含苯基多面齐聚倍半硅氧烷的高分子的结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,有机/无机纳米复合材料由于具有独特的性能,因此受到了人们广泛的关注。有机/无机纳米复合材料可以将有机高分子的优点与无机材料的优点结合在一起。多面齐聚倍半硅氧烷(Polyhedral oligomeric silsesquioxane , POSS)作为制备有机/无机纳米复合材料的一种新型有效的原材料得到人们的重视。典型的多面齐聚倍半硅氧烷单体具有笼形结构,其化学通式为:(RSiO1.5)n( n= 6~12, R为有机基团),在其笼形结构的端角上有八个有机基团,其中一个或多个为反应性或可聚合的官能团。多面齐聚倍半硅氧烷具有纳米尺度的分子大小、规整的立方体结构、可反应性或可聚合的官能团、活性基团数量可控以及良好的有机物相容性等特点。
     各种具有可反应性或可聚合性的POSS分子已被合成出来,并通过与有机单体共聚,在有机/无机组分之间形成稳定的共价键的方式来制备有机/无机纳米复合材料。含POSS的聚合物的多种性能得到改善,如力学性能提高,热稳定性能提高、阻燃性能提高、表面疏水性能提高,熔融结晶行为改变等。
     1.一种新型可光交联的多面齐聚倍半硅氧烷的合成及其与聚乙烯醇肉桂酸酯纳米复合材料的制备
     通过肉桂酰氯与八氨基苯基倍半硅氧烷的反应合成了一种新型的具有光敏性的八肉桂酰胺苯基多面齐聚倍半硅氧烷(OcapPOSS)。OcapPOSS与光敏聚合物聚乙烯醇肉桂酸酯(PVCIN)具有很好的相容性,这促使我们运用光固化方式制备PVCIN-OcapPOSS纳米复合材料。测试结果表明PVCIN/OcapPOSS混合物的紫外光交联速率比两种纯组分要稍微低一点,纳米复合材料的玻璃化转变温度比纯PVCIN有所增加,这主要是由于POSS笼形结构对于聚合物基体的纳米增强作用。含有POSS的PVCIN纳米复合材料具有更好的热稳定性和阻燃性能。这主要是因为POSS笼形结构的引入使PVCIN基体的燃烧变得更加困难。
     2.含聚苯基倍半硅氧烷的环氧树脂复合材料的制备,形态结构和热力学性能
     将聚苯基倍半硅氧烷(PPSQ)加入到环氧树脂中来制备有机/无机复合材料。在制备过程中采用了两种不同的策略,得到了具有不同形态结构的两种复合材料。采用物理共混方式制备出的复合物,发生反应诱致的相分离。而通过加入催化剂来促进PPSQ与双酚A二缩水甘油醚(DGEBA)之间的反应,然后制备出的复合物则具有纳米结构。PPSQ和DGEBA之间的反应极大的抑止了PPSQ宏观相分离的发生。结果表明,当PPSQ含量一样时,纳米复合材料比相分离结构的复合材料具有更高的玻璃化转变温度。在PPSQ含量小于15wt%时,由于PPSQ微区的增强作用,纳米结构复合材料比相分离结构的复合材料具有更高的动态储能模量。有机/无机复合材料的热稳定性能和阻燃性能得到了很大提高。
     3.多面齐聚倍半硅氧烷封端的聚己内酯与α-环糊精超分子包合物的制备及研究
     本工作研究了多面齐聚倍半硅氧烷封端的聚己内酯PCL(POSS-capped PCL)与α-环糊精(α-CD)形成的超分子包结络合物(ICs)。用3-羟丙基七苯基POSS作为引发剂开环聚合己内酯(ε-CL)合成了不同分子量的POSS-capped PCL分子。因为PCL的一端存在体积巨大的POSS笼形结构,所以POSS-capped PCL与α-CD形成超分子络合物的时候,只能从PCL链段的自由一端进攻。结果表明有机/无机络合物具有隧道状结晶结构。在有机/无机络合物中不同组分的计量比是与POSS-capped PCL的分子量有关的。当POSS-capped PCL分子量较小时,络合效率降低。这主要是因为POSS笼形结构较难运动,限制了连接在POSS笼形结构上的PCL链段的运动性。当PCL链段较短时,这种影响更加明显。
     4.多面齐聚倍半硅氧烷封端的聚己内酯的熔融和结晶行为
     我们研究了不同PCL链段长度的POSS-capped PCL的熔融和结晶行为。POSS-capped PCL与纯PCL相比,平衡熔点升高。随之POSS含量的增加(或随着分子中PCL链段的减少),POSS-capped PCL的结晶速率常数和球晶生长速率随之增加。随着POSS含量的增加,POSS-capped PCL表面折叠自由能随之减少。这个结果可以归因于封端的POSS笼形结构在PCL链段结晶中所起的异相成核作用促进了PCL链段的结晶过程。
     5.环氧树脂/有机-无机两亲性分子的纳米结构热固性材料
     多面齐聚倍半硅氧烷封端聚己内酯(POSS-capped PCL)是用3-羟丙基七苯基POSS作为引发剂引发己内酯单体(ε-CL)开环聚合制备的。将这种新型的有机/无机两亲性分子加入到环氧树脂中制备具有纳米结构的热固性复合材料。结果表明随着POSS-capped PCL含量的不同,环氧树脂复合材料的结构从球形结构、蠕虫状结构到层状结构。纳米结构的形成是由于POSS-capped PCL两亲性分子的不同部分对于环氧树脂具有不同的相容性(PCL链段与固化前后的环氧树脂都是完全相容的,而POSS笼形结构与固化前后的环氧树脂都是不相容的。我们认为这种纳米结构的形成是按照自组装机制进行的。复合材料表面疏水性显著增加,表面自由能显著下降。材料表面性质的提高归因于POSS结构单元在环氧树脂复合材料表面的富集。
Organic-inorganic nanocomposites have attracted considerable interest during the past few decades because they can exhibit unusual combinations of properties originating from the synergism of organic and inorganic components. Polyhedral oligomeric silsesquioxane (POSS) reagents, monomers, and polymers are emerging as a new chemical technology for nanoreinforced organic-inorganic hybrids. Polyhedral oligomeric silsesquioxanes (POSS) are a class of important nanosized cage-like molecules with a formula of [RSiO3/2]n, n = 6 ~12, where R can be various types of organic groups, one (or more) of which is reactive or polymerizable.
     In POSS technology, a diversity of polymerizable (or reactive) POSS macromers have been employed to copolymerize with organic monomer via the formation of covalent bonds between organic and inorganic components, in order to afford organic-inorganic nanostructured composites. The incorporation of the POSS nanocluster cages into polymeric materials can result in dramatic improvements in polymer properties, including mechanical properties, thermal stability, flame retardation, surface hydrophobicity, and melting and crystallization behavior etc.
     1. A Novel Photocrosslinkable Polyhedral Oligomeric Silsesquioxane and Its Nanocomposites with Poly(vinyl cinnamate)
     A novel photosensitive octacinnamamidophenyl polyhedral oligomeric silsesquioxane (OcapPOSS) was synthesized via the reaction between cinnamoyl chloride and octaaminophenyl polyhedral oligomeric silsesquioxane (OapPOSS). By initiating in situ UV photocrosslinking reaction of PVCIN in the presence of the photosensitive OcapPOSS, II is noted that the photocrosslinking rates of the PVCIN/POSS hybrids were slightly lower than those of the precursors, which could be ascribed to the nanoreinforcement of POSS cages on the polymer matrix. The glass transition temperatures (Tgs) of the nanocomposites were significantly higher than that of the control PVCIN. All the PVCIN nanocomposites containing POSS displayed the improved thermal stability. The high char yields of PVCIN nanocomposites also suggest improved flame retardence. It is plausible to propose that the improvement in weight retention is ascribed to the POSS constituent, which participated in the formation of the homogeneous hybrid network.
     2. Epoxy Resin Containing Polyphenylsilsesquioxane: Preparation, Morphology, and Thermomechanical Properties
     Polyphenylsilsesquioxanes (PSSQ) was used to incorporate into epoxy resin to prepare the organic-inorganic composites and two strategies were employed to afford the composites with different morphology. It is seen that the phase separation induced by polymerization occurred in the physical blending systems. However, the nanostructured composites were obtained while a catalytic amount Aluminum triacetylacetonate [Al(acac)3] was added to mediate the reaction between PPSQ and diglycidyl ether of bisphenol A (DGEBA). It is the inter-component reaction that significantly suppresses the phase separation on the micrometer scale. The organic-inorganic composites with different morphology displayed quite different thermomechanical properties. The nanostructured composites possessed higher glass transition temperatures (Tg’s) with the same loading of PPSQ although the inter-component reaction between PPSQ and DGEBA reduced the crosslinking density of epoxy matrix. It is the nanoreinforcement of PPSQ domains that afford the enhanced dynamic storage modulus for the nanostructured composites in comparison with the phase-separated composites with the PPSQ content less than 15 wt%. The organic-inorganic composites displayed the improved thermal stability and flame retardance.
     3. Supramolecular Inclusion Complexation of Polyhedral Oligomeric Silsesquioxane Capped Poly(e-caprolactone) with a-Cyclodextrin
     The supramolecular inclusion complexes involving polyhedral oligomeric silsesquioxane (POSS)-capped poly(ε-caprolactone) (PCL) andα-cyclodextrin (α-CD) were investigated. The POSS-terminated PCL with various molecular weights were prepared via the ring opening polymerization ofε-caprolactone with 3-hydroxypropylheptaphenyl POSS as an initiator. The POSS-capped PCLs were used to prepare the supramolecular inclusion complexes (ICs) withα-CD. Due to the presence of the bulky group (viz. POSS), the inclusion complexation betweenα-CD and the POSS-capped PCL is only carried out with single end of PCL chain threading inside the cavity ofα-CD. The results indicate that the organic-inorganic ICs have a channel-type crystalline structure. It is noted that the stoichiometry of the organic-inorganic ICs is quite dependent on the molecular weights of the POSS-capped PCL. When the PCL chains are shorter, the values of the stoichiometry are higher than 1:1 (CL unit :α-CD in mol). The deceased efficiency of inclusion complexation could be attributed to the lower mobility of the bulky POSS group, which restricted the motion of PCL chain attached to silsesquioxane cage. This effect is pronounced with decreasing the length of the PCL chains.
     4. Melting and Crystallization Behavior of Polyhedral Oligomeric Silsesquioxane (POSS)-terminated Poly(ε-caprolactone)
     We investigated the melting and crystallization behavior of POSS-capped PCL with various lengths of PCL chains. The novel organic-inorganic association result in the significant alterations in the melting and crystallization behavior of PCL. The POSS-capped PCL displayed the enhanced equilibrium melting points compared to the control PCL. Both the overall crystallization rate and the spherulitic growth rate of the POSS-terminated PCLs increased with increasing the concentration of POSS (or with decreasing length of PCL chain in the hybrids). It is found that the folding free energy of surface for the POSS-terminated PCLs decreased with increasing the concentration of POSS. These results could be ascribed to the effect of the favorable heterogeneous nucleation of POSS terminal groups, which accelerates the process of crystallization.
     5. Self-organized Thermosets from Epoxy Resin and Amphiphilic POSS-capped Poly( -caprolactone) Mixtures
     Polyhedral oligomeric silsesquioxane (POSS)-capped PCL was synthesized via ring-open polymerization ofε-caprolactone with 3-hydroypropylheptaphenyl POSS as the initiator. The novel organic-inorganic amphiphile was used to incorporate into epoxy resin to prepare the nanostructured thermosets. It is found that depending on the concentration of the POSS-capped PCL in the composites, the POSS microdomains displayed the structures from spherical, wormlike to lamellar nanoobjects. The formation of the nanostructures in the epoxy thermosets was addressed on the basis of the miscibility and phase behavior of the sub-components (viz. POSS and PCL chains) of the organic-inorganic amphiphilic macromolecule with epoxy resin after and before curing reaction. It is judged that the formation of the nanostructures in the organic-inorganic hybrid composites follows the mechanism of self-assembly. The organic-inorganic nanocomposites displayed a significant enhancement in surface hydrophobicity as well as reduction in surface free energy. The improvement in surface properties was ascribed to the enrichment of POSS moiety on the surface of the nanostructured thermosets.
引文
1. Whitesides, G. M.; Mathias, J. P.; Seto, C. T., Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. Science (Washington, DC, United States) 1991, 254, (5036), 1312-19.
    2. Lan, T.; Kaviratna, P. D.; Pinnavaia, T. J., Mechanism of Clay Tactoid Exfoliation in Epoxy-Clay Nanocomposites. Chemistry of Materials 1995, 7, (11), 2144-50.
    3. Giannelis, E. P.; Krishnamoorti, R.; Manias, E., Polymer-silicate nanocomposites: Model systems for confined polymers and polymer brushes. Polymers in Confined Environments 1999, 138, 107-147.
    4. Brinker, C.; Scherer, G., Sol–Gel Science: The Physics and Chemistry of Sol-Gel Processing Academic: New York: 1990.
    5. Andrews, M. P.; Najafi, S. I., Passive and active sol gel materials and devices. Critical Reviews of Optical Science and Technology 1997, 253-285.
    6. Schubert, U.; Huesing, N.; Lorenz, A., Hybrid Inorganic-Organic Materials by Sol-Gel Processing of Organofunctional Metal Alkoxides. Chemistry of Materials 1995, 7, (11), 2010-27.
    7. Crivello, J. V.; Song, K. Y.; Choshal, R., Synthesis and photoinitiated cationic polymerization of organic-inorganic hybrid resins. Chemistry of Materials 2001, 13, (5), 1932-1942.
    8. Okada, A.; Usuki, A., Twenty years of polymer-clay nanocomposites. Macromolecular Materials and Engineering 2006, 291, (12), 1449-1476.
    9. Scott, D. W., Thermal rearrangement of branched-chain methylpolysiloxanes. Journal of the American Chemical Society 1946, 68, 356-8.
    10. Barry, A. J.; Daudt, W. H.; Domicone, J. J.; Gilkey, J. W., Crystalline organosilsesquioxanes. Journal of the American Chemical Society 1955, 77, 4248-52.
    11. Sprung, M. M.; Guenther, F. O., The partial hydrolysis of methyltri-n-propoxysilane, methyltriisopropoxysilane and methyltri-n-butoxysilane. Journal of the American Chemical Society 1955, 77, 6045-9.
    12. Sprung, M. M.; Guenther, F. O., The partial hydrolysis of ethyltriethoxysilane. Journal of the American Chemical Society 1955, 77, 3996-4002.
    13. Sprung, M. M.; Guenther, F. O., The partial hydrolysis of methyltriethoxysilane. Journal of the American Chemical Society 1955, 77, 3990-6.
    14. Sprung, M. M.; Guenther, F. O., The hydrolysis of n-amyltriethoxysilane and phenyltriethoxysilane.J. Polymer. Sci. 1958, 28, 17-34.
    15. Muller, R.; Dathe, C.; Heinrich, L., Silicones. XLVII. A siloxane from siliconchloroform. Journal de Physiologie (Paris, 1946-1992) 1959, 9, 71-4.
    16. Brown, J. F., Jr.; Vogt, L. H., Jr.; Katchman, A.; Eustance, J. W.; Kiser, K. M.; Krantz, K. W., Double chain polymers of phenylsilsesquioxane. Journal of the American Chemical Society 1960, 82, 6194-5.
    17. Olsson, K.; Gronwall, C., Octa(arylsilsesquioxanes), (ArSi)8O12 I. Phenyl, 4-tolyl, and 1-naphthyl compounds. Arkiv foer Kemi 1961, 17, 529-40.
    18. Vogt, L. H., Jr.; Brown, J. F., Jr., Crystalline methylsilsesquioxanes. Inorg. Chem. 1963, 2, 189-92.
    19. Brown, J. F., Jr.; Vogt, L. H., Jr.; Prescott, P. I., Preparation and characterization of the lower equilibrated phenylsilsesquioxanes. Journal of the American Chemical Society 1964, 86, (6), 1120-5.
    20. Olsson, K.; Axen, C., Octakis(arylsilsesquioxanes), (ArSi)8O12. II. Octa- and dodecakis(2-thienylsilsesquioxane) and their perbromo derivatives. Arkiv foer Kemi 1964, 22, (20), 237-44.
    21. Brown, J. F., Jr., The polycondensation of phenylsilanetriol. Journal of the American Chemical Society 1965, 87, (19), 4317-24.
    22. Brown, J. F., Jr.; Vogt, L. H., Jr., The polycondensation of cyclohexylsilanetriol. Journal of the American Chemical Society 1965, 87, (19), 4313-17.
    23. Frye, C. L.; Collins, W. T., Oligomeric silsesquioxanes, (HSiO3/2)n. Journal of the American Chemical Society 1970, 92, (19), 5586-8.
    24. Agaskar, P. A.; Day, V. W.; Klemperer, W. G., A new route to trimethylsilylated spherosilicates. Synthesis and structure of [Si12O18](OSiMe3)12, D3h-[Si14O21](OSiMe3)14, and C2v-[Si14O21](OSiMe3)14. Journal of the American Chemical Society 1987, 109, (18), 5554-6.
    25. Agaskar, P. A., Organolithic macromolecular materials derived from vinyl-functionalized spherosilicates: novel potentially microporous solids. Journal of the American Chemical Society 1989, 111, (17), 6858-9.
    26. Agaskar, P. A., Facile, high yield synthesis of functionalized spherosilicates: precursors of novel organolithic macromolecular materials. Inorganic Chemistry 1990, 29, (9), 1603.
    27. Agaskar, P. A., New synthetic route to the hydridospherosiloxanes Oh-H8Si8O12 and D5h-H10Si10O15. Inorganic Chemistry 1991, 30, (13), 2707-8.
    28. Hasegawa, I., Exchange of Si(O-)4 units in the cubic octameric silicate species Si8O208- by MeSi(O-)3 units. Polyhedron 1991, 10, (10), 1097-1101.
    29. Hasegawa, I.; Motojima, S., Dimethylvinylsilylation of Si8O208- silicate anion in methanol solutions of tetramethylammonium silicate. Journal of Organometallic Chemistry 1992, 441, (3), 373-80.
    30. Hasegawa, I., Co-hydrolysis products of tetraethoxysilane and methyltriethoxysilane in the presence of tetramethylammonium ions. Journal of Sol-Gel Science and Technology 1993, 1, (1), 57-63.
    31. Hasegawa, I.; Ishida, M.; Motojima, S., Synthesis of silylated derivatives of the cubic octameric silicate species Si8O208. Synthesis and Reactivity in Inorganic and Metal-Organic Chemistry 1994, 24, (7), 1099-110.
    32. Feher, F. J.; Budzichowski, T. A., New Polyhedral Oligosilsesquioxanes Via the Catalytic-Hydrogenation of Aryl-Containing Silsesquioxanes. Journal of Organometallic Chemistry 1989, 373, (2), 153-163.
    33. Feher, F. J.; Budzichowski, T. A., Syntheses of highly-functionalized polyhedral oligosilsesquioxanes. Journal of Organometallic Chemistry 1989, 379, (1-2), 33-40.
    34. Feher, F. J.; Newman, D. A.; Walzer, J. F., Silsesquioxanes as models for silica surfaces. Journal of the American Chemical Society 1989, 111, (5), 1741-8.
    35. Feher, F. J.; Weller, K. J., Polyhedral aluminosilsesquioxanes as models for aluminosilicates: unique synthesis of anionic aluminum/silicon/oxygen frameworks. Organometallics 1990, 9, (10), 2638-40.
    36. Feher, F. J.; Budzichowski, T. A.; Blanski, R. L.; Weller, K. J.; Ziller, J. W., Facile syntheses of new incompletely condensed polyhedral oligosilsesquioxanes: [(c-C5H9)7Si7O9(OH)3], [(c-C7H13)7Si7O9(OH)3], and [(c-C7H13)6Si6O7(OH)4]. Organometallics 1991, 10, (7), 2526-8.
    37. Feher, F. J.; Weller, K. J., Synthesis and characterization of labile spherosilicates: [(Me3SnO)8Si8O12] and [(Me4SbO)8Si8O12]. Inorganic Chemistry 1991, 30, (5), 880-2.
    38. Feher, F. J.; Budzichowski, T. A.; Rahimian, K.; Ziller, J. W., Reactions of incompletely-condensed silsesquioxanes with pentamethylantimony: a new synthesis of metallasilsesquioxanes with important implications for the chemistry of silica surfaces. Journal of the American Chemical Society 1992, 114, (10), 3859-66.
    39. Feher, F. J.; Tajima, T. L., Synthesis of a Molybdenum-Containing Silsesquioxane Which RapidlyCatalyzes the Metathesis of Olefins. Journal of the American Chemical Society 1994, 116, (5), 2145-6.
    40. Feher, F. J.; Budzichowski, T. A., Silasesquioxanes as ligands in inorganic and organometallic chemistry. Polyhedron 1995, 14, (22), 3239-53.
    41. Feher, F. J.; Budzichowski, T. A.; Ziller, J. W., Synthesis and Characterization of Gallium-Containing Silsesquioxanes. Inorganic Chemistry 1997, 36, (18), 4082-4086.
    42. Feher, F. J.; Phillips, S. H.; Ziller, J. W., Synthesis and structural characterization of a remarkably stable, anionic, incompletely condensed silsesquioxane framework. Chemical Communications (Cambridge) 1997, (9), 829-830.
    43. Feher, F. J.; Soulivong, D.; Eklund, A. G.; Wyndham, K. D., Cross-metathesis of alkenes with vinyl-substituted silsesquioxanes and spherosilicates: a new method for synthesizing highly-functionalized Si/O frameworks. Chemical Communications (Cambridge) 1997, (13), 1185-1186.
    44. Feher, F. J.; Soulivong, D.; Lewis, G. T., Facile Framework Cleavage Reactions of a Completely Condensed Silsesquioxane Framework. Journal of the American Chemical Society 1997, 119, (46), 11323-11324.
    45. Feher, F. J.; Soulivong, D.; Eklund, A. G., Controlled cleavage of R8Si8O12 frameworks: a revolutionary new method for manufacturing precursors to hybrid inorganic-organic materials. Chemical Communications (Cambridge) 1998, (3), 399-400.
    46. Feher, F. J.; Soulivong, D.; Nguyen, F., Practical methods for synthesizing four incompletely condensed silsesquioxanes from a single R8Si8O12 framework. Chemical Communications (Cambridge) 1998, (12), 1279-1280.
    47. Feher, F. J.; Wyndham, K. D., Amine and ester-substituted silsesquioxanes: synthesis, characterization and use as a core for starburst dendrimers. Chemical Communications (Cambridge) 1998, (3), 323-324.
    48. Feher, F. J.; Nguyen, F.; Soulivong, D.; Ziller, J. W., A new route to incompletely condensed silsesquioxanes: acid-mediated cleavage and rearrangement of (c-C6H11)6Si6O9 to C2-[(c-C6H11)6Si6O8X2]. Chemical Communications (Cambridge) 1999, (17), 1705-1706.
    49. Feher, F. J.; Terroba, R.; Jin, R.-Z., Controlled partial hydrolysis of spherosilicate frameworks: syntheses of endo-[(Me3SiO)6Si6O7(OH)4] and endo-[(Me3SiO)6Si6O7{OSiMe2(CH:CH2)}4] from [(Me3SiO)6Si6O9]. Chemical Communications (Cambridge) 1999, (24), 2513-2514.
    50. Feher, F. J.; Terroba, R.; Ziller, J. W., A new route to incompletely-condensed silsesquioxanes: base-mediated cleavage of polyhedral oligosilsesquioxanes. Chemical Communications (Cambridge) 1999, (22), 2309-2310.
    51. Feher, F. J.; Terroba, R.; Ziller, J. W., Base-catalyzed cleavage and homologation of polyhedral oligosilsesquioxanes. Chemical Communications (Cambridge) 1999, (21), 2153-2154.
    52. Feher, F. J.; Terroba, R.; Jin, R.-Z.; Wyndham, K. D.; Lucke, S.; Brutchey, R.; Nguyen, F., Silsesquioxanes and spherosilicates as precursors to hybrid inorganic/organic materials. Polymeric Materials Science and Engineering 2000, 82, 301-302.
    53. Lichtenhan, J. D.; Vu, N. Q.; Carter, J. A.; Gilman, J. W.; Feher, F. J., Silsesquioxane-siloxane copolymers from polyhedral silsesquioxanes. Macromolecules 1993, 26, (8), 2141-2.
    54. Lichtenhan, J. D.; Schwabb, J. J.; Feher, F. J.; Soulivong, D. Functionalizing polycyclic silicones using metathesis catalyst and the resulting compounds. 98-3083 5942638, 19980105., 1999.
    55. Sellinger, A.; Laine, R. M., Coupling of allyloxy and propargyloxy moieties with hydridosilanes: novel liquid crystalline functionalized silsesquioxanes. Polymer Preprints (American Chemical Society, Division of Polymer Chemistry) 1994, 35, (2), 665-6.
    56. Zhang, C.; Baranwal, R.; Laine, R. M., Molecular composites from hydrido and vinyl functionalized silsesquioxanes. Polymer Preprints (American Chemical Society, Division of Polymer Chemistry) 1995, 36, (2), 342-3.
    57. Sellinger, A.; Laine, R. M., Silsesquioxanes as Synthetic Platforms. 3. Photocurable, Liquid Epoxides as Inorganic/Organic Hybrid Precursors. Chemistry of Materials 1996, 8, (8), 1592-1593.
    58. Sellinger, A.; Laine, R. M., Silsesquioxanes as Synthetic Platforms. Thermally Curable and Photocurable Inorganic/Organic Hybrids. Macromolecules 1996, 29, (6), 2327-30.
    59. Zhang, C.; Laine, R. M., Silsesquioxanes as synthetic platforms. II. Epoxy-functionalized inorganic-organic hybrid species. Journal of Organometallic Chemistry 1996, 521, (1-2), 199-201.
    60. Laine, R. M.; Zhang, C.; Sellinger, A.; Viculis, L., Polyfunctional cubic silsesquioxanes as building blocks for organic/inorganic hybrids. Applied Organometallic Chemistry 1998, 12, (10/11), 715-723.
    61. Zhang, C.; Babonneau, F.; Bonhomme, C.; Laine, R. M.; Soles, C. L.; Hristov, H. A.; Yee, A. F., Highly Porous Polyhedral Silsesquioxane Polymers. Synthesis and Characterization. Journal of the American Chemical Society 1998, 120, (33), 8380-8391.
    62. Laine, R. M.; Choi, J.; Costa, R. O. R., Organic/inorganic nanocomposites with completely defined interfacial interactions from cubic silsesquioxanes. Polymer Preprints (American Chemical Society, Division of Polymer Chemistry) 2000, 41, (1), 524-525.
    63. Zhang, C.; Laine, R. M., Hydrosilylation of Allyl Alcohol with [HSiMe2OSiO1.5]8: Octa(3-hydroxypropyldimethylsiloxy)octasilsesquioxane and Its Octamethacrylate Derivative as Potential Precursors to Hybrid Nanocomposites. Journal of the American Chemical Society 2000, 122, (29), 6979-6988.
    64. Choi, J.; Harcup, J.; Yee, A. F.; Zhu, Q.; Laine, R. M., Organic/Inorganic Hybrid Composites from Cubic Silsesquioxanes. Journal of the American Chemical Society 2001, 123, (46), 11420-11430.
    65. Costa, R. O. R.; Vasconcelos, W. L.; Tamaki, R.; Laine, R. M., Organic/Inorganic Nanocomposite Star Polymers via Atom Transfer Radical Polymerization of Methyl Methacrylate Using Octafunctional Silsesquioxane Cores. Macromolecules 2001, 34, (16), 5398-5407.
    66. Laine, R. M.; Choi, J.; Lee, I., Organic-inorganic nanocomposites with completely defined interfacial interactions. Advanced Materials (Weinheim, Germany) 2001, 13, (11), 800-803.
    67. Tamaki, R.; Choi, J.; Laine, R. M., Octa(aminophenyl)silsesquioxane as a building block for polyimide nanocomposites. Polymeric Materials Science and Engineering 2001, 84, 564-565.
    68. Tamaki, R.; Tanaka, Y.; Asuncion, M. Z.; Choi, J.; Laine, R. M., Octa(aminophenyl)silsesquioxane as a Nanoconstruction Site. Journal of the American Chemical Society 2001, 123, (49), 12416-12417.
    69. Laine, R. M.; Tamaki, R.; Choi, J. Nanosized silsesquioxane building blocks for organic/inorganic nanocomposites. 2001-US48451 2002100867, 20011029., 2002.
    70. Choi, J.; Tamaki, R.; Kim, S. G.; Laine, R. M., Organic/Inorganic Imide Nanocomposites from Aminophenylsilsesquioxanes. Chemistry of Materials 2003, 15, (17), 3365-3375.
    71. Tamaki, R.; Choi, J.; Laine, R. M., A Polyimide Nanocomposite from Octa(aminophenyl)silsesquioxane. Chemistry of Materials 2003, 15, (3), 793-797.
    72. Choi, J.; Kim, S. G.; Laine, R. M., Organic/Inorganic Hybrid Epoxy Nanocomposites from Aminophenylsilsesquioxanes. Macromolecules 2004, 37, (1), 99-109.
    73. Voronkov, M. G.; Lavrentyev, V. I.; Kovrigin, V. M., The formation of polyhedral ethylsilsesquioxanes in the process of oligoethylhydrocyclosiloxane polycondensation. Journal of Organometallic Chemistry 1981, 220, (3), 285-93.
    74. Voronkov, M. G.; Martynova, T. N.; Mirskov, R. G.; Belyi, V. I., Octavinylsilsesquioxane. Zhurnal Obshchei Khimii 1979, 49, (7), 1522-5.
    75. Harrison, P. G.; Hall, C., Preparation and characterization of octasilsesquioxane cage monomers. Main Group Metal Chemistry 1997, 20, (8), 515-529.
    76. Unno, M.; Alias, S. B.; Saito, H.; Matsumoto, H., Synthesis of hexasilsesquioxanes bearing bulky substituents: Hexakis((1,1,2-trimethylpropyl)silsesquioxane) and hexakis(tert-butylsilsesquioxane). Organometallics 1996, 15, (9), 2413-2414.
    77. Weidner, R.; Zeller, N.; Deubzer, B.; Frey, V. Wacker-Chemie GmbH: U. S. Patent 5,047,492, 1991.
    78. Oikawa, H.; Yoshida, K.; Iwatani, K.; Watanabe, K.; Ootake, N. International Pat. Appl. PCT/JP02/94776 WO02/094839 (17 May, 2002), 2002.
    79. Ohno, K.; Sugiyama, S.; Koh, K.; Tsujii, Y.; Fukuda, T.; Yamahiro, M.; Oikawa, H.; Yamamoto, Y.; Ootake, N.; Watanabe, K., Living radical polymerization by polyhedral oligomeric silsesquioxane-holding initiators: Precision synthesis of tadpole-shaped organic/inorganic hybrid polymers. Macromolecules 2004, 37, (23), 8517-8522.
    80. Koh, K.; Sugiyama, S.; Morinaga, T.; Ohno, K.; Tsujii, Y.; Fukuda, T.; Yamahiro, M.; Iijima, T.; Oikawa, H.; Watanabe, K.; Miyashita, T., Precision synthesis of a fluorinated polyhedral oligomeric silsesquioxane-terminated polymer and surface characterization of its blend film with poly(methyl methacrylate). Macromolecules 2005, 38, (4), 1264-1270.
    81. Haddad, T. S.; Mather, P. T.; Jeon, H. G.; Chun, S. B.; Phillips, S. H., Hybrid inorganic/organic diblock copolymers - Nanostructure in polyhedral oligomeric silsesquioxane polynorbornenes. Materials Research Society Symposium Proceedings 2001, 628, (Organic/Inorganic Hybrid Materials), CC2 6 1-CC2 6 7.
    82. Lichtenhan, J. D.; Otonari, Y. A.; Carr, M. J., Linear Hybrid Polymer Building Blocks: Methacrylate-Functionalized Polyhedral Oligomeric Silsesquioxane Monomers and Polymers. Macromolecules 1995, 28, (24), 8435-7.
    83. Haddad, T. S.; Choe, E.; Lichtenhan, J. D., Hybrid styryl-based polyhedral oligomeric silsesquioxane (POSS) polymers. Materials Research Society Symposium Proceedings 1996, 435, (Better Ceramics through Chemistry VII: Organic/Inorganic Hybrid Materials), 25-32.
    84. Haddad, T. S.; Lichtenhan, J. D., Hybrid Organic-Inorganic Thermoplastics: Styryl-BasedPolyhedral Oligomeric Silsesquioxane Polymers. Macromolecules 1996, 29, (22), 7302-7304.
    85. Lichtenhan, J. D.; Noel, C. J.; Bolf, A. G.; Ruth, P. N., Thermoplastic hybrid materials: polyhedral oligomeric silsesquioxane (POSS) reagents, linear polymers, and blends. Materials Research Society Symposium Proceedings 1996, 435, (Better Ceramics through Chemistry VII: Organic/Inorganic Hybrid Materials), 3-11.
    86. Schwab, J. J.; Lichtenhan, J. D., Polyhedral oligomeric silsesquioxane (POSS)-based polymers. Applied Organometallic Chemistry 1998, 12, (10/11), 707-713.
    87. Schwab, J. J.; Lichtenhan, J. D.; Chaffee, K. P.; Mather, P. T.; Romo-Uribe, A., Polyhedral oligomeric silsesquioxanes (POSS): silicon based monomers and their use in the preparation of hybrid polyurethanes. Materials Research Society Symposium Proceedings 1998, 519, (Organic/Inorganic Hybrid Materials), 21-27.
    88. Haddad, T. S.; Stapleton, R.; Jeon, H. G.; Mather, P. T.; Lichtenhan, J. D.; Phillips, S., Nanostructured hybrid organic/inorganic materials. Silsesquioxane modified plastics. Polymer Preprints (American Chemical Society, Division of Polymer Chemistry) 1999, 40, (1), 496-497.
    89. Haddad, T. S.; Oviatt, H. W.; Schwab, J. J.; Mather, P. T.; Chaffee, K. P.; Lichtenhan, J. D., Polydimethylsiloxanes modified with polyhedral oligomeric silsesquioxanes: from viscous oils to thermoplastics. Polymer Preprints (American Chemical Society, Division of Polymer Chemistry) 1998, 39, (1), 611-612.
    90. Lichtenhan, J. D., Polyhedral oligomeric silsesquioxanes: building blocks for silsesquioxane-based polymers and hybrid materials. Comments on Inorganic Chemistry 1995, 17, (2), 115-30.
    91. Zheng, L.; Farris, R. J.; Coughlin, E. B., Novel Polyolefin Nanocomposites: Synthesis and Characterizations of Metallocene-Catalyzed Polyolefin Polyhedral Oligomeric Silsesquioxane Copolymers. Macromolecules 2001, 34, (23), 8034-8039.
    92. Neumann, D.; Fisher, M.; Tran, L.; Matisons, J. G., Synthesis and Characterization of an Isocyanate Functionalized Polyhedral Oligosilsesquioxane and the Subsequent Formation of an Organic-Inorganic Hybrid Polyurethane. Journal of the American Chemical Society 2002, 124, (47), 13998-13999.
    93. Baney, R. H.; Itoh, M.; Sakakibara, A.; Suzuki, T., Silsesquioxanes. Chemical Reviews (Washington, D. C.) 1995, 95, (5), 1409-30.
    94. Tsuchida, A.; Bolln, C.; Sernetz, F. G.; Frey, H.; Muelhaupt, R., Ethene and Propene Copolymers Containing Silsesquioxane Side Groups. Macromolecules 1997, 30, (10), 2818-2824.
    95. Mantz, R. A.; Jones, P. F.; Chaffee, K. P.; Lichtenhan, J. D.; Gilman, J. W.; Ismail, I. M. K.; Burmeister, M. J., Thermolysis of Polyhedral Oligomeric Silsesquioxane (POSS) Macromers and POSS-Siloxane Copolymers. Chemistry of Materials 1996, 8, (6), 1250-1259.
    96. Lichtenhan, J. D.; Haddad, T. S.; Schwab, J. J.; Carr, M. J.; Chaffee, K. P.; Mather, P. T., The next generation of silicon-based plastics: polyhedral oligomeric silsesquioxane (POSS) nanocomposites. Polymer Preprints (American Chemical Society, Division of Polymer Chemistry) 1998, 39, (1), 489-490.
    97. Said, M. A.; Roesky, H. W.; Rennekamp, C.; Andruh, M.; Schmidt, H.-G.; Noltemeyer, M., A functionalized heterocubane with extensive intermolecular hydrogen bonds. Angewandte Chemie, International Edition 1999, 38, (5), 661-664.
    98. Kobayashi, T.; Hayashi, T.; Tanaka, M., Synthesis of highly heat-resistant soluble polymers through hydrosilylation polymerization between octakis(hydridosilsesquioxane) and diynes. Chemistry Letters 1998, (8), 763-764.
    99. Auner, N.; Bats, J. W.; Katsoulis, D. E.; Suto, M.; Tecklenburg, R. E.; Zank, G. A., Chemistry of Hydrogen-Octasilsesquioxane: Preparation and Characterization of Octasilsesquioxane-Containing Polymers. Chemistry of Materials 2000, 12, (11), 3402-3418.
    100. Choi, J.; Yee, A. F.; Laine, R. M., Organic/inorganic hybrid composites from cubic silsesquioxanes. Epoxy resins of octa(dimethylsiloxyethylcyclohexylepoxide) silsesquioxane. Macromolecules 2003, 36, (15), 5666-5682.
    101. Ni, Y.; Zheng, S. X., A novel photocrosslinkable polyhedral oligomeric silsesquioxane and its nanocomposites with poly(vinyl cinnamate). Chemistry of Materials 2004, 16, (24), 5141-5148.
    102. Kim, K.-M.; Ouchi, Y.; Chujo, Y., Synthesis of organic-inorganic star-shaped polyoxazolines using octafunctional silsesquioxane as an initiator. Polymer Bulletin (Berlin, Germany) 2003, 49, (5), 341-348.
    103. Matyjaszewski, K., Macromolecular engineering by controlled/living ionic and radical polymerizations. Macromolecular Symposia 2001, 174, (Polymerization Processes and Polymer Materials I), 51-67.
    104.Matyjaszewski, K.; Xia, J., Atom Transfer Radical Polymerization. Chemical Reviews (Washington, D. C.) 2001, 101, (9), 2921-2990.
    105. Wang, J.-S.; Matyjaszewski, K., Controlled/\"living\" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. Journal of the American ChemicalSociety 1995, 117, (20), 5614-15.
    106. Patten, T. E.; Matyjaszewski, K., Copper(I)-catalyzed atom transfer radical polymerization. Accounts of Chemical Research 1999, 32, (10), 895-903.
    107. Pyun, J.; Matyjaszewski, K., Synthesis of hybrid polymers Using atom transfer radical polymerization: Homopolymers and Block Copolymers from polyhedral oligomeric silsesquioxane monomers. Macromolecules 2000, 33, (1), 217-220.
    108. Pyun, J.; Matyjaszewski, K.; Wu, J.; Kim, G.-M.; Chun, S. B.; Mather, P. T., ABA triblock copolymers containing polyhedral oligomeric silsesquioxane pendant groups: synthesis and unique properties. Polymer 2003, 44, (9), 2739-2750.
    109. Tamaki, R.; Choi, J. W.; Laine, R. M., A polyimide nanocomposite from octa(aminophenyl)silsesquioxane. Chemistry of Materials 2003, 15, (3), 793-797.
    110. Choi, J. W.; Tamaki, R.; Kim, S. G.; Laine, R. M., Organic/inorganic imide nanocomposites from aminophenylsilsesquioxanes. Chemistry of Materials 2003, 15, (17), 3365-3375.
    111. Liu, H. Z.; Zheng, S. X., Polyurethane networks nanoreinforced by polyhedral oligorneric silsesquioxane. Macromolecular Rapid Communications 2005, 26, (3), 196-200.
    112. Liu, H. Z.; Zheng, S. X.; Nie, K. M., Morphology and thermomechanical properties of organic-inorganic hybrid composites involving epoxy resin and an incompletely condensed polyhedral oligomeric silsesquioxane. Macromolecules 2005, 38, (12), 5088-5097.
    113. Liu, Y. H.; Ni, Y.; Zheng, S. X., Polyurethane networks modified with octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane. Macromolecular Chemistry and Physics 2006, 207, (20), 1842-1851.
    114. Liu, Y. H.; Zheng, S. X., Inorganic-organic nanocomposites of polybenzoxazine with octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane. Journal of Polymer Science Part a-Polymer Chemistry 2006, 44, (3), 1168-1181.
    115. Liu, Y. H.; Zheng, S. X.; Nie, K. M., Epoxy nanocomposites with octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane. Polymer 2005, 46, (25), 12016-12025.
    116. Fina, A.; Tabuani, D.; Frache, A.; Camino, G., Polypropylene-polyhedral oligomeric silsesquioxanes (POSS) nanocomposites. Polymer 2005, 46, (19), 7855-7866.
    117. Ni, Y.; Zheng, S. X.; Nie, K. M., Morphology and thermal properties of inorganic-organic hybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes. Polymer 2004, 45, (16), 5557-5568.
    118. Liu, Y. H.; Yang, X. T.; Zhang, W. A.; Zheng, S. X., Star-shaped poly(epsilon-caprolactone) with polyhedral oligomeric silsesquioxane core. Polymer 2006, 47, (19), 6814-6825.
    119. Ni, Y.; Zheng, S. X., Supramolecular inclusion complexation of polyhedral oligomeric silsesquioxane capped poly(epsilon-caprolactone) with alpha-cyclodextrin. Journal of Polymer Science Part a-Polymer Chemistry 2007, 45, (7), 1247-1259.
    120. Jeon, H. G.; Mather, P. T.; Haddad, T. S., Shape memory and nanostructure in poly(norbornyl-POSS) copolymers. Polymer International 2000, 49, (5), 453-457.
    121. Shen, J.; Zheng, S. X., Comparative studies on miscibility and phase behavior of linear and star poly(2-methyl-2-oxazoline) blends with poly(vinylidene fluoride). Journal of Polymer Science Part B-Polymer Physics 2006, 44, (6), 942-952.
    122. Kim, K. M.; Chujo, Y., Liquid-crystalline organic-inorganic hybrid polymers with functionalized silsesquioxanes. Journal of Polymer Science Part a-Polymer Chemistry 2001, 39, (22), 4035-4043.
    123. Kim, K.-M.; Chujo, Y., Synthesis and characterization of liquid-crystalline silsesquioxanes. Polymer Bulletin (Berlin, Germany) 2001, 46, (1), 15-21.
    124. Romo-Uribe, A.; Mather, P. T.; Haddad, T. S.; Lichtenhan, J. D., Viscoelastic and morphological behavior of hybrid styryl-based polyhedral oligomeric silsesquioxane (POSS) copolymers. Journal of Polymer Science, Part B: Polymer Physics 1998, 36, (11), 1857-1872.
    125. Xu, H.; Kuo, S.-W.; Lee, J.-S.; Chang, F.-C., Preparations, Thermal Properties, and Tg Increase Mechanism of Inorganic/Organic Hybrid Polymers Based on Polyhedral Oligomeric Silsesquioxanes. Macromolecules 2002, 35, (23), 8788-8793.
    126. Zhang, W.; Fu, B. X.; Seo, Y.; Schrag, E.; Hsiao, B.; Mather, P.; Yang, N.-L.; Xu, D.; Ade, H.; Rafailovich, M.; Sokolov, J., Effect of Methyl Methacrylate/Polyhedral Oligomeric Silsesquioxane Random Copolymers in Compatibilization of Polystyrene and Poly(methyl methacrylate) Blends. Macromolecules 2002, 35, (21), 8029-8038.
    127. Mather, P. T.; Jeon, H. G.; Romo-Uribe, A.; Haddad, T. S.; Lichtenhan, J. D., Mechanical Relaxation and Microstructure of Poly(norbornyl-POSS) Copolymers. Macromolecules 1999, 32, (4), 1194-1203.
    128. Constable, G. S.; Lesser, A. J.; Coughlin, E. B., Morphological and mechanical evaluation of hybrid organic-inorganic thermoset copolymers of dicyclopentadiene and mono- or tris(norbornenyl)-substituted polyhedral oligomeric silsesquioxanes. Macromolecules 2004, 37, (4),1276-1282.
    129. Zheng, L.; Farris, R. J.; Coughlin, E. B., Synthesis of polyethylene hybrid copolymers containing polyhedral oligomeric silsesquioxane prepared with ring-opening metathesis copolymerization. Journal of Polymer Science, Part A: Polymer Chemistry 2001, 39, (17), 2920-2928.
    130. Hottle, J. R.; Kim, H.-J.; Deng, J.; Farmer-Creely, C. E.; Viers, B. D.; Esker, A. R., Blends of Amphiphilic PDMS and Trisilanolisobutyl-POSS at the Air/Water Interface. Macromolecules 2004, 37, (13), 4900-4908.
    131. Isayeva, I. S.; Kennedy, J. P., Amphiphilic membranes crosslinked and reinforced by POSS. Journal of Polymer Science, Part A: Polymer Chemistry 2004, 42, (17), 4337-4352.
    132. Kim, H.-J.; Deng, J.; Hottle, J. R.; Hoyt, J. K.; Riffle, J. S.; Viers, B. D.; Esker, A. R., Aggregation mechanism of trisilanolisobutyl-POSS Langmuir films at the air/water interface: poly(dimethylsiloxane) polarity effects. Polymer Preprints (American Chemical Society, Division of Polymer Chemistry) 2004, 45, (1), 596-597.
    133. Hottle, J. R.; Deng, J.; Kim, H.-J.; Farmer-Creely, C. E.; Viers, B. D.; Esker, A. R., Blends of Amphiphilic Poly(dimethylsiloxane) and Nonamphiphilic Octaisobutyl-POSS at the Air/Water Interface. Langmuir 2005, 21, (6), 2250-2259.
    134. Haddad, T. S.; Lee, A.; Phillips, S. H., Poly(dimethylsiloxanes) modified with inorganic polyhedra. Polymer Preprints (American Chemical Society, Division of Polymer Chemistry) 2001, 42, (1), 88-89.
    135. Zheng, L.; Farris, R. J.; Coughlin, E. B., Synthesis and properties of polyolefin hybrid copolymers containing polyhedral oligosilsesquioxane (POSS). Polymer Preprints (American Chemical Society, Division of Polymer Chemistry) 2000, 41, (2), 1929-1930.
    136. Zheng, L.; Waddon, A. J.; Farris, R. J.; Coughlin, E. B., X-ray characterizations of polyethylene polyhedral oligomeric silsesquioxane copolymers. Macromolecules 2002, 35, (6), 2375-2379.
    137. Maitra, P.; Wunder, S. L., Oligomeric Poly(ethylene oxide)-Functionalized Silsesquioxanes: Interfacial Effects on Tg, Tm, and DHm. Chemistry of Materials 2002, 14, (11), 4494-4497.
    138. Mya, K. Y.; Li, X.; Chen, L.; Ni, X.; Li, J.; He, C., Core-Corona Structure of Cubic Silsesquioxane-Poly(Ethylene Oxide) in Aqueous Solution: Fluorescence, Light Scattering, and TEM Studies. Journal of Physical Chemistry B 2005, 109, (19), 9455-9462.
    139. Mya, K. Y.; Pramoda, K. P.; He, C. B., Crystallization behavior of star-shaped poly(ethylene oxide) with cubic silsesquioxane (CSSQ) core. Polymer 2006, 47, (14), 5035-5043.
    140. Markovic, E.; Ginic-Markovic, M.; Clarke, S.; Matisons, J.; Hussain, M.; Simon, G. P., Poly(ethylene glycol)-octafunctionalized polyhedral oligomeric silsesquioxane: Synthesis and thermal analysis. Macromolecules 2007, 40, (8), 2694-2701.
    141. Chen, W.-Y.; Wang, Y.-Z.; Kuo, S.-W.; Huang, C.-F.; Tung, P.-H.; Chang, F.-C., Thermal and dielectric properties and curing kinetics of nanomaterials formed from POSS-epoxy and meta-phenylenediamine. Polymer 2004, 45, (20), 6897-6908.
    142. Mya, K. Y.; Li, X.; Chen, L.; He, C., Supramolecular assembled nanostructure containing cubic silsesquioxane in aqueous solution. Journal of Nanoscience and Nanotechnology 2006, 6, (12), 3955-3959.
    143. Mu, J.; Liu, Y.; Zheng, S., Inorganic-organic interpenetrating polymer networks involving polyhedral oligomeric silsesquioxane and poly(ethylene oxide). Polymer 2007, 48, (5), 1176-1184.
    144. Lee, Y.-J.; Huang, J.-M.; Kuo, S.-W.; Lu, J.-S.; Chang, F.-C., Polyimide and polyhedral oligomeric silsesquioxane nanocomposites for low-dielectric applications. Polymer 2005, 46, (1), 173-181.
    145. Lee, A.; Lichtenhan, J. D., Viscoelastic Responses of Polyhedral Oligosilsesquioxane Reinforced Epoxy Systems. Macromolecules 1998, 31, (15), 4970-4974.
    146. Matejka, L.; Strachota, A.; Plestil, J.; Whelan, P.; Steinhart, M.; Slouf, M., Epoxy networks reinforced with polyhedral oligomeric silsesquioxanes (POSS). Structure and morphology. Macromolecules 2004, 37, (25), 9449-9456.
    147. Strachota, A.; Kroutilova, I.; Kovarova, J.; Matejka, L., Epoxy networks reinforced with polyhedral oligomeric silsesquioxanes (POSS). Thermomechanical properties. Macromolecules 2004, 37, (25), 9457-9464.
    148. Li, G. Z.; Wang, L.; Toghiani, H.; Daulton, T. L.; Koyama, K.; Pittman, C. U., Jr., Viscoelastic and Mechanical Properties of Epoxy/Multifunctional Polyhedral Oligomeric Silsesquioxane Nanocomposites and Epoxy/Ladderlike Polyphenylsilsesquioxane Blends. Macromolecules 2001, 34, (25, k), 8686-8693.
    149. Choi, J.; Yee, A. F.; Laine, R. M., Toughening of cubic silsesquioxane epoxy nanocomposites using core-shell rubber particles: A three-component hybrid system. Macromolecules 2004, 37, (9), 3267-3276.
    150. Leu, C.-M.; Chang, Y.-T.; Wei, K.-H., Synthesis and Dielectric Properties of Polyimide-Tethered Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposites via POSS-diamine. Macromolecules2003, 36, (24), 9122-9127.
    151. Leu, C.-M.; Chang, Y.-T.; Wei, K.-H., Polyimide-Side-Chain Tethered Polyhedral Oligomeric Silsesquioxane Nanocomposites for Low-Dielectric Film Applications. Chemistry of Materials 2003, 15, (19), 3721-3727.
    152. Leu, C.-M.; Reddy, G. M.; Wei, K.-H.; Shu, C.-F., Synthesis and Dielectric Properties of Polyimide-Chain-End Tethered Polyhedral Oligomeric Silsesquioxane Nanocomposites. Chemistry of Materials 2003, 15, (11), 2261-2265.
    153. Lee, Y.-J.; Kuo, S.-W.; Su, Y.-C.; Chen, J.-K.; Tu, C.-W.; Chang, F.-C., Syntheses, thermal properties, and phase morphologies of novel benzoxazines functionalized with polyhedral oligomeric silsesquioxane (POSS) nanocomposites. Polymer 2004, 45, (18), 6321-6331.
    154. Zhang, J.; Xu, R. W.; Yu, D. S., A novel poly-benzoxazinyl functionalized polyhedral oligomeric silsesquioxane and its nanocomposite with polybenzoxazine. European Polymer Journal 2007, 43, (3), 743-752.
    155. Chen, Q.; Xu, R. W.; Zhang, J.; Yu, D. S., Polyhedral oligomeric silsesquioxane (POSS) nanoscale reinforcement of thermosetting resin from benzoxazine and bisoxazoline. Macromolecular Rapid Communications 2005, 26, (23), 1878-1882.
    156. Hsiao, B. S.; White, H.; Rafailovich, M.; Mather, P. T.; Jeon, H. G.; Phillips, S.; Lichtenhan, J.; Schwab, J., Nanoscale reinforcement of polyhedral oligomeric silsesquioxane (POSS) in polyurethane elastomer. Polymer International 2000, 49, (5), 437-440.
    157.Hsiao, B. S.; Fu, X.; White, H.; Rafailovich, M.; Mather, P. T.; Chaffee, K.; Jeon, H.; Lichtenhen, J. D.; Schwab, J., Structural development during deformation of nano-reinforced poly(urethane) with polyhedral oligomeric silsesquioxane (POSS). Abstracts of Papers of the American Chemical Society 1998, 216, U911-U911.
    158. Turri, S.; Levi, M., Wettability of polyhedral oligomeric silsesquioxane nanostructured polymer surfaces. Macromolecular Rapid Communications 2005, 26, (15), 1233-1236.
    159. Oaten, M.; Choudhury, N. R., Silsesquioxane-urethane hybrid for thin film applications. Macromolecules 2005, 38, (15), 6392-6401.
    160. Zhang, S. L.; Zou, Q. C.; Wu, L. M., Preparation and characterization of polyurethane hybrids from reactive polyhedral oligomeric silsesquioxanes. Macromolecular Materials and Engineering 2006, 291, (7), 895-901.
    161. Chan, S. C.; Kuo, S. W.; Chang, F. C., Synthesis of the organic/inorganic hybrid star polymers and their inclusion complexes with cyclodextrins. Macromolecules 2005, 38, (8), 3099-3107.
    162. Huang, J. C.; Li, X.; Lin, T. T.; He, C. B.; Mya, K. Y.; Xiao, Y.; Li, J., Inclusion complex formation between alpha,beta-cyclodextrins and organic-inorganic star-shaped poly(ethylene glycol) from an octafunctional silsesquioxane core. Journal of Polymer Science Part B-Polymer Physics 2004, 42, (7), 1173-1180.
    1. Whitesides, G. M.; Mathias, T. P.; Seto, C. T., Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures, Science 1991, 254, 1312-1319.
    2. Lan, T.; Kaviratan, P. D.; Pinnavaia, T. J., Mechanism of Clay Tactoid Exfoliation in Epoxy-Clay Nanocomposites, Chem. Mater. 1995, 7, 2144-2150.
    3. Giannelis, E. P., A new strategy for synthesizing polymer-ceramic. Nanocomposites, JOM 1992, 44, 28-30.
    4. Theng, B. K. G. Formation and Properties of Clay-Polymer Complexes; Elsevier: Amsterdam, 1979.
    5. Andrews, M. P.; Najafi, S. I., Passive and active sol gel materials and devices, Crit. Rev. Opt. Sci. Technol. 1997, CR68, 253-285.
    6. Wenzel, J., Trends in sol-gel processing: toward 2004, J. Non-Cryst. Solids 1985, 73, 693-699.
    7. Schubert, U.; Huesing, N.; Lorenz, A., Hybrid Inorganic-Organic Materials by Sol-Gel Processing of Organofunctional Metal Alkoxides, Chem. Mater. 1995, 7, 2010-27.
    8. Crivello, J. V.; K Song. Y.; Ghosha, R., Synthesis and Photoinitiated Cationic Polymerization of Organic-Inorganic Hybrid Resins, Chem. Mater. 2001, 13, 1932-1942.
    9. Lan, T.; Kaviratna, P. D.; Pinnavaia, T. J., Mechanism of Clay Tactoid Exfoliation in Epoxy-Clay Nanocomposites, Chem. Mater. 1995, 7, 2144-50.
    10. Giannelis, E. P., A new strategy for synthesizing polymer-ceramic nanocomposites, JOM 1992, 44, 28-30.
    11. Okada, A.; Usuki, A.; Kurauchi, T.; Kamigaito, O., Polymer-clay hybrids, ACS Symp. Ser. 1995, 585, 55-65.
    12. Yano, K.; Usuki, A.E. P.; Okada, A.; Kurauchi, T.; Kamigaito O., Synthesis and properties of polyimide-clay hybrid, J. Polym. Sci., Part A: Polym. Chem. 1993, 31, 2493-2498.
    13. Giannelis, E. P.; Krishnamoorti, R.; Manias, E., Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes, Adv. Polym. Sci. 1999, 138, 107-147.
    14. Lichtenhan, J. D.; Vu, N. Q.; Carter, J. A.; Gilman, J. W.; Feher, F. J., Silsesquioxane-siloxane copolymers from polyhedral silsesquioxanes, Macromolecules 1993, 26, 2141-2142.
    15. Lichtenhan, J. D.; Otonari, Y. A.; Carr, M. J., Linear Hybrid Polymer Building Blocks: Methacrylate-Functionalized Polyhedral Oligomeric Silsesquioxane Monomers and Polymers,Macromolecules 1995, 28, 8435-8437.
    16. Haddad, T. S.; Lichtenhan, J. D., The incorporation of transition metals into polyhedral oligosilsesquioxane polymers, J. Inorg. Organomet. Polym. 1995, 5, 237-246.
    17. Lichtenhan, J. D., Polyhedral oligomeric silsesquioxanes: building blocks for silsesquioxane-based polymers and hybrid materials, Comments Inorg. Chem. 1995, 17, 115-130.
    18. Mantz, R. A.; Jones, P. F.; Chaffee, K. P.; Lichtenhan, J. D.; Gilman J. W.; Ismail, I. M. K.; Burmeister M. J., Thermolysis of Polyhedral Oligomeric Silsesquioxane (POSS) Macromers and POSS-Siloxane Copolymers, Chem. Mater. 1996, 8, 1250-1259.
    19. Haddad, T. S.; Lichtenhan, J. D., Hybrid Organic-Inorganic Thermoplastics: Styryl-Based Polyhedral Oligomeric Silsesquioxane Polymers, Macromolecules 1996, 29, 7302-7304.
    20. Gilman, J. W.; Schlitzer, D. S.; Lichtenhan J. D., Low earth orbit resistant siloxane copolymers, J. Appl. Polym.Sci. 1996, 60, 591-596.
    21. Romo-Uribe, A.; Mather, P. T.; Haddad, T. S.; Lichtenhan, J. D., Viscoelastic and morphological behavior of hybrid styryl-based polyhedral oligomeric silsesquioxane (POSS) copolymers, J. Polym. Sci., Part B: Polym. Phys. 1998, 36, 1857-1872.
    22. Zhang, C.; Laine, R. M., Silsesquioxanes as synthetic platforms. II. Epoxy-functionalized inorganic-organic hybrid species, J. Organomet. Chem. 1996, 521, 199-201.
    23. Zheng, S.; Feher, F. J.; Xiao, J.; Jin, R.-Z. Polymer Nanocomposites, Materials Research Society Symposium Proceeding Series, Vol. 734E, April, 2002.
    24. Feher, F. J. Book of Abstracts, 217th ACS National Meeting,Anaheim, CA, March 21-25, INOR, 1999.
    25. Feher, F. J.; Wyndham, K. D.; Soulivong, D.; Nguyen, F., Syntheses of highly functionalized cube-octameric polyhedral oligosilsesquioxanes (R8Si8O12), J.Chem. Soc., Dalton Trans. 1999, 1491-1498.
    26. Sellinger, A.; Laine, R. L., Silsesquioxanes as Synthetic Platforms. Thermally Curable and Photocurable Inorganic/Organic Hybrids, Macromolecules 1996, 29, 2327-2330.
    27. Sellinger, A.; Laine, R. M., Silsesquioxanes as Synthetic Platforms. 3. Photocurable, Liquid Epoxides as Inorganic/Organic Hybrid Precursors, Chem. Mater. 1996, 8, 1592-1593.
    28. Feher, F. J.; Wyndham, K. D.; Baldwin, R. K.; Soulivong, D.; Lichtenhan, J. D.; Ziller, J. W., Methods for effecting monofunctionalization of (CH2:CH)8Si8O12, Chem. Commun. (Cambridge)1999, 1289-1290.
    29. Guillet, J., In Polymer Photophysics and Photochemistry; Cambridge University Press: New York, 1984.
    30. Minsk, L. M.; Smith, J. G.; van Deusen, W. P.; Wright, J. F., Photosensitive polymers. I. Cinnamate esters of poly(vinyl alcohol) and cellulose, J. Appl. Polym. Sci. 1959, 2, 302-307.
    31. O’Neill, M.; Kelly, S. M., Photoinduced surface alignment for liquid crystal displays, J. Phys. D: Appl. Phys. 2000, 33, R67-R84.
    32. Ichimura, K., Photoalignment of Liquid-Crystal Systems, Chem. Rev. 2000, 100, 1847-1873.
    33. Schadt, M.; Seiberle, H.; Schuster, A., Optical patterning of multi-domain liquid-crystal displays with wide viewing angles, Nature (London) 1996, 381, 212-215.
    34. Ichimura, K.; Akita, Y.; Akiyama, H.; Kudo, K.; Hayashi, Y., Photoreactivity of Polymers with Regioisomeric Cinnamate Side Chains and their Ability to Regulate Liquid Crystal Alignment, Macromolecules 1997, 30, 903-911.
    35. Vilfan, M.; Olenik, I. D.; Mertelj, A.; Copic, M., Aging of surface anchoring and surface viscosity of a nematic liquid crystal on photoaligning poly-(vinyl-cinnamate), Phys. Rev. E 2001, 63, Art No. 061709.
    36. Klopcar, N.; Olenik, I. D.; Copic, M.; Kim, M. W.; Rastegar, A.; Rasing, Th., Surface versus bulk anisotropy of photosensitive poly(vinyl cinnamate) alignment layers, Mol. Cryst. Liq. Cryst. 2001, 368, 395.
    37.倪勇,含笼型硅氧烷(POSS)的热固性聚合物纳米复合材料的制备与性能研究,硕士学位论文,上海交通大学,2005.
    38. Brown, J. F., Jr.; Vogt, L. H., Jr.; Prescott, P. I., Preparation and characterization of the lower equilibrated phenylsilsesquioxanes, J. Am. Chem.Soc. 1964, 86, 1120-1125.
    39. Tamaki, R.; Tanaka, Y.; Asuncion, M. Z.; Choi, J.; Laine, R. M., Octa(aminophenyl)silsesquioxane as a Nanoconstruction Site, J. Am. Chem. Soc. 2001, 123, 12416-12417.
    40. Huang, J.-C.; He, C.-B.; Xiao, Y.; Mya, K. Y.; Dai, J.; Siow, Y. P., Polyimide/POSS nanocomposites: interfacial interaction, thermal properties and mechanical properties, Polymer 2003, 44, 4491-4499.
    41. Reiser, A. In Photoreactive Polymers; Wiley-Interscience, John Wiley & Sons: New York, 1989.
    42. Goldman, M.; Shen, L., Spin-spin relaxation in LaF3, Phys. Rev. 1966, 144, 321-331.
    43. Kaplan, D. S., Structure-property relationships in copolymers to composites: Molecular interpretation of the glass transition phenomenon, J. Appl. Polym. Sci. 1976, 20, 2615-2629.
    44. Mather, P. T.; Jeon, H. G.; Romo-Uribe, A.; Haddad, T. S.; Lichtenhan J. D., Mechanical Relaxation and Microstructure of Poly(norbornyl-POSS) Copolymers, Macromolecules 1999, 32, 1194-1203.
    45. Lee, A.; Lichtenhan, J. D., Viscoelastic Responses of Polyhedral Oligosilsesquioxane Reinforced Epoxy Systems, Macromolecules 1998, 31, 4970-4974.
    46. Bharadwaj, R. K.; Berry, R. J.; Farmer, B. L., Molecular dynamics simulation study of norbornene-POSS polymers, Polymer 2000, 41, 7209-7221.
    47. Lee, A.; Lichtenhan, J. D.; Reinerth, W. A., Epoxy-POSS and Epoxy-Clay nanocomposites: thermal and viscoelastic comparisons, Polym. Mater. Sci. Eng. 2000, 82, 235-236.
    48. Abad, M. J.; Barral, L.; Fasce, D. F.; Williams, R. J. J., Epoxy Networks Containing Large Mass Fractions of a Monofunctional Polyhedral Oligomeric Silsesquioxane (POSS), Macromolecules 2003, 36, 3128-3135.
    49. Choi, J.; Harcup, J.; Yee, A. F.; Zhu, Q.; Laine, R. M., Organic/Inorganic Hybrid Composites from Cubic Silsesquioxanes, J. Am.Chem. Soc. 2001, 123, 11420-11430.
    50. Choi, J.; Kim, S. G.; Laine, R. M., Organic/Inorganic Hybrid Epoxy Nanocomposites from Aminophenylsilsesquioxanes, Macromolecules 2004, 37, 99-109.
    51. LeBaron, P. C.; Wang, Z.; Pinnavaia, T. J., Polymer-layered silicate nanocomposites: an overview, Appl. Clay Sci. 1999, 15, 11-29.
    52. Ray, S. S.; Okamoto, M, Polymer/layered silicate nanocomposites: a review from preparation to processing,. Prog. Polym. Sci. 2003, 28, 1539-1641.
    1. Whitesides, G. M.; Mathias, T. P.; Seto, C. T., Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures, Science 1991, 254, 1312-1319.
    2. Lan, T.; Kaviratan, P. D.; Pinnavaia, T., Mechanism of Clay Tactoid Exfoliation in Epoxy-Clay Nanocomposites, J. Chem Mater 1995, 7, 2144-2150.
    3. Giannelis, E. P.; Krishnamoorti, R.; Manias, E., Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes, Adv Polym Sci 1999, 138, 107.
    4. Brinker, C.; Scherer, G.Sol–Gel Science: The Physics and Chemistry of Sol–Gel Processing; Academic: New York, 1990.
    5. Andrews, M. P.; Najafi, S. I. Crit Rev Opt Sci Technol 1997, 68, 253.
    6. Wenzel, J. J Non-Cryst Solids 1985, 73, 69.
    7. Schubert, U.; Huesing, N.; Lorenz, A., Hybrid Inorganic-Organic Materials by Sol-Gel Processing of Organofunctional Metal Alkoxides, Chem Mater 1995, 7, 2010-2027.
    8. Crivello, J. V.; Song, K. Y.; Ghosha, R., Synthesis and Photoinitiated Cationic Polymerization of Organic-Inorganic Hybrid Resins, Chem Mater 2001, 13, 1932-1942.
    9. Okada, A.; Usuki, A.; Kurauchi, T.; Kamigaito, O., Polymer-clay hybrids, ACS Symp Ser 1995, 585, 55.
    10. Yano, K.; Usuki, A. E. P.; Okada, A.; Kurauchi, T.; Kamigaito, O., Synthesis and properties of polyimide-clay hybrid, J Polym Sci Part A: Polym Chem 1993, 31, 2493.
    11. Schwab, J. J.; Lichtenhan, J. D., Polyhedral oligomeric silsesquioxane (POSS)-based polymers, Appl Organomet Chem 1998, 12, 707-713.
    12. Li, G.; Wang, L.; Ni, H.; Pittman, C. U., Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: A review, J Inorg Organomet Polym 2001, 11, 123-154.
    13. Abe, Y.; Gunji, T., Oligo- and polysiloxanes, Prog Polym Sci 2004, 29, 149-182.
    14. Feher, F. J.; Wyndham, K. D.; Baldwin, R. K.; Soulivong, D.; Lichtenhan, J. D.; Ziller, J. W., Methods for effecting monofunctionalization of (CH2:CH)8Si8O12, Chem Commun (Cambridge) 1999, 1289-1290.
    15. Feher, F. J.; Wyndham, K. D.; Soulivong, D.; Nguyen, F., Syntheses of highly functionalized cube-octameric polyhedral oligosilsesquioxanes (R8Si8O12), J Chem Soc Dalton Trans 1999, 9, 1491-1497.
    16. Lichtenhan, J. D.; Vu, N. Q.; Carter, J. A.; Gilman, J. W.; Feher, F. J., Silsesquioxane-siloxane copolymers from polyhedral silsesquioxanes, Macromolecules 1993, 26, 2141-2142.
    17. Lichtenhan, J. D.; Otonari, Y. A.; Carr, M. J., Linear Hybrid Polymer Building Blocks: Methacrylate-Functionalized Polyhedral Oligomeric Silsesquioxane Monomers and Polymers, Macromolecules 1995, 28, 8435-8437.
    18. Haddad, T. S.; Lichtenhan, J. D., The incorporation of transition metals into polyhedral oligosilsesquioxane polymers, J Inorg Organomet Polym 1995, 5, 237-246.
    19. Mantz, R. A.; Jones, P. F.; Chaffee, K. P.; Lichtenhan, J. D.; Gilman, J. W.; Ismail, I. M. K.; Burmeister, M. J., Thermolysis of Polyhedral Oligomeric Silsesquioxane (POSS) Macromers and POSS-Siloxane Copolymers, Chem Mater 1996, 8, 1250-1259.
    20. Haddad, T. S.; Lichtenhan, J. D., Hybrid Organic-Inorganic Thermoplastics: Styryl-Based Polyhedral Oligomeric Silsesquioxane Polymers, Macromolecules 1996, 29, 7302-7304.
    21. Zhang, C.; Laine, R. M., Silsesquioxanes as synthetic platforms. II. Epoxy-functionalized inorganic-organic hybrid species, J Organomet Chem 1996, 521, 199-201.
    22. Loy, D. A.; Shea, K. J., Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials, Chem Rev 1995, 95, 1431-1442.
    23. Ni, Y.; Zheng, S.; Nie, K., Morphology and thermal properties of inorganic-organic hybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes, Polymer 2004, 45, 5557-5568.
    24. Liu, H.; Zheng, S.; Nie, K., Morphology and thermomechanical properties of organic-inorganic hybrid composites involving epoxy resin and an incompletely condensed polyhedral oligomeric silsesquioxane, Macromolecules 2005, 38, 5088-5097.
    25. Baney, R. H.; Itoh, M.; Sakakibara, A.; Suzuki, T., Silsesquioxanes, Chem Rev 1995, 95, 1409-1430.
    26. Loy, D. A.; Baugher, B. M.; Baugher, C. R.; Schneider, D. A.; Rahimian, K., Substituent Effects on the Sol-Gel Chemistry of Organotrialkoxysilanes, Chem Mater 2000, 12, 3624-3632.
    27. Tamaki, R.; Tanaka, Y.; Asuncion, M. Z.; Choi, J.; Laine, R. M., Octa(aminophenyl)silsesquioxane as a Nanoconstruction Site, J Am Chem Soc 2001, 123, 12416-12417.
    28. Huang, Q. R.; Volksen, W.; Huang, E.; Toney, M.; Frank, C. W.; Miller, R. D., Structure and interaction of organic/inorganic hybrid nanocomposites for microelectronic Applications. 1. MSSQ/P(MMA-co-DMAEMA) nanocomposites, Chem Mater 2002, 14, 3676-3685.
    29. Huang, Q. R.; Frank, C. W.; Mecerreyes, D.; Volksen, W.; Miller, R. D., Phase Separation Behavior of Poly(methyl methacrylate-co-dimethylaminoethyl methacrylate)/Methyl Silsesquioxane Hybrid Nanocomposites Studied by Dansyl Fluorescence, Chem Mater 2005, 17, 1521-1528.
    30. Nguyen, C. N.; Carter, K. R.; Hawker, C. J.; Hedrick, J. L.; Jaffe, R. L.; Miller, R. D.; Remenar, J. F.; Rhee, H.-W.; Rice, P. M.; Toney, M. F.; Trollsas, M.; Yoon, D. Y., Low-Dielectric, Nanoporous Organosilicate Films Prepared via Inorganic/Organic Polymer Hybrid Templates, Chem Mater 1999, 11, 3080-3085.
    31. Ro, H. R.; Kim, K. J.; Theato, P.; Gidley, D.; Yoon, D. Y., Novel Inorganic-Organic Hybrid Block Copolymers as Pore Generators for Nanoporous Ultralow-Dielectric-Constant Films, Macromolecules 2005, 38, 1031-1034.
    32. Nguyen, C. N.; Hawker, C. J.; Miller, R. D.; Huang, E.; Hedrick, J. L.; Gauderon, R.; Hilborn, J. G., Hyperbranched Polyesters as Nanoporosity Templating Agents for Organosilicates, Macromolecules 2000, 33, 4281-4284.
    33. Brown, J. F., Double chain polymers of phenylsilsesquioxane, J Am Chem Soc 1960, 82, 6194-6165.
    34. Brown, J. F., Double-chain polymers and nonrandom cross-linking, J Polym Sci Part B: Polym Lett 1963, 1, 83-97.
    35. Brown, J. F., Preparation and characterization of the lower equilibrated phenylsilsesquioxanes, J Am Chem Soc 1964, 86, 1120-1125.
    36. Frye, C. L., Concerning the So-called "Ladder Structure" of Equilibrated Phenylsilsesquioxane, J Am Chem Soc 1971, 93, 4599-4601.
    37. Mecerreyes, D.; Lee, V.; Hawker, C. J.; Hedrick, J. L.; Wursch, A.; Volksen, W.; Magbitang, T.; Huang, E.; Miller, R. D., A novel approach to functionalized nanoparticles: self-crosslinking of macromolecules in ultradilute solution, Adv Mater 2001, 13, 204-208.
    38. Matsubara, Y.; Konishi, W.; Sugizaki, T.; Moriya, Q., Synthesis of poly(phenylsilsesquioxane) having organostannyl groups, J Polym Sci Part A: Polym Chem 2001, 39, 2125-2133.
    39. Moriya, O.; Fukushima, M.; Sugizaki, T.; Nakamura, Y.; Endo, T., Polysilsesquioxane containing tributylstannyl groups as intermediary derivative for organofunctionalization, J Polym Sci Part A: Polym Chem 2002, 40, 286-292.
    40. Lee, E. C.; Kimura, Y., Structural regularity of poly(phenylsilsesquioxane) prepared from the low molecular weight hydrolysates of trichlorophenylsilane, Polym J 1998, 30, 234-242.
    41. Li, G. Z.; Ye, M. L.; Shi, L. H., Study on mechanical properties of polystyrene/ poly(phenylsilsesquioxane) in situ blend, J Appl Polym Sci 1996, 60, 1163-1168.
    42. Li, G. Z.; Wang, L.; Togihani, H.; Dalton, T. L.; Koyama, K.; Pittman, C. U., Viscoelastic and Mechanical Properties of Epoxy/Multifunctional Polyhedral Oligomeric Silsesquioxane Nanocomposites and Epoxy/Ladderlike Polyphenylsilsesquioxane Blends, Macromolecules 2001, 34, 8686-8693.
    43. Takamura, N.; Gunji, T.; Hatano, H.; Abe, Y., Preparation and properties of polysilsesquioxanes: polysilsesquioxanes and flexible thin films by acid-catalyzed controlled hydrolytic polycondensation of methyl- and vinyltrimethoxysilane, J Polym Sci Part A: Polym Chem 1999, 37, 1017-1026.
    44. Williams, R. J. J.; Rozenberg, B. A.; Pascault, J. P., Reaction-induced phase separation in modified thermosetting polymers, Adv Polym Sci 1997, 128, 95.
    45. Yamanaka, K.; Inoue, T., Structure development in epoxy resin modified with poly(ether sulfone), Polymer 1989, 30, 662-667.
    46. Zheng, S.; Wang, J.; Guo, Q.; Wei, J.; Li, J., Miscibility, morphology and fracture toughness of epoxy resin/poly(styrene-co-acrylonitrile) blends, Polymer 1996, 37, 4667-4673.
    47. Xu, J.; Sun, C.; Wang, W. Shandong Sci 1997, 10, 57.
    48. Fujieda, S.; Okuyama, T.; Osanai, H. U.S. Pat. Appl. 20040183215, 2004.
    49. Templin, M.; Wiesner, U.; Spiess, H. W., Multinuclear solid-state-NMR studies of hybrid organic-inorganic materials, Adv Mater 1997, 9, 814-817.
    50. De Paul, S.M.; Zwanziger, J. W.; Ulrich, R.;Wiesner, U.; Spiess, H. W., Structure, Mobility, and Interface Characterization of Self-Organized Organic-Inorganic Hybrid Materials by Solid-State NMR, J Am Chem Soc 1999, 121, 5727-5736.
    51. Yang, S.; Horibe, Y.; Chen, C.-H.; Mirau, P.; Tatry, T.; Evans, P.; Grazul, J.; Dufresne, E. M., Ordered Hydrophobic Organosilicates Templated by Block Copolymers, Chem Mater 2002, 14, 5173.
    1. Harada, A., Design and construction of supramolecular architectures consisting of cyclodextrins and polymers, Adv Polym Sci 1997, 133, 141-191
    2. Wenz, G., Cyclodetrins as building for supermolecular strutures and functional units, Angew. Chem. Int. Ed. Engl., 1994, 33, 803-822.
    3. Nepogodiev, S. A.; Stoddart, J. F.; Cyclodextrin-Based Catenanes and Rotaxanes, Chem. Rev., 1998, 98, 1959-1976.
    4. Uekama, K.; Hirayama, F.; Irie, T., Cyclodextrin Drug Carrier Systems, Chem. Rev., 1998, 98, 2045-2076.
    5. Harada, A., Cyclodextrin-based molecular machines, Acc. Chem. Res., 2001, 34, 456-464.
    6. Shuai, X.; Merdan, T.; Unger, F.; Kissel, T., Supramolecular Gene Delivery Vectors Showing Enhanced Transgene Expression and Good Biocompatibility, Bioconjugate Chem., 2005, 16, 322-329.
    7. Harada, A.; Li, J.; Kamachi, M., Complex formation between poly(ethylene glycol) andα-cyclodextrin, Macromolecules, 1990, 23, 2821-2823
    8. Fujita, H.; Ooya, T.; Yui, N., Thermally Induced Localization of Cyclodextrins in a Polyrotaxane Consisting ofβ-Cyclodextrins and Poly(ethylene glycol)-Poly(propylene glycol) Triblock Copolymer, Macromolecules, 1999, 32, 2534-2541
    9. Nostro, P. L.; Lopes, J. R.; Gardelli, C., Formation of Cyclodextrin-Based Polypseudorotaxanes: Solvent Effect and Kinetic Study, Langmuir, 2001, 17, 4610-4615.
    10. Shuai, X.; Porbeni, F. E.; Wei, M.; Shin, I. D., Tonelli A. E., Formation of and coalescence from the inclusion complex of a biodegradable block copolymer andα-cyclodextrin: a novel means to modify the phase structure of biodegradable block copolymers, Macromolecules, 2001, 34, 7355-7361.
    11. Li, J.; Li, X.; Zhou, Z.; Ni, X.; Leong, K. W., Formation of Supramolecular Hydrogels Induced by Inclusion Complexation between Pluronics andα-Cyclodextrin, Macromolecules, 2001, 34, 7236-7237.
    12. Li, J.; Yan, D., Inclusion Complexes Formation between Cyclodextrins and Poly(1,3-dioxolane), Macromolecules, 2001, 34, 1542-1544.
    13. Jiao, H.; Goh, S. H., Valiyaveetti S., Inclusion Complexes of Poly(neopentyl glycol sebacate) withCyclodextrins, Macromolecules, 2001, 34, 8138-8142.
    14. Huh, K. M.; Ooya, T.; Sasaki, S.; Yui N., Polymer Inclusion Complex Consisting of Poly(e-lysine) and a-Cyclodextrin, Macromolecules, 2001, 34, 2402-2404.
    15. Porbeni, F. E.; Edeki, E. M.; Shin, I. D.; Tonelli, A. E., Formation and characterization of the inclusion complexes between poly(dimethylsiloxane) and polyacrylonitrile withγ-cyclodextrin, Polymer, 2001, 42, 6907-6912.
    16. Lu, J.; Mirau, P. A.; Tonelli, A. E., Dynamics of isolated polycaprolactone chains in their inclusion complexes with cyclodextrins, Macromolecules, 2001, 34, 3276-3284.
    17. Rusa, C. C.; Luca, C.; Tonelli, A. E., Polymer-Cyclodextrin Inclusion Compounds: Toward New Aspects of Their Inclusion Mechanism, Macromolecules, 2001, 34, 1318-1322.
    18. Li, J.; Ni, X.; Zhou, Z.; Leong, K. W., Preparation and Characterization of Polypseudorotaxanes Based on Block-Selected Inclusion Complexation between Poly(propylene oxide)-Poly(ethylene oxide)-Poly(propylene oxide) Triblock Copolymers andα-Cyclodextrin, J. Am. Chem. Soc., 2003, 125, 1788-1799.
    19. Choi, H. S.; Ooya, T.; Sasaki, S.; Yui, N.; Ohya, Y.; Nakai, T.; Ouchi, T., Preparation and Characterization of Polypseudorotaxanes Based on Biodegradable Poly(L-lactide)/Poly(ethylene glycol) Triblock Copolymers, Macromolecules, 2003, 36, 9313-9318.
    20. Okada, M.; Harada, A., Poly(polyrotaxane): Photoreactions of 9-Anthracene-Capped Polyrotaxane, Macromolecules, 2003, 36, 9701-9703.
    21. Okada, M.; Harada, A., Preparation of b-Cyclodextrin Polyrotaxane: Photodimerization of pseudo-Polyrotaxane with 2-Anthryl and Triphenylmethyl Groups at the Ends of Poly(propylene glycol), Org. Lett. 2004, 6, 361-364.
    22. Girardeau, T. E.; Zhao, T.; Leisen, J.; Beckham, H. W.; Bucknall, D. G., Solid Inclusion Complexes ofα-Cyclodextrin and Perdeuterated Poly(oxyethylene), Macromolecules, 2005, 38, 2261-2270.
    23. He, L.; Huang, J.; Chen, Y.; Liu, L., Inclusion Complexation between Comblike PEO Grafted Polymers andα-Cyclodextrin, Macromolecules, 2005, 38, 3351-3355.
    24. Chan, S.-C.; Kuo, S.-W.; Chang, F.-C., Synthesis of the Organic/Inorganic Hybrid Star Polymers and Their Inclusion Complexes with Cyclodextrins, Macromolecules, 2005, 38, 3099-3107.
    25. Wang, L.; Wang, J.; Dong, C.-M., Supramolecular inclusion complexes of star-shapedpoly(ε-caprolactone) withα-cyclodextrin, J. Polym. Sci., Part A: Polym. Chem., 2005, 43, 4721-4730.
    26. Li, J.; Li, X.; Toh, K. C.; Ni, X.; Zhou, Z.; Leong, K. W., Inclusion Complexation and Formation of Polypseudorotaxanes between Poly[(ethylene oxide)-ran-(propylene oxide)] and Cyclodextrins, Macromolecules, 2001, 34, 8829-8831.
    27. Li, J.; Ni, X.; Leong, K., Block-selected molecular recognition and formation of polypseudorotaxanes between poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) triblock copolymers andα-cyclodextrin, Angew. Chem. Int. Ed., 2003, 42, 69-72.
    28. Li, X.; Li, J.; Leong, K. W., Preparation and Characterization of Inclusion Complexes of Biodegradable Amphiphilic Poly(ethylene oxide)-Poly[(R)-3-hydroxybutyrate]-Poly(ethylene oxide) Triblock Copolymers with Cyclodextrins , Macromolecules, 2003, 36, 1209-1214.
    29. Huh, K. M.; Ooya, T.; Lee, W. K.; Sasaki, S.; Kwon, I. C.; Jeong, S. Y.; Yui, N., Supramolecular-structured hydrogels showing a reversible phase transition by inclusion complexation between poly(ethylene glycol) grafted dextran andα-cyclodextrin, Macromolecules, 2001, 34, 8657.
    30. Jiao, H.; Goh, S. H.; Valiyaveettil, S., Inclusion Complexes of Multiarm Poly(ethylene glycol) with Cyclodextrins, Macromolecules, 2002, 35, 1980-1983.
    31. Sabadini, E.; Cosgrove, T., Inclusion Complex Formed between Star-Poly(ethylene glycol) and Cyclodextrins., Langmuir, 2003, 19, 9680-9683.
    32. He, L.; Huang, J.; Chen, Y.; Xu, X.; Liu, L., Inclusion Interaction of Highly Densely PEO Grafted Polymer Brush and a-Cyclodextrin, Macromolecules, 2005, 38, 3845-3851.
    33. Zhu, X.; Chen, L.; Yan, D.; Chen, Q.; Yao, Y.; Xiao, Y.; Hou, J.; Li, J.; Supramolecular Self-Assembly of Inclusion Complexes of a Multiarm Hyperbranched Polyether with Cyclodextrins, Langmuir, 2004, 20, 484.
    34. Degee, P.; Dubois, P.; Jerome, R.; Teyssie, P.; Macromolecular Engineering of Polylactones and Polylactides. 9. Synthesis, Characterization, and Application of Primary Amine Poly(ε-caprolactone), Macromolecules, 1992, 25, 4242-4248.
    35. Dong, T.; Dubois, P.; Jerome, R.; Teyssie, P.; Macromolecular Engineering of Polylactones and Polylactides. 18. Synthesis of Star-Branched Aliphatic Polyesters Bearing Various Functional End Groups, Macromolecules, 1994, 27, 4134.
    36. Heise, A.; Trollsas, M.; Magbitang, T.; Hedrick, J. L.; Frank, C. W.; Miller, R. D., Star Polymers with Alternating Arms from Miktofunctional m-Initiators Using Consecutive Atom Transfer Radical Polymerization and Ring-Opening Polymerization, Macromolecules, 2001, 34, 2798-2804.
    37. Trollsas, M.; J Hedrick. L., Dendrimer-like Star Polymers, J. Am. Chem. Soc., 1998, 120, 4644-4651.
    38. Liu, Y. C.; Ko, B. T.; Lin, C. C., A Highly Efficient Catalyst for the "Living" and "Immortal" Polymerization of e-Caprolactone and L-Lactide, Macromolecules, 2001, 34, 6196-6201.
    39. Martin, O.; Averous, L.; Poly(lactic acid): plasticization and properties of biodegradable multiphase systems., Polymer, 2001, 42, 6209-6219
    40. Harada, A.; Kawaguchi, Y.; Nishiyama, T.; Kamachi, M., Complex formation of poly(e-caprolactone) with cyclodextrins, Macromol. Rapid Commun., 1997, 18, 535-539.
    41. Harada, A.; Nishiyama, T.; Kawaguchi, Y.; Okada, M.; Kamachi, M., Preparation and Characterization of Inclusion Complexes of Aliphatic Polyesters with Cyclodextrins, Macromolecules, 1997, 30, 7115-7118.
    42. Kawaguchi, Y.; Nishiyama, T.; Okada, M.; Kamachi, M.; Harada, A., Complex Formation of Poly(ε-caprolactone) with Cyclodextrins., Macromolecules, 2000, 33, 4472-4477.
    43. Huang, L.; Tonelli, A. E., Study of the inclusion compounds formed betweenα-cyclodextrin and high molecular weight poly(ethylene oxide) and poly(ε-caprolactone), Polymer, 1998, 39, 4857-4865.
    44. Lu, J.; Shin, I. D.; Nojima, S.; Tonelli, A. E., Formation and characterization of the inclusion compounds between poly(ε-caprolactone)-poly(ethylene oxide)-poly(ε-caprolactone) triblock copolymer andα- andγ-cyclodextrin, Polymer, 2000, 41, 5871-5883.
    45. Schwab, J. J.; Lichtenhan, J. D., Polyhedral oligomeric silsesquioxane (POSS)-based polymers, Appl. Organomet. Chem., 1998, 12, 707-713.
    46. Li, G.; Wang, L.; Ni, H.; Pittman, C. U., Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: A review, J. Inorg. & Organometallic Polym. 2001, 11, 123-154.
    47. Abe, Y.; Gunji, T., Oligo- and polysiloxanes, Prog. Polym. Sci., 2004, 29, 149-182.
    48. Feher, F. J.; Wyndham, K. D.; Baldwin, R. K.; D. Soulivong; Lichtenhan, J. D.; Ziller, J. W., Methods for effecting monofunctionalization of (CH2:CH)8Si8O12, Chem. Commun., 1999, 1289-1290.
    49. Feher, F. J.; Wyndham, K. D.; Soulivong, D.; Nguyen, F., Syntheses of highly functionalized cube-octameric polyhedral oligosilsesquioxanes (R8Si8O12), J. Chem. Soc., Dalton Trans., 1999, 1491-1498.
    50. Lichtenhan, J. D.; Vu, N. Q.; Carter, J. A.; Gilman, J. W.; Feher, F. J., Silsesquioxane-siloxane copolymers from polyhedral silsesquioxanes, Macromolecules, 1993, 26, 2141-2142.
    51. Lichtenhan, J. D.; Otonari, Y. A.; Carr, M. J.; Linear Hybrid Polymer Building Blocks: Methacrylate-Functionalized Polyhedral Oligomeric Silsesquioxane Monomers and Polymers., Macromolecules, 1995, 28, 8435-8437.
    52. Haddad, T. S.; Lichtenhan, J. D.; The incorporation of transition metals into polyhedral oligosilsesquioxane polymers J. Inorg. Organomet. Polym., 1995, 5, 237-246.
    53. Zhang, C.; Laine, R. M.; Silsesquioxanes as synthetic platforms. II. Epoxy-functionalized inorganic-organic hybrid species, J. Organomet. Chem., 1996, 521, 199-201.
    54. Huang, J.; Li, X.; Lin, T.; He, C.; Mya, Y. K.; Xiao, Y.; Li, J., Inclusion complex formation between a,g-cyclodextrins and organic-inorganic star-shaped poly(ethylene glycol) from an octafunctional silsesquioxane core, J. Polym. Sci., Part B: Polym. Phys., 2004, 42, 1173-1180
    55. Koh, K.; Sugiyama, S.; Morinaga, T.; Ohno, K.; Tsujii, Y.; Fukuda, T.; Yamahiro, M.; Iijima, T.; Oikawa, H.; Watanabe, K.; Miyashita, T., Precision Synthesis of a Fluorinated Polyhedral Oligomeric Silsesquioxane-Terminated Polymer and Surface Characterization of Its Blend Film with Poly(methyl methacrylate), Macromolecules 2005, 38, 1264-1270
    56. Hu, H.; Dorset, D. L., Crystal structure of poly(e-caprolactone), Macromolecules, 1990, 23, 4604-4607.
    57. Nojima, S.; Hashizume, K.; Rohadi, A.; Sasaki, S., Crystallization of e-caprolactone blocks within a crosslinked microdomain structure of poly(ε-caprolactone)-block-polybutadiene, Polymer, 1997, 38, 2711-2718
    58. Brown, J. F.; Vogt, L. H.; Prescott, P. I., Preparation and characterization of the lower equilibrated phenylsilsesquioxanes, J. Am. Chem. Soc. 1964, 86, 1120-1125
    59. Harada, A.; Suzuki, S.; Okada, M.; Kamachi, M., Preparation and Characterization of Inclusion Complexes of Polyisobutylene with Cyclodextrins., Macromolecules, 1996, 29, 5611-5614.
    60. Rusa, C.; Tonelli, A. E., Polymer/Polymer Inclusion Compounds as a Novel Approach To Obtaining a PLLA/PCL Intimately Compatible Blend, Macromolecules, 2000, 33, 5321-5324.
    61. Harada, A.; Kawaguchi, Y.; Nishiyama, T.; Kamachi, M., Complex formation of poly(e-caprolactone) with cyclodextrin, Macromol. Rapid Commun., 1997, 18, 535-539.
    62. Huang, L.; Allen, E.; Tonelli, A. E., Study of the inclusion compounds formed betweenα-cyclodextrin and high molecular weight poly(ethylene oxide) and poly(ε-caprolactone), Polymer, 1998, 39, 4857-4865
    63. Harada, A., Preparation and structures of supramolecules between cyclodextrins and polymers, Coord. Chem. Rev., 1996, 148, 115-133
    64. Gidley, M. J.; Bociek, S. M., 13C CP/MAS NMR Studies of Amylose Inclusion Complexes, Cyclodextrins, and the Amorphous Phase of Starch Granules: Relationships between Glycosidic Linkage Conformation and Solid-state 13C Chemical Shifts, J. Am. Chem. Soc., 1988, 110, 3820
    65. Huh, K. M.; Ooya, T.; Sasaki, S.; Yui, N., Polymer Inclusion Complex Consisting of Poly(e-lysine) and a-Cyclodextrin, Macromolecules, 2001, 34, 2402-2404
    66. Meng, F.; Zheng, S.; Zhang, W.; Li, H.; Liang, Q., Nanostructured thermosetting blends of epoxy resin and amphiphilic poly(ε-caprolactone)-block-polybutadiene-block-poly(ε-caprolactone) triblock copolymer, Macromolecules, 2006, 39, 711-719
    1. Whitesides, G. M.; Mathias, J. P.; Seto, C. T., Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures, Science, 1991, 254, 1312-1319.
    2. Harrison P. G., Silicate cages: precursors to new materials, J. Organometal. Chem., 1997, 542, 141-183.
    3. Loy D. A., Shea K. J., Bridged Polysilsesquioxanes. Highly Porous Hybrid Organic-Inorganic Materials, Chem. Rev., 1995, 95, 1431-1442
    4. Baney R. H., Itoh M., Sakakibara A., Suzuki T., Silsesquioxanes, Chem. Rev., 1995, 95, 1409-1430
    5. Giannelis E. P., Krishnamoorti R., Manias E., Polymer-silicate nanocomposites: Model systems for confined polymers and polymer brushes, Adv. Polym. Sci., 1999, 138, 107-147
    6. Schwab J. J., Lichtenhan J. D., Polyhedral oligomeric silsesquioxane (POSS)-based polymers, Appl. Organomet. Chem., 1998, 12, 707-713
    7. Li G., Wang L., Ni H., Pittman C. U., Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: A review, J. Inorg. & Organometallic Polym. 2001, 11, 123-154
    8. Abe Y., Gunji T., Oligo- and polysiloxanes, Prog. Polym. Sci., 2004, 29, 149-182
    9. Feher F. J., Wyndham K. D., Baldwin R. K., Soulivong D., Lichtenhan J. D., Ziller J. W., Methods for effecting monofunctionalization of (CH2:CH)8Si8O12, Chem. Commun., 1999, 1289-1290
    10. Lichtenhan J. D., Vu N. Q., Carter J. A., Gilman J. W., Feher F. J., Silsesquioxane-siloxane copolymers from polyhedral silsesquioxanes, Macromolecules, 1993, 26, 2141-2142
    11. Lichtenhan, J. D.; Otonari, Y. A.; Carr, M. J., Linear Hybrid Polymer Building Blocks: Methacrylate-Functionalized Polyhedral Oligomeric Silsesquioxane Monomers and Polymers, Macromolecules 1995, 28, 8435-8437.
    12. Haddad, T. S.; Lichtenhan, J. D., The incorporation of transition metals into polyhedral oligosilsesquioxane polymers, J Inorg Organomet Polym 1995, 5, 237-246
    13. Mantz, R. A.; Jones, P. F.; Chaffee, K. P.; Lichtenhan, J. D.; Gilman, J. W.; Ismail, I. M. K.; Burmeister, M. J., Thermolysis of Polyhedral Oligomeric Silsesquioxane (POSS) Macromers and POSS-Siloxane Copolymers, Chem Mater 1996, 8, 1250-1259
    14. Haddad, T. S.; Lichtenhan, J. D., Hybrid Organic-Inorganic Thermoplastics: Styryl-Based Polyhedral Oligomeric Silsesquioxane Polymers, Macromolecules 1996, 29, 7302-7304
    15. Zhang, C.; Laine, R. M., Silsesquioxanes as synthetic platforms. II. Epoxy-functionalizedinorganic-organic hybrid species, J Organomet Chem 1996, 521, 199-201
    16. Ni Y., Zheng S., A novel photocrosslinkable polyhedral oligomeric silsesquioxane and its nanocomposites with poly(vinyl cinnamate), Chem. Mater., 2004, 15, 5141-5148
    17. Chan S.-C., Kuo S.-W., Chang F.-C., Synthesis of the Organic/Inorganic Hybrid Star Polymers and Their Inclusion Complexes with Cyclodextrins, Macromolecules, 2005, 38, 3099-3107
    18. Liu H., Zheng S., Nie K., Morphology and thermomechanical properties of organic-inorganic hybrid composites involving epoxy resin and an incompletely condensed polyhedral oligomeric silsesquioxane, Macromolecules, 2005, 38, 5088-5097
    19. Ni, Y.; Zheng, S.; Nie, K., Morphology and thermal properties of inorganic-organic hybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes, Polymer 2004, 45, 5557-5568
    20. Lichtenhan J. D., Feher F. J., Schwab J. J., Zheng S., United States Patent 6933345, Issued on August 23, 2005
    21. Fu B. X., Yang L., Somani R. H., Zong S. X., Hsiao B. S., Phillips S., Blansky R., Ruth P., Crystallization studies of isotactic polypropylene containing nanostructured polyhedral oligomeric silsesquioxane molecules under quiescent and shear conditions, J. Polym. Sci., Part B: Polym. Phys. 2001, 39, 2727-2739
    22. Joshi A., Butola B. S., Studies on nonisothermal crystallization of HDPE/POSS nanocomposites, Polymer, 2004, 45, 4953-4968
    23. Liu Y., Yang X., Zhang W., Zheng S., Star-shaped poly(ε-caprolactone) with polyhedral oligomeric silsesquioxane core, Polymer, 2006,. 6814-6825
    24. Degee P., Dubois P., Jerome R., Teyssie P., Macromolecular Engineering of Polylactones and Polylactides. 9. Synthesis, Characterization, and Application of Primary Amine Poly(ε-caprolactone), Macromolecules, 1992, 25, 4242-4248
    25. Dong T., Dubois P., Jerome R., Teyssie P., Macromolecular Engineering of Polylactones and Polylactides. 18. Synthesis of Star-Branched Aliphatic Polyesters Bearing Various Functional End Groups, Macromolecules, 1994, 27, 4134
    26. Heise A., Trollsas M., Magbitang T., Hedrick J. L., Frank C. W., Miller R. D., Star Polymers with Alternating Arms from Miktofunctional m-Initiators Using Consecutive Atom Transfer Radical Polymerization and Ring-Opening Polymerization, Macromolecules, 2001, 34, 2798-2804
    27. Trollsas M., J Hedrick. L., Dendrimer-like Star Polymers, J. Am. Chem. Soc., 1998, 120,4644-4651.
    28. Liu Y. C., Ko B. T., Lin C. C., A Highly Efficient Catalyst for the "Living" and "Immortal" Polymerization of e-Caprolactone and L-Lactide, Macromolecules, 2001, 34, 6196-6201.
    29. Martin O., Averous L., Poly(lactic acid): plasticization and properties of biodegradable multiphase systems., Polymer, 2001, 42, 6209-6219
    30. Ni Y, Zheng S, Supramolecular inclusion complexation of polyhedral oligomeric silsesquioxane capped poly(-caprolactone) with–cyclodextrin, Journal of Polymer Science, Part A: Polymer Chemistry, 2007, 45, 1247-1259
    31. Hu H., Dorset D. L., Crystal structure of poly(e-caprolactone), Macromolecules, 1990, 23, 4604-4607
    32. Nojima S., Hashizume K., Rohadi A., Sasaki S., Crystallization of e-caprolactone blocks within a crosslinked microdomain structure of poly(ε-caprolactone)-block-polybutadiene, Polymer, 1997, 38, 2711-2718
    67. Brown J. F., Vogt L. H., Prescott P. I., Preparation and characterization of the lower equilibrated phenylsilsesquioxanes, J. Am. Chem. Soc. 1964, 86, 1120-1125
    33. Wunderlich B., Macromolecular Physics, Vol. 1~3; Academic Press: London, 1973-1980.
    34. Hoffman J. D., Weeks J. J., Rate of spherulitic crystallization with chain folds in polychlorotrifluoroethylene, J. Chem. Phys., 1962, 37, 1723-1741
    35. Hoffman J. D., Weeks J. J., J. Res. Natl. Bur. Stand., Sect. A, 1962, 66, 13
    36. Huang X. D., Goh S. H., Macromolecules, 2001, 34, 3302
    37. Crescenzi V., Manzini G., Calzolari G., Borri C., Thermodynamics of fusion of poly-β-propiolactone and poly-ε-caprolactone. Comparative analysis of the melting of aliphatic polylactone and polyester chains, Eur. Polym. J., 1972, 8, 449-463
    38. Avrami M., Granulation, phase change and microstructure. Kinetics of phase change. III, J. Chem. Phys., 1941, 9, 177-184
    39. Ong C. J., Price F. T., Blends of poly(e-caprolactone) with poly(vinyl chloride). II. Crystallization kinetics, J. Polym. Sci., Polym. Symp., 1978, 63, 59-75
    40. Morgan L. B., Crystallization phenomena in polymers. II. The course of the crystallization, Phil. Trans. Roy. Sci. (London) 1954, 247, 13-22
    41. Hoffman J. D., Theoretical aspects of polymer crystallization with chain folds: bulk polymers, Soc.Plast. Eng. Trans., 1964, 4, 315-362
    42. Hoffman J. D., Frolen L. J., Ross G. S., Lauritzen J. I., On the growth rate of spherulites and axialites from the melt in polyethylene fractions: regime I and regime II crystallization, J. Res. Natl. Bur. Stand., U.S., 1975, 79A, 671-99
    43. Hoffman J. D., Regime III crystallization in melt-crystallized polymers: the variable cluster model of chain folding, Polymer, 1983, 24, 3-26
    44. Boon J., Azcue J. M., Crystallization kinetics of polymer-diluent mixtures. Influence of benzophenone on the spherulitic growth rate of isotactic polystyrene, J. Polym. Sci., Part A-2, 1968, 6, 885-894
    45. Defieuw G., Groeninckx G., Reynaers H., Miscibility, crystallization and melting behavior, and semicrystalline morphology of binary blends of polycaprolactone with poly(hydroxy ether of bisphenol A), Polymer, 1989, 30, 2164-2169.
    46. Rim P. B., Runt J. P., Melting behavior of crystalline/compatible polymer blends: poly(e-caprolactone)/poly(styrene-co-acrylonitrile), Macromolecules, 1983, 16, 762-768
    47. William M. L., Landel R. F., Ferry J. D., The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids, J. Am. Chem. Soc., 1955, 77, 3701-3707
    48. Goulet L., Prud’homme R. E., Crystallization kinetics and melting of caprolactone random copolymers, J. Polym. Sci., Part B: Polym. Phys., 1990, 28, 2329-2352.
    1. Pascault J. P.; Williams R. J. J., In Polymer Blends (Eds. Paul D. R., Bucknall C. B.) Wiley: New York, 2000, Vol. 1, pp 379 ~ 415
    2. Hillmyer M. A., Lipic P. M., Hajduk D. A., Almdal K., Bates F. S., Self-Assembly and Polymerization of Epoxy Resin-Amphiphilic Block Copolymer Nanocomposites, J. Am. Chem. Soc., 1997, 119, 2749-2750
    3. Lipic P. M., Bates F. S., Hillmyer M. A., Nanostructured Thermosets from Self-Assembled Amphiphilic Block Copolymer/Epoxy Resin Mixtures, J. Am. Chem. Soc., 1998, 120, 8963-8970
    4. Mijovic J., Shen M., Sy, J. W., Mondragon I., Dynamics and Morphology in Nanostructured Thermoset Network/Block Copolymer Blends during Network Formation, Macromolecules, 2000, 33, 5235-5244
    5. Grubbs R B., Dean J. M., Broz M. E., Bates F. S., Reactive Block Copolymers for Modification of Thermosetting Epoxy, Macromolecules, 2000, 33, 9522-9534
    6. Kosonen H., Ruokolainen J., Nyholm P., Ikkala O., Self-Organized Thermosets: Blends of Hexamethyltetramine Cured Novolac with Poly(2-vinylpyridine)-block-poly(isoprene), Macromolecules, 2001, 34, 3046-3049
    7. Kosonen H., Ruokolainen J., Nyholm P., Ikkala O., Self-organized cross-linked phenolic thermosets: thermal and dynamic mechanical properties of novolac/block copolymer blends, Polymer, 2001, 42, 9481-9486
    8. Guo Q., Thomann R., Gronski W., Phase Behavior, Crystallization, and Hierarchical Nanostructures in Self-Organized Thermoset Blends of Epoxy Resin and Amphiphilic Poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) Triblock Copolymers, Macromolecules, 2002, 35, 3133-3144
    9. Ritzenthaler S., Court F., Girard-Reydet E., Leibler L., Pascault J. P., ABC Triblock Copolymers/Epoxy-Diamine Blends. 1. Keys To Achieve Nanostructured Thermosets, Macromolecules, 2002, 35, 6245-6254
    10. Ritzenthaler S., Court F., Girard-Reydet E., Leibler L., Pascault J. P., ABC Triblock Copolymers/Epoxy-Diamine Blends. 2. Parameters Controlling the Morphologies and Properties, Macromolecules, 2003, 36, 118-126
    11. Guo Q., Dean J. M., Grubbs R. B., Bates F. S., Block copolymer modified novolac epoxy resin, J. Polym. Sci., Part B: Polym. Phys., 2003, 41, 1994-2003
    12. Dean J. M., Grubbs R. B., Saad W., Cook R. F., Bates F. S., Mechanical properties of block copolymer vesicle and micelle modified epoxies, J. Polym. Sci., Part B: Polym. Phys., 2003, 41, 2444-2456
    13. Guo Q., Thomann R., Gronski W., Nanostructures, Semicrytalline Morphology, and Nanoscale Confinement Effect on the Crystallization Kinetics in Self-Organized Block Copolymer/Thermoset Blends, Macromolecules, 2003, 36, 3635-3645
    14. Dean J. M., Verghese N. E., Pham H. Q., Bates F. S., Nanostructure Toughened Epoxy Resins, Macromolecules, 2003, 36, 9267-9270
    15. Rebizant V., Abetz V., Tournihac T., Court F., Leibler L., Reactive Tetrablock Copolymers Containing Glycidyl Methacrylate. Synthesis and Morphology Control in Epoxy-Amine Networks, Macromolecules, 2003, 36, 9889-9896
    16. Rebizant V., Venet A. S., Tournillhac F., Girard-Reydet, E., Navarro C.; Pascault J. P., Leibler L., Chemistry and Mechanical Properties of Epoxy-Based Thermosets Reinforced by Reactive and Nonreactive SBMX Block Copolymers, Macromolecules, 2004, 37, 8017-8027
    17. Wu J., Thio Y. S., Bates F. S., Structure and properties of PBO-PEO diblock copolymer modified epoxy, J. Polym. Sci., Part B: Polym. Phys., 2005, 43, 1950-1965
    18. Larra?aga M.,Gabilondo N., Kortaberria G., Serrano E., Remiro P., Riccardi C. C., Mondragon I., Micro- or nanoseparated phases in thermoset blends of an epoxy resin and PEO–PPO–PEO triblock copolymer, Polymer 2005, 46, 7082-7093
    19. Meng F., Zheng S., Zhang W., Li H., Liang Q., Nanostructured Thermosetting Blends of Epoxy Resin and Amphiphilic Poly(ε-caprolactone)- block-polybutadiene–block- poly(ε-caprolactone) Triblock, Macromolecules 2006, 39, 711-719
    20. Serrano E., Tercjak A., Kortaberria G., Pomposo J. A., Mecerreyes D., Zafeiropoulos N. E., Stamm M., Mondragon I., Nanostructured Thermosetting Systems by Modification with Epoxidized Styrene-Butadiene Star Block Copolymers. Effect of Epoxidation Degree, Macromolecules 2006, 39, 2254-2261
    21. Meng F., Zheng S., Li H., Liang Q., Liu T., Formation of Ordered Nanostructures in EpoxyThermosets: A Mechanism of Reaction-Induced Microphase Separation, Macromolecules 2006, 39, 5072-5080
    22. Meng F., Zheng S., Liu T., Epoxy resin containing poly(ethylene oxide)-block-poly(ε-caprolactone) diblock copolymer: Effect of curing agents on nanostructures, Polymer 2006, 47, 7590-7600
    23. Sinturel C., Vayer M., Erre R., Amenitsch H., Nanostructured Polymers Obtained from Polyethylene-block-poly(ethylene oxide) Block Copolymer in Unsaturated Polyester, Macromolecules, 2007, 40, 2532-2538
    24. Xu Z., Zheng S., Reaction-Induced Microphase Separation in Epoxy Thermosets Containing Poly(ε-caprolactone)-block-poly(n-butyl acrylate) Diblock Copolymer, Macromolecules, 2007, 40, 2548-2558
    25. Lichtenhan J. D., Vu N. Q., Carter J. A., Gilman J. W., Feher F. J., Silsesquioxane-siloxane copolymers from polyhedral silsesquioxanes, Macromolecules, 1993, 26, 2141-2142
    26. Haddad T. S., Lichtenhan J. D., The incorporation of transition metals into polyhedral oligosilsesquioxane polymers J. Inorg. Organomet. Polym., 1995, 5, 237-246
    27. Lichtenhan J. D., Otonari Y. A., Carr M. J., Linear Hybrid Polymer Building Blocks: Methacrylate-Functionalized Polyhedral Oligomeric Silsesquioxane Monomers and Polymers., Macromolecules, 1995, 28, 8435-8437
    28. Zhang C., Laine R. M., Silsesquioxanes as synthetic platforms. II. Epoxy-functionalized inorganic-organic hybrid species, J. Organomet. Chem., 1996, 521, 199-201
    29. Mantz, R. A.; Jones, P. F.; Chaffee, K. P.; Lichtenhan, J. D.; Gilman, J. W.; Ismail, I. M. K.; Burmeister, M. J., Thermolysis of Polyhedral Oligomeric Silsesquioxane (POSS) Macromers and POSS-Siloxane Copolymers, Chem Mater 1996, 8, 1250-1259
    30. Haddad, T. S.; Lichtenhan, J. D., Hybrid Organic-Inorganic Thermoplastics: Styryl-Based Polyhedral Oligomeric Silsesquioxane Polymers, Macromolecules 1996, 29, 7302-7304
    31. Feher, F. J.; Wyndham, K. D.; Baldwin, R. K.; Soulivong, D.; Lichtenhan, J. D.; Ziller, J. W., Methods for effecting monofunctionalization of (CH2:CH)8Si8O12, Chem Commun (Cambridge) 1999, 1289-1290
    32. Li, G.; Wang, L.; Ni, H.; Pittman, C. U., Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: A review, J Inorg Organomet Polym 2001, 11, 123-154
    33. Abe, Y.; Gunji, T., Oligo- and polysiloxanes, Prog Polym Sci 2004, 29, 149-182
    34. Ni Y., Zheng S., A novel photocrosslinkable polyhedral oligomeric silsesquioxane and its nanocomposites with poly(vinyl cinnamate), Chem. Mater., 2004, 15, 5141-5148
    35. Ni Y., Zheng S., Nie K., Morphology and thermal properties of inorganic-organic hybrids involving epoxy resin and polyhedral oligomeric silsesquioxanes, Polymer, 2004, 45, 5557-5568
    36. Chan S.-C., Kuo S.-W., Chang F.-C., Synthesis of the Organic/Inorganic Hybrid Star Polymers and Their Inclusion Complexes with Cyclodextrins, Macromolecules, 2005, 38, 3099-3107
    37. Liu, H.; Zheng, S.; Nie, K., Morphology and thermomechanical properties of organic-inorganic hybrid composites involving epoxy resin and an incompletely condensed polyhedral oligomeric silsesquioxane, Macromolecules 2005, 38, 5088-5097
    38. Flory P. J., Principles of Polymer Chemistry, Cornell University Press, Ithaca, NY, 1953
    39. Yin M.; Zheng S. Ternary thermosetting blends of epoxy resin, poly(ethylene oxide) and poly(e-caprolactone), Macromol. Chem. & Phys. 2005, 206, 929-937
    40. Ni Y.; Zheng S. Influence of intramolecular specific interactions on phase behavior of epoxy resin and poly(ε-caprolactone) blends cured with aromatic amines, Polymer 2005, 46, 5828-5839
    41. Brown, J. F., Preparation and characterization of the lower equilibrated phenylsilsesquioxanes, J Am Chem Soc 1964, 86, 1120-1125
    42. Ni Y., Zheng S., Supramolecular inclusion complexation of polyhedral oligomeric silsesquioxane capped poly(ε-caprolactone) withα-cyclodextrin, J. Polym. Sci., Part A: Polym. Chem., 2007, 45, 1247-1259
    43. Ni Y., Zheng S., Melting and Crystallization Behavior of Polyhedral Oligomeric Silsesquioxane (POSS)-capped Poly(epsilon-caprolactone), J. Polym. Sci., Part B: Polym. Phys., 2007, In Press.
    44. Schmitz I., Schreiner M., Friedbacher G., Grasserbauer M., Phase imaging as an extension to tapping mode AFM for the identification of material properties on humidity-sensitive surfaces, Appl. Surf. Sci., 1997, 115, 190-198
    45. Magonov S. N., Elings V., Whangbo M. H., Phase imaging and stiffness in tapping-mode atomic force microscopy, Surf. Sci., 1997, 375, L385-391
    46. Tamayo A., Garcia R., Deformation, Contact Time and Phase contrast in Tapping Mode Scanning Force Microscopy, Langmuir, 1996, 12, 4430-4435
    47. Chen X., McGurk S. L., Davies M. C., Roberts C. J., Shakesheff K. M., Davies J., Dawkes, Domb A., Chemical and morphological analysis of surface enrichment in a biodegradable polymer blend by phase-detection imaging atomic force microscopy, Macromolecules, 1998, 31, 2278-2283
    48. Clarke S., Davies M. C., Roberts C. J., Tendler S. J. B., Williams P. M., Lewis A. L., O’Bryrne V., Atomic Force Microscope and Surface Plasmon Resonance Investigation of Polymer Blends of Poly([2-(methacryloyloxy)ethyl]phosphorylcholine-co-lauryl methacrylate) and Poly(lauryl methacrylate), Macromolecules, 2001, 34, 4166-4172
    49. Fox T. G., Influence of diluent and of copolymer composition on the glass temperature of a polymer system, Bull. Am. Phys. Soc., 1956, 1, 123
    50. Gordon M., Taylor J. S., J. Appl. Chem., 1952, 2, 496
    51. Couchman P. R., Compositional Variation of Glass-Transition Temperatures. 2. Application of the Thermodynamic Theory to Compatible Polymer Blends Macromolecules, 1978, 11, 1156-1161
    52. Belorgey, G. and Prud’homme, Miscibility of polycaprolactone/chlorinated polyethylene blends, R. E., J. Polym. Sci., Part B: Polym. Phys., 1982, 20, 191-203
    53. Belorgey, G. Aubin M., Prud’homme, R. E., Studies of polyester/chlorinated poly(vinyl chloride) blends, Polymer, 1982, 23, 1051-1056.
    54. Coleman M. M., Painter P. C., Hydrogen bonded polymer blends, Prog. Polym. Sci., 1995, 20, 1-59
    55. Coleman M. M., Graf J. F., and Painter P. C.,“Specific Interactions and the Miscibility of Polymer Blends”, Technomic Publishing, Lancaster, PA, 1991
    56. Kaelble D. H., Uy K. C., Reinterpretation of organic liquid-polytetrafluoroethylene surface interactions, J. Adhes., 1970, 2, 50-60
    57. Kaelble D. H., Phys. Chem. of Adhesion, Wiley-Interscience, New York, 1971
    58. Turri S., Levi M., Macromolecules, 2005, 38, 5569; d) Turri S., Levi M., Wettability of polyhedral oligomeric silsesquioxane nanostructured polymer surfaces, Macromol. RapidCommun., 2005, 26, 1233-1236
    59. Koh K., Sugiyama S., Morinaga T., Ohno K., Tsujii Y., Fukuda T., Yamahiro M., Iijima T., Oikawa H., Watanabe K., Miyashita T., Precision Synthesis of a Fluorinated Polyhedral Oligomeric Silsesquioxane-Terminated Polymer and Surface Characterization of Its Blend Film with Poly(methyl methacrylate), Macromolecules, 2005, 38, 1264-1270.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700