禽白细胞介素2功能域鉴定及与其受体的相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白细胞介素2(IL-2)是一种重要的免疫调节细胞因子,在淋巴细胞的生长与分化等方面起着重要的作用。本研究中,利用原核表达的重组鸡IL-2(cIL-2)单体蛋白作为抗原制备了一组抗cIL-2的单克隆抗体(mAb),对具有抑制cIL-2依赖的T淋巴母细胞增殖作用的mAbs进行了表位重叠合成肽扫描和噬菌体表面展示技术分析,结果显示:抗cIL-2单抗所识别的表位均为构象表位,它们的模拟表位分别为KIELPSL、EHLDXNDSLYL、NHLXGXY、WHLPPSL、EFKASXL、TENPFPE、SGLYL、AHGYWEL和HHGYWEL。利用Clustal W序列比对和合成肽竞争ELISA鉴定了其相应的天然表位组成,并据此将其天然表位划分为三个功能域:N26K27I28H29L30E31L32P35Q43Q44T45L46Q47C48Y49L50(功能域Ⅰ)、E68E69F70K79K82S83L84T85G86L87(功能域Ⅱ)和N88H89G91K104F105P106D107E111L112Y118L119(功能域Ⅲ)。淋巴细胞增殖试验显示三个功能域的多肽在体外具有促进活化T淋巴母细胞增殖的作用。通过同源建模方法构建了cIL-2蛋白的三维模拟结构,将其功能域Ⅰ定位于A-B环(包括部分的beta折叠A)和螺旋B的N端部分;功能域Ⅱ主要定位于螺旋C;功能域Ⅲ定位于C-D环(包括部分的beta折叠B)和螺旋D中。
     利用噬菌体展示技术和合成肽竞争ELISA方法,鉴定了4株具有抑制鸭IL-2(dIL-2)依赖的T淋巴母细胞增殖作用的抗dIL-2 mAbs的结合表位。这些mAbs所识别的表位均为构象表位,其模拟表位分别为LVXGSMPS、KPHKHHXHHSHM、HVPNERYPLR和WXXXKAKP。Clustal W序列比对分析获得了其相应的天然表位组成,分别为L13I14K15G21S23M24P34S41T33P34T37K38E39C40S41W42Q43T44Y48L49、Y32T33p34N35E58R74F103P104L114R115和W42Q43D67E68K69V70K82P88。对这些天然表位进行序列分析,可以发现一个共同的关键功能区域:Y32T33P34N35D36T37K38E39C40S41W42Q43T44(功能域Ⅰ)。通过同源建模方法构建了dIL-2蛋白的三维模拟结构,将其功能域Ⅰ定位于A-B环和螺旋B的N端部分。
     利用噬菌体展示技术和合成肽竞争ELISA方法,鉴定了5株具有抑制鹅IL-2(gIL-2)依赖的T淋巴母细胞增殖作用的抗gIL-2 mAbs的结合表位。这些mAbs所识别的表位均为构象表位,其模拟表位分别为HHDPWDXLP、ESLSRXXMXXLXP、SHHLPTSXL、HPDPWDAPLSS和HEPWQLXL。Clustal W序列比对分析获得了其相应的天然表位组成,分别为I14K15D16P34W42Q43T44L45Q46、D8T9L10T11K19L20S23M24K25E30L31Y32P34、T11E18K19L20G21T22S23M24L29、T33P34E36S41W42D61P88P89L115R116S117和Y32T33P34W42Q43L45Q46L49。对这些天然表位进行序列分析,可以发现一个共同的关键功能区域:T11I14K15D16E18K19L20G21T22S23M24K25L29E30L31Y32T33P34E36S41W42Q43T44L45Q46(功能域Ⅰ)。通过同源建模方法构建了gIL-2蛋白的三维模拟结构,将其功能域Ⅰ定位于螺旋A、A-B环和螺旋B的N端部分。
     比较鸡、鸭、鹅IL-2的功能域组成及位置,发现在其分子的N端区域均存在一个关键的功能域,而其中的第28位到第46位序列均为最关键的功能位点,表明禽类IL-2分子的功能域分布具有相似性。
     利用体外抑制cIL-2依赖的T淋巴母细胞增殖活性方法,分析了3株识别真核细胞表达的鸡IL-2Rα链(cCD25)的mAbs的生物学活性,发现其中的2株具有显著的抑制功能。流式细胞计分析表明cCD25表达在脾单个核细胞的表面。利用噬菌体表面展示技术和合成肽竞争ELISA方法,鉴定了2株抗cCD25功能性mAbs的结合表位。该单抗的噬菌体模拟位基序为PVDRPRD和SLGKXTPVDEPXY。利用Clustal W序列比对和合成肽竞争ELISA鉴定了其相应的天然表位组成,并据此将其天然表位划分为一个功能域:K152W153T154P155V156D157R158P159C160T161(功能域Ⅰ)。通过同源建模方法构建了cCD25蛋白胞外域的三维模拟结构,将其功能域Ⅰ定位于D2结构域的近C末端部分。
     利用体外抑制cIL-2依赖的T淋巴细胞增殖活性方法,分析了5株识别真核细胞表达的鸡IL-2Rγ链(cCD132)的mAbs的生物学活性,发现其中1株mAb具有显著的抑制功能。流式细胞计分析表明cCD132表达在脾单个核细胞的表面。利用噬菌体表面展示技术和合成肽竞争ELISA方法,鉴定了mAb C10的结合表位。该单抗的噬菌体模拟位基序为QEHQNL,其相应的天然表位组成为Q84E94L95Q96N97L98。与人CD132序列的比对分析显示,Q96可能是个关键的功能位点,随后发现定点突变Q96A的表位多肽完全丧失了结合(?)mAb C10的能力,证明了Q96是个关键的功能氨基酸。通过同源建模方法构建了cCD132蛋白胞外域的三维模拟结构,将其功能域定位于N结构域和C结构域间的肘关节样的连接区。
     利用噬菌体展示技术,分别分析了鸡白介素2受体α、γ的cIL-2结合模拟表位和鸡白介素2的受体α、γ结合模拟表位,并对这些结合表位及前期鉴定的功能性表位进行了功能鉴定和结构定位,提出了cIL-2和其受体α、γ相互作用的基本模型。cIL-2中的K27~C41直接与其受体α、γ发生强相互作用,提示了cIL-2R的α、γ亚基间存在互相接触的界面,完全不同于人IL-2Ra亚基游离于β和γ亚基组成的聚合物而单独在相反的侧面与IL-2发生相互作用。cCD25中的α99-112主要负责与cIL-227-41作用。cCD132中的γ119-137主要负责与cIL-227-41、cIL-279-96作用,而γ82-101则是第二个特异性与cIL-279-96发生相互作用的位点。cIL-2Rα、γ间的相互作用分析表明cIL-2R的两个亚基间存在着互相作用,该相互作用界面主要由cCD2599-112/cCD132119-137构成,该界面同时也是主要参与cIL.227-41相互作用的结构。cIL-227-41/cCD2599-112/cCD132119-137构成了三聚体复合物的相互作用中心。上述研究结果为阐述cIL-2和cIL-2Rα、γ间的基本相互作用提供了实验证据和结构模型。
Interleukin 2 (IL-2) is an essential cytokine that plays a pivotal role in the growth and differentiation of lymphocytes. In this study, the functional domains of chicken IL-2 (cIL-2) were mapped with monoclonal antibodies (mAb), a synthetic peptide, and a phage display peptide library. Nine neutralizing mAbs to cIL-2 were produced using the recombinant cIL-2 monomer expressed in prokaryotic cells as an immunogen and used to finely map the functional domains of the cIL-2 protein. The mimotopes of nine anti-cIL-2 mAbs, including KIELPSL, EHLDXNDSLYL, NHLXGXY, WHLPPSL, EFKASXL, TENPFPE, SGLYL, AHGYWEL and HHGYWEL, were respectively identified by phage display and peptide-competitive ELISA. These mimotopes constitute three conformational functional domains in the cIL-2 molecule, that is, N26K27I28H29L30E31L32P35Q43Q44T45L46Q47C48Y49L50 (domainⅠ), E68E69F70K79K82S83L84T85G86L87 (domainⅡ) and N88H89G91K104F105p106D107E111 L112Y118L119 (domainⅢ). The neutralizing mAbs to cIL-2 inhibited the in vitro lymphocyte proliferation stimulated by three peptide domains of cIL-2. The predicted tertiary structure of cIL-2 reveals that domainⅠwas positioned in the long A-B loop and the N terminal of Helix B, domainⅢwas mostly situated in Helix C, and domainⅢwas distributed in the C-D loop and Helix D.
     The functional domains of duck IL-2 (dIL-2) were finely mapped with four neutralizing mAbs to dIL-2. The mimotopes of four anti-dIL-2 mAbs, including LVXGSMPS, KPHKHHXHHSHM, HVPNERYPLR and WXXXKAKP, were respectively identified by phage display and peptide-competitive ELISA. These mimotopes constitute one functional domain in the dIL-2 molecule, that is, Y32T33P34N35D36T37K38E39C40S41W42Q43T44 (domainⅠ).The predicted tertiary structure of dIL-2 reveals four-helix bundle structure without two beta sheets and domain I was positioned in the long A-B loop and the N terminal of Helix B.
     The functional domains of goose IL-2 (gIL-2) were finely mapped with five neutralizing mAbs to gIL-2. The mimotopes of five anti-gIL-2 mAbs, including HHDPWDXLP, ESLSRXXMXXLXP, SHHLPTSXL, HPDPWDAPLSS and HEPWQLXL, were respectively identified by phage display and peptide-competitive ELISA. These mimotopes constitute one functional domain in the gIL-2 molecule, that is,T11I14K15D16E18K19L20G21T22S23M24K25L29E30L31Y32T33P34E36S41W42Q43T44L45 Q46 (domain I). The predicted tertiary structure of gIL-2 reveals four-helix bundle structure with two beta sheets and domain I was positioned in the Helix A, A-B loop and the N terminal of Helix B.
     Compare the functional domains of poultry IL-2 (cIL-2, dIL-2 and gIL-2), one common key domain was situated in the long A-B loop. The N terminal of poultry IL-2s were important for their bioactivities.
     The functional domains of chicken CD25 (cCD25) were mapped with two neutralizing mAbs to cCD25, which were identified by inhibition of IL-2-dependent proliferation of T cells. Flow cytometry analysis revealed that cCD25 molecules are expressed on the surface of splenic mononuclear cells. The mimotopes of two anti-cCD25 mAbs, including PVDRPRD and SLGKXTPVDEPXY, were respectively identified by phage display and peptide-competitive ELISA. These mimotopes constitute one functional domain in the cCD25 molecule, that is, S119V120G121K152W153T154P155V156D157R158P159C160T161 (domainⅠ) The predicted tertiary structure of cCD25 shows that functional domain I is positioned at the interdomain, paritial Sheet I and the subsequent connected-peptide with membrane.
     The functional domains of chicken CD132 (cCD132) were mapped with one neutralizing mAb to cCD132, which were identified by inhibition of IL-2-dependent proliferation of T cells. Flow cytometry analysis revealed that cCD132 molecules are expressed on the surface of splenic mononuclear cells. The functional domain of cCD132 that binds to chicken interleukin 2, Q84E94L95Q96N97L98, was found through phage display and peptide-competitive ELISA, and its critical residue Q96 was further identified. A tertiary structure model shows that the functional domain is positioned at the elbow-like junction of domain 1 and domain 2.
     Using phage display and competitive ELISA, a key binding epitope of cIL-2 to cIL-2R was identified and situated in the cIL-227-41 positioned in the long A-B loop. This fact implies that the interaction between cIL-2Ra and y subunits could be present. The binding epitopes of cIL-2Ra and y to cIL-2 were also identified by phage display and competitive ELISA.α99-112 of cCD25 was primary to bind cIL-227-41.γ119-137 of cCD132 was primary to bind cIL-227-41 and cIL-279-96.γ82-101 was the second site binding to cIL-279-96. The key binding epitopes of cIL-2R to cIL-2, namelyα99-112 andγ119-137, formed the common interaction interface to bind the cIL-227-41. The interaction between cIL-2 and cIL-2R (a and y) was further confirmed by the inhibition of lymphocyte proliferation in vitro. These results provide experimental evidences and structure models for elucidating the interaction between cIL-2 and cIL-2R.
引文
1. Morgan DA, Ruscetti FW, Gallo R. Selective in vitro growth of T lymphocytes from normal human bone marrows. Science 1976;193(4257):1007-8.
    2. Suzuki H, Kundig TM, Furlonger C, Wakeham A, Timms E, Matsuyama T, Schmits R, Simard JJ, Ohashi PS, Griesser H, et al. Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor beta. Science 1995;268(5216):1472-6.
    3. Sakaguchi S. Naturally arising CD4+ regulatory t cells for immunologic self-tolerance and negative control of immune responses. Annual review of immunology 2004;22:531-62.
    4. Furtado GC, Curotto de Lafaille MA, Kutchukhidze N, Lafaille JJ. Interleukin 2 signaling is required for CD4(+) regulatory T cell function. The Journal of experimental medicine 2002; 196(6):851-7.
    5. Kundig TM, Schorle H, Bachmann MF, Hengartner H, Zinkernagel RM, Horak I. Immune responses in interleukin-2-deficient mice. Science 1993;262(5136):1059-61.
    6. Williams MA, Tyznik AJ, Bevan MJ. Interleukin-2 signals during priming are required for secondary expansion of CD8+ memory T cells. Nature 2006;441(7095):890-3.
    7. Malek TR, Bayer AL. Tolerance, not immunity, crucially depends on IL-2. Nature reviews 2004;4(9):665-74.
    8. Yui MA, Hernandez-Hoyos G, Rothenberg EV. A new regulatory region of the IL-2 locus that confers position-independent transgene expression. J Immunol 2001; 166(3):1730-9.
    9. Serfling E, Avots A, Neumann M. The architecture of the interleukin-2 promoter:a reflection of T lymphocyte activation. Biochimica et biophysica acta 1995; 1263(3):181-200.
    10. Yui MA, Sharp LL, Havran WL, Rothenberg EV. Preferential activation of an IL-2 regulatory sequence transgene in TCR gamma delta and NKT cells:subset-specific differences in IL-2 regulation. J Immunol 2004; 172(8):4691-9.
    11. Villarino AV, Tato CM, Stumhofer JS, Yao Z, Cui YK, Hennighausen L, O'Shea JJ, Hunter CA. Helper T cell IL-2 production is limited by negative feedback and STAT-dependent cytokine signals. The Journal of experimental medicine 2007;204(1):65-71.
    12. Gong D, Malek TR. Cytokine-dependent Blimp-1 expression in activated T cells inhibits IL-2 production. J Immunol 2007;178(1):242-52.
    13. Malek TR. The biology of interleukin-2. Annual review of immunology 2008;26:453-79.
    14. Wang X, Rickert M, Garcia KC. Structure of the quaternary complex of interleukin-2 with its alpha, beta, and gammac receptors. Science 2005;310(5751):1159-63.
    15. Yu A, Malek TR. The proteasome regulates receptor-mediated endocytosis of interleukin-2. J Biol Chem 2001;276(1):381-5.
    16. Ma A, Koka R, Burkett P. Diverse functions of IL-2, IL-15, and IL-7 in lymphoid homeostasis. Annual review of immunology 2006;24:657-79.
    17. Fontenot JD, Rasmussen JP, Gavin MA, Rudensky AY. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nature immunology 2005;6(11):1142-51.
    18. Yang-Snyder JA, Rothenberg EV. Spontaneous expression of interleukin-2 in vivo in specific tissues of young mice. Developmental immunology 1998;5(4):223-45.
    19. Fontenot JD, Dooley JL, Farr AG, Rudensky AY. Developmental regulation of Foxp3 expression during ontogeny. The Journal of experimental medicine 2005;202(7):901-6.
    20. Sojka DK, Bruniquel D, Schwartz RH, Singh NJ. IL-2 secretion by CD4+ T cells in vivo is rapid, transient, and influenced by TCR-specific competition. J Immunol 2004;172(10):6136-43.
    21. D'Souza WN, Lefrancois L. Frontline:An in-depth evaluation of the production of IL-2 by antigen-specific CD8 T cells in vivo. European journal of immunology 2004;34(11):2977-85.
    22. Burchill MA, Yang J, Vogtenhuber C, Blazar BR, Farrar MA. IL-2 receptor beta-dependent STAT5 activation is required for the development of Foxp3+ regulatory T cells. J Immunol 2007; 178(1):280-90.
    23. Bayer AL, Yu A, Malek TR. Function of the IL-2R for thymic and peripheral CD4+CD25+ Foxp3+ T regulatory cells. J Immunol 2007; 178(7):4062-71.
    24. Antony PA, Paulos CM, Ahmadzadeh M, Akpinarli A, Palmer DC, Sato N, Kaiser A, Hinrichs CS, Klebanoff CA, Tagaya Y, Restifo NP. Interleukin-2-dependent mechanisms of tolerance and immunity in vivo. J Immunol 2006; 176(9):5255-66.
    25. D'Cruz LM, Klein L. Development and function of agonist-induced CD25+Foxp3+regulatory T cells in the absence of interleukin 2 signaling. Nature immunology 2005;6(11):1152-9.
    26. Yamanouchi J, Rainbow D, Serra P, Howlett S, Hunter K, Garner VE, Gonzalez-Munoz A, Clark J, Veijola R, Cubbon R, Chen SL, Rosa R, Cumiskey AM, Serreze DV, Gregory S, Rogers J, Lyons PA, Healy B, Smink LJ, Todd JA, Peterson LB, Wicker LS, Santamaria P. Interleukin-2 gene variation impairs regulatory T cell function and causes autoimmunity. Nature genetics 2007;39(3):329-37.
    27. Caudy AA, Reddy ST, Chatila T, Atkinson JP, Verbsky JW. CD25 deficiency causes an immune dysregulation, polyendocrinopathy, enteropathy, X-linked-like syndrome, and defective IL-10 expression from CD4 lymphocytes. The Journal of allergy and clinical immunology 2007;119(2):482-7.
    28. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 2007;447(7145):661-78.
    29. Liston A, Siggs OM, Goodnow CC. Tracing the action of IL-2 in tolerance to islet-specific antigen. Immunology and cell biology 2007;85(4):338-42.
    30. Yu A, Malek TR. Selective availability of IL-2 is a major determinant controlling the production of CD4+CD25+Foxp3+ T regulatory cells. J Immunol 2006; 177(8):5115-21.
    31. Almeida AR, Zaragoza B, Freitas AA. Indexation as a novel mechanism of lymphocyte homeostasis:the number of CD4+CD25+ regulatory T cells is indexed to the number of IL-2-producing cells. J Immunol 2006; 177(1):192-200.
    32. Gavin MA, Rasmussen JP, Fontenot JD, Vasta V, Manganiello VC, Beavo JA, Rudensky AY. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 2007;445(7129):771-5.
    33. Laurence A, Tato CM, Davidson TS, Kanno Y, Chen Z, Yao Z, Blank RB, Meylan F, Siegel R, Hennighausen L, Shevach EM, O'shea JJ. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 2007;26(3):371-81.
    34. Dooms H, Wolslegel K, Lin P, Abbas AK. Interleukin-2 enhances CD4+ T cell memory by promoting the generation of IL-7R alpha-expressing cells. The Journal of experimental medicine 2007;204(3):547-57.
    35. Teague RM, Tempero RM, Thomas S, Murali-Krishna K, Nelson BH. Proliferation and differentiation of CD8+ T cells in the absence of IL-2/15 receptor beta-chain expression or STAT5 activation. J Immunol 2004;173(5):3131-9.
    36. Jin H, Gong D, Adeegbe D, Bayer AL, Rolle C, Yu A, Malek TR. Quantitative assessment concerning the contribution of IL-2Rbeta for superantigen-mediated T cell responses in vivo. International immunology 2006;18(4):565-72.
    37. Carr JM, Carrasco MJ, Thaventhiran JE, Bambrough PJ, Kraman M, Edwards AD, Al-Shamkhani A, Fearon DT. CD27 mediates interleukin-2-independent clonal expansion of the CD8+T cell without effector differentiation. Proc Natl Acad Sci U S A 2006;103(51):19454-9.
    38. Kondrack RM, Harbertson J, Tan JT, McBreen ME, Surh CD, Bradley LM. Interleukin 7 regulates the survival and generation of memory CD4 cells. The Journal of experimental medicine 2003; 198(12):1797-806.
    39. Williams MA, Bevan MJ. Effector and memory CTL differentiation. Annual review of immunology 2007;25:171-92.
    40. van Dervliet HJ, Koon HB, Yue SC, Uzunparmak B, Seery V, Gavin MA, Rudensky AY, Atkins MB, Balk SP, Exley MA. Effects of the administration of high-dose interleukin-2 on immunoregulatory cell subsets in patients with advanced melanoma and renal cell cancer. Clin Cancer Res 2007; 13(7):2100-8.
    41. Bensinger SJ, Walsh PT, Zhang J, Carroll M, Parsons R, Rathmell JC, Thompson CB, Burchill MA, Farrar MA, Turka LA. Distinct IL-2 receptor signaling pattern in CD4+CD25+ regulatory T cells. J Immunol 2004;172(9):5287-96.
    42. Battaglia M, Stabilini A, Roncarolo MG. Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood 2005;105(12):4743-8.
    43. Boyman O, Kovar M, Rubinstein MP, Surh CD, Sprent J. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 2006;311(5769):1924-7.
    44. Smith KA. Interleukin-2:inception, impact, and implications. Science 1988;240(4856):1169-76.
    45. Nelson BH, Willerford DM. Biology of the interleukin-2 receptor. Advances in immunology 1998;70:1-81.
    46. Theze J, Alzari PM, Bertoglio J. Interleukin 2 and its receptors:recent advances and new immunological functions. Immunology today 1996;17(10):481-6.
    47. Church AC. Clinical advances in therapies targeting the interleukin-2 receptor. Qjm 2003;96(2):91-102.
    48. Shanafelt AB, Lin Y, Shanafelt MC, Forte CP, Dubois-Stringfellow N, Carter C, Gibbons JA, Cheng SL, Delaria KA, Fleischer R, Greve JM, Gundel R, Harris K, Kelly R, Koh B, Li Y, Lantz L, Mak P, Neyer L, Plym MJ, Roczniak S, Serban D, Thrift J, Tsuchiyama L, Wetzel M, Wong M, Zolotorev A. A T-cell-selective interleukin 2 mutein exhibits potent antitumor activity and is well tolerated in vivo. Nature biotechnology 2000; 18(11):1197-202.
    49. Leonard WJ, Depper JM, Crabtree GR, Rudikoff S, Pumphrey J, Robb RJ, Kronke M, Svetlik PB, Peffer NJ, Waldmann TA, et al. Molecular cloning and expression of cDNAs for the human interleukin-2 receptor. Nature 1984;311(5987):626-31.
    50. Nikaido T, Shimizu A, Ishida N, Sabe H, Teshigawara K, Maeda M, Uchiyama T, Yodoi J, Honjo T. Molecular cloning of cDNA encoding human interleukin-2 receptor. Nature 1984;311(5987):631-5.
    51. Cosman D, Cerretti DP, Larsen A, Park L, March C, Dower S, Gillis S, Urdal D. Cloning, sequence and expression of human interleukin-2 receptor. Nature 1984;312(5996):768-71.
    52. Hatakeyama M, Tsudo M, Minamoto S, Kono T, Doi T, Miyata T, Miyasaka M, Taniguchi T. Interleukin-2 receptor beta chain gene:generation of three receptor forms by cloned human alpha and beta chain cDNA's. Science 1989;244(4904):551-6.
    53. Takeshita T, Asao H, Ohtani K, Ishii N, Kumaki S, Tanaka N, Munakata H, Nakamura M, Sugamura K. Cloning of the gamma chain of the human IL-2 receptor. Science 1992;257(5068):379-82.
    54. Wang HM, Smith KA. The interleukin 2 receptor. Functional consequences of its bimolecular structure. The Journal of experimental medicine 1987; 166(4):1055-69.
    55. Rickert M, Boulanger MJ, Goriatcheva N, Garcia KC. Compensatory energetic mechanisms mediating the assembly of signaling complexes between interleukin-2 and its alpha, beta, and gamma(c) receptors. J Mol Biol 2004;339(5):1115-28.
    56. Nakamura Y, Russell SM, Mess SA, Friedmann M, Erdos M, Francois C, Jacques Y, Adelstein S, Leonard WJ. Heterodimerization of the IL-2 receptor beta-and gamma-chain cytoplasmic domains is required for signalling. Nature 1994;369(6478):330-3.
    57. Nelson BH, Lord JD, Greenberg PD. Cytoplasmic domains of the interleukin-2 receptor beta and gamma chains mediate the signal for T-cell proliferation. Nature 1994;369(6478):333-6.
    58. Ozaki K, Leonard WJ. Cytokine and cytokine receptor pleiotropy and redundancy. J Biol Chem 2002;277(33):29355-8.
    59. Leonard WJ. Cytokines and immunodeficiency diseases. Nature reviews 2001;1(3):200-8.
    60. Rickert M, Wang X, Boulanger MJ, Goriatcheva N, Garcia KC. The structure of interleukin-2 complexed with its alpha receptor. Science 2005;308(5727):1477-80.
    61. Bazan JF. Structural design and molecular evolution of a cytokine receptor superfamily. Proc Natl Acad Sci USA 1990;87(18):6934-8.
    62. Becknell B, Caligiuri MA. Interleukin-2, interleukin-15, and their roles in human natural killer cells. Advances in immunology 2005;86:209-39.
    63. Anderson DM, Kumaki S, Ahdieh M, Bertles J, Tometsko M, Loomis A, Giri J, Copeland NG, Gilbert DJ, Jenkins NA, et al. Functional characterization of the human interleukin-15 receptor alpha chain and close linkage of IL15RA and IL2RA genes. J Biol Chem 1995;270(50):29862-9.
    64. Giri JG, Kumaki S, Ahdieh M, Friend DJ, Loomis A, Shanebeck K, DuBose R, Cosman D, Park LS, Anderson DM. Identification and cloning of a novel IL-15 binding protein that is structurally related to the alpha chain of the IL-2 receptor. Embo J 1995; 14(15):3654-63.
    65. Arima N, Kamio M, Imada K, Hori T, Hattori T, Tsudo M, Okuma M, Uchiyama T. Pseudo-high affinity interleukin 2 (IL-2) receptor lacks the third component that is essential for functional IL-2 binding and signaling. The Journal of experimental medicine 1992; 176(5):1265-72.
    66. Liparoto SF, Ciardelli TL. Biosensor analysis of the interleukin-2 receptor complex. J Mol Recognit 1999;12(5):316-21.
    67. Olosz F, Malek TR. Structural basis for binding multiple ligands by the common cytokine receptor gamma-chain. J Biol Chem 2002;277(14):12047-52.
    68. Zhang JL, Buehner M, Sebald W. Functional epitope of common gamma chain for interleukin-4 binding. Eur J Biochem 2002;269(5):1490-9.
    69. Zhang JL, Foster D, Sebald W. Human IL-21 and IL-4 bind to partially overlapping epitopes of common gamma-chain. Biochemical and biophysical research communications 2003;300(2):291-6.
    70. Syed RS, Reid SW, Li C, Cheetham JC, Aoki KH, Liu B, Zhan H, Osslund TD, Chirino AJ, Zhang J, Finer-Moore J, Elliott S, Sitney K, Katz BA, Matthews DJ, Wendoloski JJ, Egrie J, Stroud RM. Efficiency of signalling through cytokine receptors depends critically on receptor orientation. Nature 1998;395(6701):511-6.
    71. Livnah O, Stura EA, Johnson DL, Middleton SA, Mulcahy LS, Wrighton NC, Dower WJ, Jolliffe LK, Wilson IA. Functional mimicry of a protein hormone by a peptide agonist:the EPO receptor complex at 2.8 A. Science 1996;273(5274):464-71.
    72. Hage T, Sebald W, Reinemer P. Crystal structure of the interleukin-4/receptor alpha chain complex reveals a mosaic binding interface. Cell 1999;97(2):271-81.
    73. McFarland BJ, Strong RK. Thermodynamic analysis of degenerate recognition by the NKG2D immunoreceptor:not induced fit but rigid adaptation. Immunity 2003;19(6):803-12.
    74. Smith GP. Filamentous fusion phage:novel expression vectors that display cloned antigens on the virion surface. Science 1985;228(4705):1315-7.
    75. Greenwood J, Willis AE, Perham RN. Multiple display of foreign peptides on a filamentous bacteriophage. Peptides from Plasmodium falciparum circumsporozoite protein as antigens. J Mol Biol 1991;220(4):821-7.
    76. Sidhu SS. Phage display in pharmaceutical biotechnology. Current opinion in biotechnology 2000;11(6):610-6.
    77. Kalie E, Jaitin DA, Abramovich R, Schreiber G. An interferon alpha2 mutant optimized by phage display for IFNAR1 binding confers specifically enhanced antitumor activities. J Biol Chem 2007;282(15):11602-11.
    78. Kalnina Z, Silina K, Meistere I, Zayakin P, Rivosh A, Abols A, Leja M, Minenkova O, Schadendorf D, Line A. Evaluation of T7 and lambda phage display systems for survey of autoantibody profiles in cancer patients. J Immunol Methods 2008;334(1-2):37-50.
    79. Zaman GJ, Kaan AM, Schoenmakers JG, Konings RN. Gene V protein-mediated translational regulation of the synthesis of gene Ⅱ protein of the filamentous bacteriophage M13:a dispensable function of the filamentous-phage genome. Journal of bacteriology 1992;174(2):595-600.
    80. Crissman JW, Smith GP. Gene-Ⅲ protein of filamentous phages:evidence for a carboxyl-terminal domain with a role in morphogenesis. Virology 1984; 132(2):445-55.
    81. Lubkowski J, Hennecke F, Pluckthun A, Wlodawer A. The structural basis of phage display elucidated by the crystal structure of the N-terminal domains of g3p. Nature structural biology 1998;5(2):140-7.
    82. Ilyichev AA, Minenkova 00, Kishchenko GP, Tat'kov SI, Karpishev NN, Eroshkin AM, Ofitzerov VI, Akimenko ZA, Petrenko VA, Sandakhchiev LS. Inserting foreign peptides into the major coat protein of bacteriophage M13. FEBS Lett 1992;301(3):322-4.
    83. Jespers LS, Messens JH, De Keyser A, Eeckhout D, Van den Brande I, Gansemans YG, Lauwereys MJ, Vlasuk GP, Stanssens PE. Surface expression and ligand-based selection of cDNAs fused to filamentous phage gene VI. Bio/technology (Nature Publishing Company) 1995;13(4):378-82.
    84. Herrmann S, Leshem B, Lobel L, Bin H, Mendelson E, Ben-Nathan D, Dussart P, Porgador A, Rager-Zisman B, Marks RS. T7 phage display of Ep15 peptide for the detection of WNV IgG Journal of virological methods 2007; 141 (2):133-40.
    85. Maruyama IN, Maruyama HI, Brenner S. Lambda foo:a lambda phage vector for the expression of foreign proteins. Proc Natl Acad Sci U S A 1994;91(17):8273-7.
    86. Mikawa YG, Maruyama IN, Brenner S. Surface display of proteins on bacteriophage lambda heads. J Mol Biol 1996;262(1):21-30.
    87. Ren ZJ, Lewis GK, Wingfield PT, Locke EG, Steven AC, Black LW. Phage display of intact domains at high copy number:a system based on SOC, the small outer capsid protein of bacteriophage T4. Protein Sci 1996;5(9):1833-43.
    88. Ren Z, Black LW. Phage T4 SOC and HOC display of biologically active, full-length proteins on the viral capsid. Gene 1998;215(2):439-44.
    89. Rodi DJ, Makowski L, Kay BK. One from column A and two from column B:the benefits of phage display in molecular-recognition studies. Current opinion in chemical biology 2002;6(1):92-6.
    90. Rodi DJ, Janes RW, Sanganee HJ, Holton RA, Wallace BA, Makowski L. Screening of a library of phage-displayed peptides identifies human bcl-2 as a taxol-binding protein. J Mol Biol 1999;285(1):197-203.
    91. Ulrichts H, Depraetere H, Harsfalvi J, Deckmyn H. Selection of phages that inhibit vWF interaction with collagen under both static and flow conditions. Thrombosis and haemostasis 2001;86(2):630-5.
    92. White SJ, Nicklin SA, Sawamura T, Baker AH. Identification of peptides that target the endothelial cell-specific LOX-1 receptor. Hypertension 2001;37(2 Part 2):449-55.
    93. Ghosh AK, Ribolla PE, Jacobs-Lorena M. Targeting Plasmodium ligands on mosquito salivary glands and midgut with a phage display peptide library. Proc Natl Acad Sci USA 2001;98(23):13278-81.
    94. Grifman M, Trepel M, Speece P, Gilbert LB, Arap W, Pasqualini R, Weitzman MD. Incorporation of tumor-targeting peptides into recombinant adeno-associated virus capsids. Mol Ther 2001;3(6):964-75.
    95. Mourez M, Kane RS, Mogridge J, Metallo S, Deschatelets P, Sellman BR, Whitesides GM, Collier RJ. Designing a polyvalent inhibitor of anthrax toxin. Nature biotechnology 2001;19(10):958-61.
    96. Wu J, Tu C, Yu X, Zhang M, Zhang N, Zhao M, Nie W, Ren Z. Bacteriophage T4 nanoparticle capsid surface SOC and HOC bipartite display with enhanced classical swine fever virus immunogenicity:a powerful immunological approach. Journal of virological methods 2007;139(1):50-60.
    97. Desnues C, Rodriguez-Brito B, Rayhawk S, Kelley S, Tran T, Haynes M, Liu H, Furlan M, Wegley L, Chau B, Ruan Y, Hall D, Angly FE, Edwards RA, Li L, Thurber RV, Reid RP, Siefert J, Souza V, Valentine DL, Swan BK, Breitbart M, Rohwer F. Biodiversity and biogeography of phages in modern stromatolites and thrombolites. Nature 2008;452(7185):340-3.
    98. Rasmussen UB, Schreiber V, Schultz H, Mischler F, Schughart K. Tumor cell-targeting by phage-displayed peptides. Cancer gene therapy 2002;9(7):606-12.
    99. Naz RK. Molecular and immunological characteristics of sperm antigens involved in egg binding. Journal of reproductive immunology 2002;53(1-2):13-23.
    100.Kehoe JW, Velappan N, Walbolt M, Rasmussen J, King D, Lou J, Knopp K, Pavlik P, Marks JD, Bertozzi CR, Bradbury AR. Using phage display to select antibodies recognizing post-translational modifications independently of sequence context. Mol Cell Proteomics 2006;5(12):2350-63.
    101. Hof D, Cheung K, Roossien HE, Pruijn GJ, Raats JM. A novel subtractive antibody phage display method to discover disease markers. Mol Cell Proteomics 2006;5(2):245-55.
    102. De Lorenzo C, Palmer DB, Piccoli R, Ritter MA, D'Alessio G. A new human antitumor immunoreagent specific for ErbB2. Clin Cancer Res 2002;8(6):1710-9.
    103. Maruta F, Parker AL, Fisher KD, Hallissey MT, Ismail T, Rowlands DC, Chandler LA, Kerr DJ, Seymour LW. Identification of FGF receptor-binding peptides for cancer gene therapy. Cancer gene therapy 2002;9(6):543-52.
    104. Rubin JT. Interleukin-2:its rationale and role in the treatment of patients with cancer. Cancer Treat Res 1995;80:83-105.
    105.Farner N, Hank, J., Sondel, P. Interleukin-2:molecular and clinical aspects. In:Remick DG, Friedland, J.S., ed. Cytokines in Health and Disease New York:M. Dekker, Inc,1997:29-40.
    106. Fujita T, Takaoka C, Matsui H, Taniguchi T. Structure of the human interleukin 2 gene. Proc Natl Acad Sci U S A 1983;80(24):7437-41.
    107. Taniguchi T, Matsui H, Fujita T, Takaoka C, Kashima N, Yoshimoto R, Hamuro J. Structure and expression of a cloned cDNA for human interleukin-2. Nature 1983;302(5906):305-10.
    108. Sundick RS, Gill-Dixon C. A cloned chicken lymphokine homologous to both mammalian IL-2 and IL-15.J Immunol 1997;159(2):720-5.
    109. Zurawski SM, Mosmann TR, Benedik M, Zurawski G. Alterations in the amino-terminal third of mouse interleukin 2:effects on biological activity and immunoreactivity. J Immunol 1986;137(10):3354-60.
    110. Ju G, Collins L, Kaffka KL, Tsien WH, Chizzonite R, Crowl R, Bhatt R, Kilian PL. Structure-function analysis of human interleukin-2. Identification of amino acid residues required for biological activity. J Biol Chem 1987;262(12):5723-31.
    111. Collins L, Tsien WH, Seals C, Hakimi J, Weber D, Bailon P, Hoskings J, Greene WC, Toome V, Ju G. Identification of specific residues of human interleukin 2 that affect binding to the 70-kDa subunit (p70) of the interleukin 2 receptor. Proc Natl Acad Sci U S A 1988;85(20):7709-13.
    112. Weigel U, Meyer M, Sebald W. Mutant proteins of human interleukin 2. Renaturation yield, proliferative activity and receptor binding. Eur J Biochem 1989; 180(2):295-300.
    113. Buchli P, Ciardelli T. Structural and biologic properties of a human aspartic acid-126 interleukin-2 analog. Arch Biochem Biophys 1993;307(2):411-5.
    114. Pettit DK, Bonnert TP, Eisenman J, Srinivasan S, Paxton R, Beers C, Lynch D, Miller B, Yost J, Grabstein KH, Gombotz WR. Structure-function studies of interleukin 15 using site-specific mutagenesis, polyethylene glycol conjugation, and homology modeling. J Biol Chem 1997;272(4):2312-8.
    115. MacCallum RM, Martin AC, Thornton JM. Antibody-antigen interactions:contact analysis and binding site topography. J Mol Biol 1996;262(5):732-45.
    116. Wu JX, Qing L, Zhou XP, Chen ZX, Li DB. Production of monoclonal antibodies against broad bean wilt virus. Journal of Zhejiang Agricutural University (Agric & Life Sci) 1999;25(2):147-50.
    117.Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace:a web-based environment for protein structure homology modelling. Bioinformatics 2006;22(2):195-201.
    118. Thanos CD, Randal M, Wells JA. Potent small-molecule binding to a dynamic hot spot on IL-2. J Am Chem Soc 2003; 125(50):15280-1.
    119. Kim P, Pau CP. Comparing tandem repeats and multiple antigenic peptides as the antigens to detect antibodies by enzyme immunoassay. J Immunol Methods 2001;257(1-2):51-4.
    120. Olsen SK, Ota N, Kishishita S, Kukimoto-Niino M, Murayama K, Uchiyama H, Toyama M, Terada T, Shirouzu M, Kanagawa O, Yokoyama S. Crystal Structure of the interleukin-15. interleukin-15 receptor alpha complex:insights into trans and cis presentation. J Biol Chem 2007;282(51):37191-204.
    121.Stepaniak JA, Shuster JE, Hu W, Sundick RS. Production and in vitro characterization of recombinant chicken interleukin-2. J Interferon Cytokine Res 1999; 19(5):515-26.
    122. Miyamoto T, Lillehoj HS, Sohn EJ, Min W. Production and characterization of monoclonal antibodies detecting chicken interleukin-2 and the development of an antigen capture enzyme-linked immunosorbent assay. Vet Immunol Immunopathol 2001;80(3-4):245-57.
    123.Rothwell L, Hamblin A, Kaiser P. Production and characterisation of monoclonal antibodies specific for chicken interleukin-2. Vet Immunol Immunopathol 2001;83(3-4):149-60.
    124. Sauve K, Nachman M, Spence C, Bailon P, Campbell E, Tsien WH, Kondas JA, Hakimi J, Ju G. Localization in human interleukin 2 of the binding site to the alpha chain (p55) of the interleukin 2 receptor. Proc Natl Acad Sci U S A 1991;88(11):4636-40.
    125. Kolodsick JE, Stepaniak JA, Hu W, Sundick RS. Mutational analysis of chicken interleukin 2. Cytokine 2001;13(6):317-24.
    126. Chirifu M, Hayashi C, Nakamura T, Toma S, Shuto T, Kai H, Yamagata Y, Davis SJ, Ikemizu S. Crystal structure of the IL-15-IL-15Ralpha complex, a cytokine-receptor unit presented in trans. Nature immunology 2007;8(9):1001-7.
    127. Suarez DL, Schultz-Cherry S. Immunology of avian influenza virus:a review. Dev Comp Immunol 2000;24(2-3):269-83.
    128. Adams SC, Xing Z, Li J, Cardona CJ. Immune-related gene expression in response to H11N9 low pathogenic avian influenza virus infection in chicken and Pekin duck peripheral blood mononuclear cells. Mol Immunol 2009;46(8-9):1744-9.
    129. Zhou JY, Wang JY, Chen JG, Wu JX, Gong H, Teng QY, Guo JQ, Shen HG. Cloning, in vitro expression and bioactivity of duck interleukin-2. Mol Immunol 2005;42(5):589-98.
    130. Saade F, Buronfosse T, Pradat P, Abdul F, Cova L. Enhancement of neutralizing humoral response of DNA vaccine against duck hepatitis B virus envelope protein by co-delivery of cytokine genes. Vaccine 2008;26(40):5159-64.
    131. Zhou JY, Chen JG, Wang JY, Wu JX, Gong H. cDNA cloning and functional analysis of goose interleukin-2. Cytokine 2005;30(6):328-38.
    132. Teng QY, Zhou JY, Wu JJ, Guo JQ, Shen HG. Characterization of chicken interleukin 2 receptor alpha chain, a homolog to mammalian CD25. FEBS Lett 2006;580(17):4274-81.
    133. Stauber DJ, Debler EW, Horton PA, Smith KA, Wilson IA. Crystal structure of the IL-2 signaling complex:paradigm for a heterotrimeric cytokine receptor. Proc Natl Acad Sci U S A 2006;103(8):2788-93.
    134. Robb RJ, Rusk CM, Neeper MP. Structure-function relationships for the interleukin 2 receptor: location of ligand and antibody binding sites on the Tac receptor chain by mutational analysis. Proc Natl Acad Sci U S A 1988;85(15):5654-8.
    135.LaPorte SL, Juo ZS, Vaclavikova J, Colf LA, Qi X, Heller NM, Keegan AD, Garcia KC. Molecular and structural basis of cytokine receptor pleiotropy in the interleukin-4/13 system. Cell 2008; 132(2):259-72.
    136. Raskin N, Jakubowski A, Sizing ID, Olson DL, Kalled SL, Hession CA, Benjamin CD, Baker DP, Burkly LC. Molecular mapping with functional antibodies localizes critical sites on the human IL receptor common gamma (gamma c) chain. J Immunol 1998;161(7):3474-83.
    137. Olosz F, Malek TR. Three loops of the common gamma chain ectodomain required for the binding of interleukin-2 and interleukin-7. J Biol Chem 2000;275(39):30100-5.
    138. Masse GX, Corcuff E, Decaluwe H, Bommhardt U, Lantz O, Buer J, Di Santo JP. gamma(c) cytokines provide multiple homeostatic signals to naive CD4(+) T cells. Eur J Immunol 2007;37(9):2606-16.
    139. Vosshenrich CA, Ranson T, Samson SI, Corcuff E, Colucci F, Rosmaraki EE, Di Santo JP. Roles for common cytokine receptor gamma-chain-dependent cytokines in the generation, differentiation, and maturation of NK cell precursors and peripheral NK cells in vivo. J Immunol 2005;174(3):1213-21.
    140. Lantz O, Grandjean I, Matzinger P, Di Santo JP. Gamma chain required for naive CD4+T cell survival but not for antigen proliferation. Nature immunology 2000;1(1):54-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700