Chem. Phys. 2001, 3, 2983-2985.
    [85] Corma, A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis [J]. Chem. Rev. 1997, 97: 2373-2420.
    [86]徐如人等.分子筛与多孔材料化学.北京:科学出版社, 2004.
    [87] Aufdembrink B A, Chester A W, Herbst J A, et al. Ultra large pore cracking catalyst and process for catalytic cracking. US Patent 5258114, 1993.
    [88] Aguado J, Serrano D P, Romero M D, et al. Catalytic conversion of polyethylene into fuels over mesoporous MCM-41 [J]. Chem. Commun 1996, 725-726.
    [89] Corma, A, Grande, M. S, Gonzalez-Alfaro, et al. Cracking Activity and Hydrothermal Stability of MCM-41 and Its Comparison with Amorphous Silica-Alumina and a USY Zeolite [J]. J. Catal. 1996, 159: 375-382.
    [90] Corma, A, Mart?′nez, A, Mart?′nez-Soria, V, et al. Hydrocracking of Vacuum Gasoil on the Novel Mesoporous MCM-41 Aluminosilicate Catalyst [J].J. Catal. 1995, 153: 25-31.
    [91] Kim J. B, Imui T. Chromium substituted A1PO-11: synthesis, characterisation and its application in oxidation reactions [J].Catal. Lett. 1996, 36:255-259.
    [92] Hartmann M.,Poppl A,Kevan L. Ethylene dimerization in nickel containing MCM-41 and AIMCM-41 studied by electron spin resonance and gas chromatography [J] .Stud. Surf. Sci. Catal. 1996, 101:801-809.
    [93] Bellusi G,Perego C,Caratt A,et al. The opportunities of the fluoride route in the synthesis of microporous materials [J]. Stud. Surf. Sci. Catal. 1994, 85:75-114.
    [94] Armengol E,Cano M L, Corma A,et al. Mesoporous aluminosilicate MCM-41 as a convenient acid catalyst for Friedel–Crafts alkylation of a bulky aromatic compound with cinnamyl alcohol [J]. J. Chem. Soc., Chem. Commun. 1995,519-520.
    [95] Armengol E,Corma A,Garcra H,et al. Acid zeolites as catalysts in organic reactions. Chemoselective Friedel-Crafts alkylation of benzene and toluene with cinnamyl alcohol [J]. Appl. Catal. A 1995, 126:391-399.
    [96] Armengol E,Corma A,Garcra H,et al. Acid zeolites as catalysts in organic reactions tert-Butylation of anthracene, naphthalene and thianthrene[J] . Appl. Catal. A 1997, 149:411-423.
    [97] Gunnewegh E A, Gopie S S, Van Bekkum H. MCM-41 type molecular sieves as catalysts for the Friedel-Crafts acylation of 2-methoxynaphthalene [J]. J. Mol. Catal. A: Chem. 1996, 106:151-158.
    [98] Van Bekkum H, Hoefnagel A. J,Van Koten, et al. Zeolite Catalyzed Aromatic Acylation and Related Reaches [J]. Stud. Surf. Sci. Catal. 1994, 83: 379-390.
    [99] Curtin T, Hodnett B K. Reactions of ketoximes and aldoximes over solid acid catalysts [J] .Stud. Surf. Sci. Catal. 1993, 78:535-542.
    [100] Sato H, Lilrose K. Influences of Organic Bases on the Vapor Phase Beckmann Rearrangement Catalyzed by Pentasi1-type Zeolite [J]. Chem. Lett. 1993, 1765-1766.
    [101] Singh P S, Bandyopadhyay R, Hegole S G, et al. Vapour phase beckmann rearrangement of cyclohexanone oxime over SAPO-11 molecular sieve [J]. Appl. Catal. A 1996, 136:249-263.
    [102] Katada N, Tsubouchi, T,Niwa, M, et al . Vapor-phase Beckmann rearrangement over silica monolayers prepared by chemical vapor deposition [J].Appl. Catat. A 1995, 124:1-7.
    [103] Corma A, Forne′s V, Mart?′n R M, et al. Zeolites as base catalysts: Condensation of aldehydes with derivatives of malonic esters [J]. Appl. Catal. 1990, 59: 237-248.
    [104] Reddy J S, Sayari A. Oxidation of propylamine over titanium silicate molecular sieves [J] .Appl. Catal. A 1995, 128: 231-242.
    [105] Gontier S, Tuel A. Liquid-Phase Oxidation of Aniline over VariousTransition-Metal-Substituted Molecular-Sieves [J].J. Catal. 1995, 157: 124-132.
    [106] Zhao D,Feng J,Huo Q,et al. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores [J]. Science 1998, 279:548-552.
    [107] Yanga C, Kalweia M, Schüth F, et al. Gold nanoparticles in SBA-15 showing catalytic activity in CO oxidation [J]. Appl. Catal. A 2003, 254(2):289-296.
    [108] Vinua A, Devassyb B M, Halligudib S B, et al. Highly active and selective AlSBA-15 catalysts for the vapor phase tert-butylation of phenol [J]. Appl. Catal. A 2005, 281(1-2): 207-213.
    [109] Kloetstra K R , Zandbergen H W, Jansen J C , et al . Overgrowth of mesoporous MCM-41 on faujasite. Microporous Mater. , 1996 , 6 (5-6) : 287 -293
    [110] Karlsson A, Stocke M, Schmidt R. Composites of micro- and mesoporous materials: simultaneous syntheses of MFI/MCM-41 like phases by a mixed template approach [J]. Microporous Mesoporous Mater. 1999, 27 (2-3) : 181 -192.
    [111]郭万平,黄立民,陈海鹰等.新型MCM-41沸石中孔-微孔复合分子筛.高等学校化学学报,1999,20(3):356-358.
    [112] Huang L M, Guo W P, Deng P, et al. Investigation of Synthesizing MCM-41/ZSM-5 Composites [J]. J. Phys. Chem. B, 2000, 104 (13): 2817 -2823.
    [113] Zhang Z, Han Y, Zhu L, et al. Strongly Acidic and High-Temperature Hydrothermally Stable Mesoporous Aluminosilicates with Ordered Hexagonal Structure [J].Angew. Chem. Int. Ed. 2001, 40: 1258-1262
    [114] Zhang Z., Han Y, Zhu L, et al.Mesoporous Aluminosilicates with Ordered Hexagonal Structure, Strong Acidity, and Extraordinary Hydrothermal Stability at High Temperatures [J].J. Am. Chem. Soc. 2001, 123: 5014-5021.
    [115] Xiao F-S, Han Y, Yu Y, et al. Hydrothermally Stable Ordered Mesoporous Titanosilicates with Highly Active Catalytic Sites [J]. J. Am. Chem. Soc. 2002, 124:888-889.
    [116]韩宇,肖丰收.由沸石纳米粒子自组装制备具有高催化活性中心和水热稳定的新型介孔分子筛材料.催化学报(Chinese Journal of Catalysis), 2003 , 24 (2) : 149 -158.
    [117] Liu Y, Zhang W, Pinnavaia T J. Steam-Stable Aluminosilicate Mesostructures Assembled from Zeolite TypeY Seeds [J].J.Am.Chem.Soc.2000,122:8791-8792.
    [118] Liu Y, Zhang W, Pinnavaia T J. Steam-Stable MSU-S Aluminosilicate Mesostructures Assembled from Zeolite ZSM-5 and Zeolite Beta Seeds [J]. Angew. Chem. Int. Ed. 2001, 40:1255- 1258.
    [119] Han Y, Xiao F-S, Wu S, et al.Novel Method for Incorporation of Heteroatoms into the Framework of Ordered Mesoporous Silica Materials Synthesized in Strong Acidic Media[J].J. Phys. Chem. B 2001, 105: 7963-7966.
    [120] Han Y, Wu S, Y Y, et al. Hydrothermally Stable Ordered Hexagonal Mesoporous Aluminosilicates Assembled from a Triblock Copolymer and Preformed Aluminosilicate Precursors in Strongly Acidic Media[J].Chem. Mater. 2002, 14:1144-1148.
    [121]李工,阚秋斌,吴通好等.含有沸石结构单元体介孔分子筛的合成及催化性能[J].化学学报, 2002 , 60 (5) : 759 -763.
    [122] Velev O D, Jede T A, Lobo R T, et al. Microstructured Porous Silica Obtained via Colloidal Crystal Templates [J]. Chem. Mater. 1998, 10:3597-3602.
    [123] Wijnhoven J,Vos W L. Preparation of Photonic Crystals Made of Air Spheres in Titania [J]. Science 1998, 281, 802-804.
    [124] Davis S A, Burkett S L, Mendelson N H, Mann S. Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases [J]. Nature, 1997, 385: 420-423.
    [125] Choi K, Gardner D, Bein T. Combinatorial Methods for the Synthesis of Aluminophosphate Molecular Sieves [J]. Angew. Chem. Int. Ed. 1999, 38:2891-2894.
    [126] Van Donk S, Janssen A H, Bitter J H , et al . Generation, characterization, and impact of mesopores in zeolite catalysts [J]. Catal. Rev., 2003, 45 : 297 -319.
    [127] Beyer H K. Molecular Sieves: Science and Technology, Vol . 3. Berlin: Springer-Verlag, 2002. 204 -248.
    [128] deLucas A , Canizares P , Duran A , et al . Dealumination of HZSM-5 zeolites: Effect of steaming on acidity and aromatization activity [J]. App. Catal. A, 1997, 154 (1-2): 221 -240.
    [129] Bernasconi S, van Bokhoven J A, Krumeich F, et al. Formation of mesopores in zeolite beta by steaming: a secondary pore channel system in the (0 0 1) plane [J]. Microporous Mesoporous Mater. , 2003, 66 (1): 21 -26.
    [130] Van Bokhoven J A, Tromp M, Koningsberger D C, et al. An Explanation for the Enhanced Activity for Light Alkane Conversion in Mildly Steam Dealuminated Mordenite: The Dominant Role of Adsorption [J]. J. Catal., 2001, 202 (1): 129 -140.
    [131] Groen J C, Peffer L A A, Moulijn J A, et al. Mechanism of Hierarchical Porosity Development in MFI Zeolites by Desilication: The Role of Aluminium as a Pore-Directing Agent [J]. Chem. Eur. J., 2005, (11): 4983 - 4994.
    [132] Jacobsen C J H, Madsen C, Houzvicka J, et al. Mesoporous zeolite single crystals [J]. J. Am. Chem. Soc., 2000, 122 (29): 7116 -7117.
    [133] Schmidt I, Boisen A, Gustavsson E, et al. Carbon Nanotube Templated Growth of Mesoporous Zeolite Single Crystals [J]. Chem. Mater. , 2001, 13 (12): 4416 -4418.
    [134] Boisen A, Schmidt I, Carlsson A, et al. TEM stereo-imaging of mesoporous zeolite single crystals [J]. Chem. Commun., 2003, (8): 958 -959.
    [135] Janssen A H, Schmidt I, Jacobsen C J H, et al. Exploratory study of mesopore templating with carbon during zeolite synthesis [J]. Microporous Mesoporous Mater. , 2003, 65 (1): 59 -75.
    [136] Yang Z X, Xia Y D, Mokaya R. Zeolite ZSM-5 with Unique Supermicropores Synthesized Using Mesoporous Carbon as a Template [J]. Adv. Mater., 2004, 16 (8):727 -732.
    [137] Tao Y S, Kanoh H, Kaneko K. ZSM-5 monolith of uniform mesoporous channels [J]. J. Am. Chem. Soc., 2003, 125 (20): 6044 -6045.
    [138] Tao Y S, Kanoh H, Kaneko K. Synthesis of Mesoporous Zeolite A by Resorcinol?Formaldehyde Aerogel Templating[J]. Langmuir, 2005, 21 (2) : 504-507.
    [139] Tao Y S, Hattori Y, Matumoto A, et al. Comparative Study on Pore Structures of Mesoporous ZSM-5 from Resorcinol-Formaldehyde Aerogel and Carbon Aerogel Templating [J]. J. Phys. Chem. B, 2005, 109 (1): 194 -199.
    [140] Zhu H, Liu Z, Wang Y, et al. Nanosized CaCO3 as Hard Template for Creation of Intracrystal Pores within Silicalite-1 Crystal [J]. Chem. Mater. 2008, 20(3): 1134-1139.
    [141] Wang H T, Wang Z B , Huang L M, et al . High-surface-area zeolitic silica with mesoporosity [J]. J. Mater. Chem., 2001, (11): 2307 -2310.
    [142] Majano G, Mintova S, Ovsitser O, et al. Zeolite Beta nanosized assemblies [J]. Microporous Mesoporous Mater. , 2005, 80 (1-3): 227 -235.
    [143] Holland B T. Transformation of mostly amorphous mesoscopic aluminosilicate colloids into high surface area mesoporous ZSM-5[J]. Microporous Mesoporous Mater. , 2006, 89 (1-3): 291 -299.
    [144] Xiao F S, Wang L F, Yin C Y, et al. Catalytic Properties of Hierarchical Mesoporous Zeolites Templated with a Mixture of Small Organic Ammonium Salts and Mesoscale Cationic Polymers [J]. Angew. Chem. Int. Ed., 2006, 45 (19): 3090 -3093.
    [145] Wang H,Pinnavaia T J. MFI zeolite with small and uniform intracrystal mesopores [J]. Angew. Chem. Int. Ed. 2006, 45:7603.
    [146] Choi M, Cho H S, Srivastava R, et al . Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity [J]. Nat. Mater. , 2006, 5 (9) : 718 -723.
    [147] Zhu H, Liu Z, Kong D, et al. Synthesis and Catalytic Performances of Mesoporous Zeolites Templated by Polyvinyl Butyral Gel as the Mesopore Directing Agent [J]. J. Phys. Chem. C 2008, 112(44): 17257-17264.
    [148]王德举,刘仲能,李学礼,谢在库.介孔沸石材料[J].化学进展,2008,20(5):637-643.
    [149] Egeblad K, Christensen C H, Kustova M, et al. Templating Mesoporous Zeolites [J]. Chem. Mater. 2008, 20:946-960.
    [150]韩崇仁(Han C R) .加氢裂化工艺与工程(Hydrocracking Technology and Engineering),北京:中国石化出版社(Beijing: China Petrochemical Press) , 2001.
    [151] Van Bokhoven J A, Tromp M, Koningsberger D C, et al. An Explanation for the Enhanced Activity for Light Alkane Conversion in Mildly Steam Dealuminated Mordenite: The Dominant Role of Adsorption [J]. J. Catal. , 2001, 202 (1): 129 -140.
    [152] Christensen C H, Johannsen K, Schmidt I, et al. Catalytic Benzene Alkylation over Mesoporous Zeolite Single Crystals: Improving Activity and Selectivity with a New Family of Porous Materials [J]. J. Am. Chem. Soc., 2003, 125 (44) : 13370 -13371.
    [153] Schmidt I, Krogh A , Wienberg K, et al . Catalytic epoxidation of alkenes with hydrogen peroxide over first mesoporous titanium-containing zeolite [J]. Chem. Commun. , 2000, (21): 2157 -2158.
    [154] Wei X T, Smirniotis P G. Synthesis and characterization of mesoporous ZSM-12 by using carbon particles [J]. Microporous Mesoporous Mater. , 2006, 89 (1-3) : 170 -178.
    [155] Kustova M Y, Hasselriis P, Christensen C H, et al. Mesoporous MEL–type zeolite single crystal catalysts [J]. Catal. Lett. , 2004, 96 (3-4): 205 -211.
    [156] Christensen C H, Schmidt I, Carlsson A, et al. Crystals in Crystals Nanocrystals within Mesoporous Zeolite Single Crystals [J]. J. Am. Chem. Soc., 2005, 127 (22): 8098 -8102.
    [157] Hartmann M. Hierarchical Zeolites: A Proven Strategy to Combine Shape Selectivity with Efficient Mass Transport [J]. Angew. Chem. Int. Ed., 2004, 43 (44) : 5880 -5882.
    [158] Tang T, Yin C, Wang L, et al. Superior performance in deep saturation of bulky aromatic pyrene over acidic mesoporous Beta zeolite-supported palladium catalyst[J]. J. Catal. 2007, 249(1): 111-115.
    [159] Tang T, Yin C, Wang L, et al. Good sulfur tolerance of a mesoporous Beta zeolite-supported palladium catalyst in the deep hydrogenation of aromatics [J]. J. Catal. 2008, 257(1): 125-133.
    [160] Srivastava R, Choi M, Ryoo R. Mesoporous materials with zeolite framework: remarkable effect of the hierarchical structure for retardation of catalyst deactivation. Chem. Commun. , 2006, (43): 4489 -4491.
    [161] Sun Y Y, Prins R. Friedel-Crafts alkylations over hierarchical zeolite catalysts [J]. Appl. Catal. A 2008, 336(1-2): 11-16.
    [162] Sun Y Y, Prins R. Hydrodesulfurization of 4, 6-Dimethyldibenzothiophene over Noble Metals Supported on Mesoporous Zeolites [J]. Angew. Chem., Int. Ed. 2008, 47(44): 8478-8481.
    [163] Choi M, Srivastava R, Ryoo R. Organosilane surfactant-directed synthesis of mesoporous aluminophosphates constructed with crystalline microporous frameworks [J]. Chem. Commun. , 2006, (42): 4380 -4382.
    [164] Serrano D P, Aguado J, Escola J M, et al. Hierarchical Zeolites with Enhanced Textural and Catalytic Properties Synthesized from Organofunctionalized Seeds[J]. Chem. Mater. , 2006, 18 (10) : 2462 -2464.
    [165] Franck H G,Stadelhofer J W. Industrial Aromatic Chemistry, Springer, Berlin, 1988.
    [166] Ipatieff V N. US Patent 2382318,1945.
    [167] Cesar M A. PEP Report No. 219, SRI Consulting, MenloPark, California, 1999.
    [168] Perego C,Ingallina P. Recent advances in the industrial alkylation of aromatics: new catalysts and new processes [J]. Catal. Today,2002, 73(1-2):3-22.
    [169] O’Kelly A A,Kellett J,Plucker J. Monoalkyibenzenes by Vapor-Phase Alkylation with Silica-alumina Catalyst [J]. Ind. Eng. Chem. 1947, 39(2), 154-158.
    [170] Venuto P B,Hamilton L A,Landis P S,Wise J J. Organic reactions catalyzed by crystalline aluminosilicates: I. Alkylation reactions [J]. J. Catal. 1966, 5(1):81-98.
    [171] Chen N Y,Garwood W E. Catal. Rev. Sci. Eng. 1986, 28:185.
    [172] Mullen P K,Pganse G.. Proceedings of the Styrene Conference 2000 (Sponsored by Sǘd-Chemie), ABB Lummus Global and UOP, Louisville, Kentucky, USA, 13-17 August 2000.
    [173] Bellussi G,Pazzuconi G.,Perego C,et al. Liquid-Phase Alkylation of Benzene with Light Olefins Catalyzed byβ-Zeolites [J]. J. Catal, 1995, 157(1): 227-234.
    [174] Formi L,Cremona G,Missineo F,et al. Transalkylation of m-diethylbenzene over large-pore zeolites [J]. Appl. Catal. A 1995, 121(2):261-272.
    [175] Barger P T,Thompson G. J,Herber R R,Imai T. US Patent 4774377 to UOP 1988.
    [176] Spagnol M,Gilbert L,Alby D. The Roots of organic Development. Elsevier: New York, 1996,29.
    [177] Minachev K M,Isakov Y I,Garanin V I,et al. Neftekhimiya, 1965, 5:676.
    [178] Kaeding W W,Holland R E. Shape-selective reactions with zeolite catalysts: VI. Alkylation of benzene with propylene to produce cumene [J]. J. Catal. 1988, 109(1):212-216.
    [179] Rao B S,Balakrisnan I.,Chumbhale V R,et al. Proceedings of the 1st Tokyo Conference on Advanced catalyst science and Technology, Vols. 1 and 56, Tokyo, 1-5 July 1990, p. 361.
    [180] Pradhan A R,Rao B S. Transalkylation of di-isopropylbenzenes over large pore zeolites [J]. Appl. Catal, A 1993, 106(1): 143-153.
    [181] Corma A , Martinez-Soria V , Schnoeveld E. Alkylation of Benzene with Short-Chain Olefins over MCM-22 Zeolite: Catalytic Behaviour and Kinetic Mechanism [J]. J. Catal. 2000, 192(1):163-173.
    [182] Perego C,Amarilli S,Millini R,et al. Experimental and computational study of beta, ZSM-12, Y, mordenite and ERB-1 in cumene synthesis [J]. Microporous Mater. 1996, 6(5-6):395-404.
    [183] Girotti G,Rivetti F,Ramello S,Camello L. Alkylation of benzene with isopropanol onβ-zeolite: influence of physical state and water concentration on catalystperformances [J]. J. Mol. Catal. A 2003, 204-205:571-579.
    [184] Samantaray S K,Mishra T,Parida K M. Studies on anion promoted Titania: 2: Preparation, characterisation and catalytic activity towards aromatic alkylation over sulfated titania [J]. J. Mol. Catal. A 2000, 156(1-2):267-274.
    [185] Medina-Valtierra J,Zaldivar O,Sánchez M A,et al. Selectivity to cumene in the alkylation of benzene with isopropanol on a MCM-41/γ-Al2O3 catalyst [J]. Appl. Catal. A, 1998, 166(2):387-392.
    [186] Reddy K S N,Rao B S,Shiralkar V P. Appl. Catal. 1993, 95:53.
    [187]高滋,何鸣元,戴云逸.沸石催化与分离技术,中国石化出版社,1999, 37- 43.
    [188]师希娥.介孔分子筛在催化裂化反应中的应用研究.华东师范大学硕士学位论文,2004.
    [189]阂恩泽,工业催化剂的研制与开发,中国石化出版社,1997, 165.
    [190] Van Bekkum,分子筛科学与实践的简介,阿姆斯特丹: Elsevier 1991,201-239.
    [191] Lussier R J.,A novel clay-based catalytic material-preparation and propertier [J]. J. Catal. 1991,129: 225-237.
    [192]田辉平.催化裂化催化剂及助剂的现状和发展[J].炼油技术与工程,2006,36(11): 6-11.
    [193]吴杰.煤系高岭土制备分子筛的工艺及其在催化裂化催化剂中的应用研究.天津大学硕士学位论文,2005.
    [194]张继光. ZRP分子筛在FCC中的工业应用[J].工业催化,1999,7 (2): 38-42.
    [195]张剑波,李会欣.抗重金属FCC催化剂的研究进展[J].石油化工,2000,29:368 -372.
    [196] William P,Hettinger Jr. Catalysis challenges in fluid catalytic cracking: a 49 year personal account of past and more recent contributionsand some possible new and future directions for even further improvement [J]. Catal. Today,1999,53:367-384.
    [197] Bhatia S., Zeolite catalysis, principles and applications, Boca Raton: CRC Press., 1990, 239:7-18.
    [198] Corma A, Wojciechowski B. W. Catal. Rev. Sci. Eng., 1982, 24:1-65.
    [199] Al-Khattaf S, de Lasa H. The role of diffusion in alkyl-benzenes catalytic cracking [J]. Appl. Catal. A, 2002, 226(1-2):139-153.
    [200]高压微型反应装置使用说明书.石油化工科学研究院,北京石化信息自动化开发公司.
    [1] Lee H, Zones S I, Davis M E. A combustion-free methodology for synthesizing zeolites and zeolite-like materials [J]. Nature,2003,425:385.
    [2] Corma A, Diaz-Cabanas M, Martinez-Triguero J, et al. A large-cavity zeolite with wide pore windows and potential as an oil refining catalyst [J]. Nature,2002,418:514.
    [3] Corma A. From Microporous to mesoporous molecular sieve materials and their use in catalysis [J]. Chem. Rev. 1997,97:2373.
    [4] Davis M E. Ordered porous materials for emerging applications [J]. Nature,2002,417:813.
    [5] Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature,1992,359:710.
    [6] Inagaki S, Fukushima Y, Kuroda K, Synthesis of highly ordered mesoporous materials from a layered polysilicate [J]. J. Chem. Soc. Chem. Comm.,1993,8:680.
    [7] Attard G S, Glyde J C, G?ltner C G. Liquid-crystalline phases as templates for the synthesis of mesoporous silica [J]. Nature,1995,378:366.
    [8] Zhao D, Feng J, Huo Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science, 1998,279:548.
    [9] Li Y, Feng Z, van Santen R A, et al. Surface functionalization of SBA-15-ordered mesoporous silicas: Oxidation of benzene to phenol by nitrous oxide [J]. J. Catal.,2008,255:190.
    [10] Schüth F. Endo- and Exotemplating to create high-surface-area inorganic materials [J]. Angew. Chem. Int. Ed. 2003,42:3604.
    [11] Pérez-Pariente J, Díaz I, Mohino F, Sastre E. Selective synthesis of fatty monoglycerides by using functionalised mesoporous catalysts [J]. Appl. Catal. A,2003,254:173.
    [12] Landskron K, Ozin G A. Periodic mesoporous dendrisilicas [J]. Science,2004,306:1529.
    [13] Che S, Liu Z, Ohsuna T, et al. Synthesis and characterization of chiral mesoporous silica [J]. Nature,2004,429:281.
    [14] Tian B, Liu X, Tu B, et al. Self-adjusted synthesis of ordered stable mesoporous minerals by acid/base pairs [J]. Nature Mater.,2003,2:159.
    [15] Miyata H, Suzuki T, Fukuoka A, et al. Silica films with a single-crystalline mesoporous structure [J]. Nature Mater.,2004,3:651.
    [16] Liu Y, Zhang W, Pinnavaia T J. Steam-Stable Aluminosilicate Mesostructures Assembled from Zeolite TypeY Seeds[J]. J.Am.Chem.Soc.2000,122:8791-8792.
    [17] Zhang Z, Han Y, Zhu L, et al. Strongly Acidic and High-Temperature Hydrothermally Stable Mesoporous Aluminosilicates with Ordered Hexagonal Structure [J]. Angew. Chem. Int. Ed. 2001, 40: 1258-1262.
    [18] On D T, Kaliaguine S. Large-pore mesoporous materials with semi-crystalline zeolitic frameworks [J]. Angew. Chem. Int. Ed.,2001,40:3248.
    [19] Kirschhock C E A, Kremer S P B, Vermant J, et al. Design and synthesis of hierarchical materials from ordered zeolitic building units [J]. Chem. Eur. J.,2005,11:4306.
    [20] Holland B T, Abrams L, Stein A. Dual templating of macroporous silicates with zeolitic microporous frameworks [J]. J. Am. Chem. Soc.,1999,121:4308.
    [21] Zhang B, Davis S A, Mann S. Starch gel templating of spongelike macroporous silicalite monoliths and mesoporous films [J]. Chem. Mater.,2002,14:1369.
    [22] Jacobsen C J H, Madsen C, Houzvicka J, et al. Mesoporous zeolite single crystals [J]. J. Am. Chem. Soc., 2000, 122 (29): 7116 -7117.
    [23] Tao Y S, Kanoh H, Kaneko K. ZSM-5 monolith of uniform mesoporous channels [J]. J. Am. Chem. Soc., 2003, 125 (20): 6044 -6045.
    [24] Yang Z X, Xia Y D, Mokaya R. Zeolite ZSM-5 with Unique Supermicropores Synthesized Using Mesoporous Carbon as a Template [J]. Adv. Mater. , 2004, 16 (8):727 -732.
    [25] Li H, Sakamoto Y, Liu Z, et al. Mesoporous silicalite-1 zeolite crystals with unique pore shapes analogous to the morphology [J]. Micropor. Mesopor. Mater.,2007,106:174.
    [26] Egeblad K, Kustova M, Klitgaard S K, et al. Mesoporous zeolite and zeotype single crystals synthesized in fluoride media [J]. Micropor. Mesopor. Mater.,2007,101:214.
    [27] Fang Y M, Hu H Q. An ordered mesoporous aluminosilicate with completely crystalline zeolite wall structure [J]. J. Am. Chem. Soc.,2006,128:10636.
    [28] Li W-C, Lu A-H, Palkovits R, et al. Hierarchically structured monolithic silicalite-1 consisting of crystallized nanoparticles and its performance in the beckmann rearrangement of cyclohexanone oxime [J]. J. Am. Chem. Soc.,2005,127:12595.
    [1] Jacobsen C J H, Madsen C, Houzvicka J, et al. Mesoporous zeolite single crystals [J]. J. Am. Chem. Soc., 2000, 122 (29): 7116 -7117.
    [2] Schmidt I, Boisen A, Gustavsson E, et al. Carbon Nanotube Templated Growth of Mesoporous Zeolite Single Crystals [J]. Chem. Mater. , 2001, 13 (12): 4416-4418.
    [3] Janssen A H, Schmidt I, Jacobsen C J H, et al. Exploratory study of mesopore templating with carbon during zeolite synthesis [J]. Microporous Mesoporous Mater. , 2003, 65 (1): 59 -75.
    [4] Tao Y S, Kanoh H, Kaneko K. ZSM-5 monolith of uniform mesoporous channels [J]. J. Am. Chem. Soc., 2003, 125 (20): 6044 -6045.
    [5] Yang Z X, Xia Y D, Mokaya R. Zeolite ZSM-5 with Unique Supermicropores Synthesized Using Mesoporous Carbon as a Template [J]. Adv. Mater. , 2004, 16 (8): 727 -732.
    [6] Tao Y S, Hattori Y, Matumoto A, et al. Comparative Study on Pore Structures of Mesoporous ZSM-5 from Resorcinol-Formaldehyde Aerogel and Carbon Aerogel Templating [J]. J. Phys. Chem. B, 2005, 109 (1): 194 -199.
    [7] Zhu H, Liu Z, Wang Y, et al. Nanosized CaCO3 as Hard Template for Creation of Intracrystal Pores within Silicalite-1 Crystal [J]. Chem. Mater. 2008, 20(3): 1134-1139.
    [8] Boisen A, Schmidt I, Carlsson A, et al. TEM stereo-imaging of mesoporous zeolite single crystals [J]. Chem. Commun. , 2003, (8): 958 -959.
    [9] Christensen C H, Johannsen K, Schmidt I, et al. Catalytic Benzene Alkylation over Mesoporous Zeolite Single Crystals: Improving Activity and Selectivity with a New Family of Porous Materials [J]. J. Am. Chem. Soc., 2003, 125 (44): 13370 -13371.
    [10] Wei X T, Smirniotis P G. Synthesis and characterization of mesoporous ZSM-12 by using carbon particles [J]. Microporous Mesoporous Mater., 2006, 89 (1-3): 170-178.
    [11] Kustova M Y, Hasselriis P, Christensen C H, et al. Mesoporous MEL–type zeolite single crystal catalysts [J]. Catal. Lett., 2004, 96 (3-4) : 205 -211.
    [12] Christensen C H, Schmidt I, Carlsson A, et al. Crystals in Crystals Nanocrystals within Mesoporous Zeolite Single Crystals [J]. J. Am. Chem. Soc., 2005, 127 (22) : 8098-8102.
    [13] Xiao F S, Wang L F, Yin C Y, et al. Catalytic Properties of Hierarchical Mesoporous Zeolites Templated with a Mixture of Small Organic Ammonium Salts and Mesoscale Cationic Polymers [J]. Angew. Chem. Int. Ed., 2006, 45 (19): 3090 -3093.
    [14] Wang H,Pinnavaia T J. MFI zeolite with small and uniform intracrystal mesopores [J]. Angew. Chem. Int. Ed. 2006, 45:7603.
    [15] Choi M, Cho H S, Srivastava R, et al. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity [J]. Nat. Mater. , 2006, 5 (9): 718 -723.
    [16] Zhu H, Liu Z, Kong D, et al. Synthesis and Catalytic Performances of Mesoporous Zeolites Templated by Polyvinyl Butyral Gel as the Mesopore Directing Agent [J]. J. Phys. Chem. C 2008, 112(44): 17257-17264.
    [17] Tang T, Yin C, Wang L, et al. Good sulfur tolerance of a mesoporous Beta zeolite-supported palladium catalyst in the deep hydrogenation of aromatics [J]. J. Catal. 2008, 257(1): 125-133.
    [18] Choi M, Srivastava R, Ryoo R. Organosilane surfactant-directed synthesis of mesoporous aluminophosphates constructed with crystalline microporous frameworks [J]. Chem. Commun. , 2006, (42): 4380 -4382.
    [19] Srivastava R, Choi M, Ryoo R. Mesoporous materials with zeolite framework: remarkable effect of the hierarchical structure for retardation of catalyst deactivation [J]. Chem. Commun. , 2006, (43): 4489 -4491.
    [20] Sun Y Y, Prins R. Friedel-Crafts alkylations over hierarchical zeolite catalysts [J].Appl. Catal. A 2008, 336(1-2): 11-16.
    [21] Sun Y Y, Prins R. Hydrodesulfurization of 4,6-Dimethyldibenzothiophene over Noble Metals Supported on Mesoporous Zeolites[J]. Angew. Chem., Int. Ed. 2008, 47(44): 8478-8481.
    [22] Zhao D, Feng J, Huo Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science, 1998,279:548.
    [23] Corma A. From Microporous to mesoporous molecular sieve materials and their use in catalysis [J]. Chem. Rev. 1997,97:2373.
    [24] Davis M E. Ordered porous materials for emerging applications [J]. Nature,2002,417:813.
    [25] Wang L,Lin K, Di Y, et al. High-temperature synthesis of stable ordered mesoporous silica materials using mesoporous carbon as a hard template [J]. Micropor. Mesopor. Mater.,2005,86:81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700