吸水链霉菌谷氨酰胺转胺酶的活化机制和生理功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
谷氨酰胺转胺酶(Transglutaminase EC 2.3.2.13简称TGase)是一种能够催化蛋白质或肽分子间形成共价交联的酶,是食品领域极为重要的酶制剂之一,同时在医药和纺织等工业领域具有广阔的应用潜力。链霉菌谷氨酰胺转胺酶是目前唯一商业化的能够交联蛋白的酶制剂。已有研究表明,茂源链霉菌(Streptomyces mobaraensis)中TGase以酶原(Pro-TGase)形式分泌,并受蛋白酶活化。然而有关链霉菌TGase活化过程的机制还不清楚,链霉菌TGase的生理功能也未见报道。本研究室近来从土壤中筛选到一株高产谷氨酰胺转胺酶的菌株——吸水链霉菌(Streptomyces hygroscopicus)。为进一步推动S. hygroscopicus产TGase的发酵水平,同时也为揭示更多链霉菌TGase的微生物学机制,本论文对S. hygroscopicus产TGase的活化过程及TGase的生理功能进行了研究。主要研究结果如下:
     1. S. hygroscopicus液体培养过程中存在从Pro-TGase到TGase的转化过程。
     TGase和Pro-TGase存在于S. hygroscopicus液体培养中,可通过乙醇沉淀和阳离子交换色谱(Fractogel EMD SO3-柱)分离等步骤进行纯化。TGase和Pro-TGase的分子量分别为40 kDa和44 kDa。Pro-TGase的N-端氨基酸序列为:ASGDDEEREG。S. hygroscopicus液体培养中TGase以酶原形式分泌并存在从酶原到成熟酶的转化过程。S. hygroscopicus液体培养中Pro-TGase出现在24h,在36h达到最高,之后Pro-TGase蛋白浓度逐渐下降。随着Pro-TGase蛋白浓度的降低,TGase蛋白浓度逐渐增加。与TGase蛋白浓度的增加相对应,TGase酶活力也开始增加。TGase酶活力在60h达到最高(2.4 U/mL),此时对应Pro-TGase的蛋白已全部转化为成熟酶TGase的蛋白。
     2. S. hygroscopicus液体培养中,TGase活化蛋白酶分泌到胞外环境中并受抑制因子抑制。
     TGase活化过程在无细胞上清液中发生沉默。在无细胞上清液培养过程中,从0至24h,Pro-TGase和TGase蛋白的浓度保持恒定,没有发生从Pro-TGase蛋白向TGase蛋白的转化;同时TGase活力保持恒定。10 mg/mL CTAB能够唤醒无细胞上清液沉默的TGase活化过程。添加CTAB的无细胞上清液中Pro-TGase蛋白明显的向TGase蛋白发生转化,同时对应着TGase活性的显著增加(从1.2 U/mL增加到2.3 U/mL)。
     3. S. hygroscopicus液体培养中,TGase活化过程受多种蛋白酶催化调控。
     通过DEAE-Sepharose F. F.柱纯化获得到了TAP样品。纯化的TAP样品(0.03 mg/mL)10μL加入到100μL Pro-TGase (0.26 mg/mL)中,30°C培养30min,TAP能够切割Pro-TGase获得TGase蛋白,同时可以检测到酶活从0提高到0.92 U/ml。纯化的TAP为丝氨酸蛋白酶。
     无细胞上清液中TGase活化过程是多种蛋白酶参与的:包括丝氨酸蛋白酶和金属蛋白酶。10 mmol/L的EDTA抑制下,无细胞上清液中TGase的酶活没有增加,Pro-TGase和TGase的电泳条带浓度也保持稳定;1 mmol/L的PMSF抑制下,TGase的酶活的增加以及Pro-TGase蛋白条带向TGase蛋白条带的转化过程明显滞后。
     4. TAPI的纯化和鉴定及性质研究。
     通过Fractogel EMD SO3-柱和Phenyl Sepharose 6 F. F.柱对TAPI进行纯化,TAPI的蛋白收率为6.36 mg/L。TAPI(0.4μg)能够抑制TAP(0.2μg)对Pro-TGase(2μg)的活化。
     TAPI的N-端氨基酸序列为:GLYAATTALV,属于SSI蛋白家族。TAPI具有表面活性,在液体培养中主要分布在气液界面。5分钟内,TAPI (0.1 mg/mL)使水的界面张力从72降到60 mJ/m2。在此基础上,提出了基于TAPI界面分布的TGase活化过程调控模型。
     5.在S. hygroscopicus固体培养中,TGase在菌体发生分化、形成气生菌丝时开始分泌和活化,并在形成孢子后停止活化,它可能参与了分化过程。
     TGase在S. hygroscopicus营养菌丝的的生长阶段并不分泌,而是在开始生分化形成气生菌丝时才开分泌和活化,并在形成孢子后停止活化。48 h固体平板上开始出现白色的气生菌丝的同时,检测到胞外蛋白浸提液中TGase活性显著提高(0.51 U/plate);144 h固体平板上开始出现黑色孢子,此后已检测不到TGase活性。Pro-TGase当量活性在48 h开始出现(0.03 U/plate),之后逐渐升高并在菌体形成孢子后保持稳定(0.65 U/plate左右)。
     胱胺能够抑制S. hygroscopicus液体培养种纯化到TGase的活性,25 mmol/L的胱胺可以抑制活性为0.17 U/mL的TGase 75 %的活性。25 mmol/L的胱胺能够显著延迟S. hygroscopicus的分化过程。
Transglutaminase (TGase; Protein-glutamine-glutamyltransferase, EC 2.3.2.13) is an enzyme capable of introducing covalent cross-links between proteins as well as peptides. TGase is a very important enzyme in food industry and has great potential application in pharmaceutical and textile industries. Streptomyces TGase is the only commercial enzyme that could covalent proteins. It has been reported that TGase from Streptomyces mobaraensis was secreted as zymogen and could be activated by protease. However, no evidence explain the physiological function of Streptomyces TGase; and the mechanism of TGase activation was still unclear in Streptomyces. Recently, in our lab, a new strain capable of producing a high activity of TGase, classified as Streptomyces hygroscopicus, was isolated from soil. To provide theory support to enhance the fermentation of this strain, the activation mechanism and physiological function of TGase from S. hygroscopicus were studied in this dissertation. The main results are listed as following:
     1. Translation from Pro-TGase to TGase exists in liquid culure of S. hygroscopicus.
     TGase and Pro-TGase were secreted to the liquid media and could be purified by ethanol precipitation and Fractogel EMD SO3-. TGase and Pro-TGase exhibited molecular mass as 40 kDa and 44 kDa, respectively. N-terminal amino acids sequences of Pro-TGase were: ASGDDEEREG.
     During the liquid culture of S. hygroscopicus, TGase was secreted as a zymogen and was subsequently activated. Pro-TGase appeared at 24h and reached a maximum concentration at 36h. Subsequently, with the level of Pro-TGase decreasing, the level of mature TGase increased gradually accompanied by a significant increase in TGase activity. TGase activity reached the highest value of 2.4 U/mL at about 60 h, when Pro-TGase was entirely converted into mature TGase.
     2. TGase-activating protease is located in the cell-free fraction and is inhibited by a TGase-activating protease inhibitor.
     TGase activation was silenced in cell-removed system. Both Pro-TGase level and TGase activity in the cell-free fraction remained steady from 0 to 24 h. 10 mg/mL cetyltrimethyl ammonium bromide (CTAB) could waken TGase activation in cell-removed system. CTAB-treated supernatant showed that the TGase activation process resumed and the rate of activation (from 1.2 to 2.3 U/mL).
     3. Transglutaminase activaton is catalyzed by multi-proteases in S. hygroscopicus liquid culture.
     TAP preparation (0.03 mg/mL) was purified by DEAE-Sepharose F. F. TAP (10μL) was added to 100μL Pro-TGase (0.26 mg/mL). This mixture was incubated at 30°C for 30 min. Pro-TGase then was cuted into TGase, and Pro-TGase was readily converted to TGase by the TAP-rich preparation, and the TGase activity was clearly detected (0.92 U/mL). TAP was detected as serine protease. Serine protease and metalloprotease involve in the TGase activation in cell-removed system. Under the inhibition of EDTA (10 mmol/L), TGase activity in cell-removed system did not increased and concentration of TGase and Pro-TGase kept stady; while under the inhibition of PMSF (1 mmol/L), TGase activity and the convertion from Pro-TGase to TGase were absolutely delayed.
     4. Purification, indentification and characterization of TAPI.
     TAPI was purified by Fractogel EMD SO3- column and Phenyl Sepharose 6 F. F. column. Yeild of TAPI was about 6.36mg/mL. TAPI (0.4μg) could inhibite Pro-TGase (2μg) activation mediated by TAP (0.2μg).
     N-terminal acid sequences of TAPI were: GLYAATTALV. TAPI belongs to Streptomyces subtilisin inhibitor (SSI) family. TAPI has surface activity. TAPI (0.1 mg/mL) decreased the surface tension of water from 72 to 60 mJ/m2 within 5 min. Based on these findings, a model for TAPI-regulated TGase activation process was proposed.
     5. In S. hygroscopicus solid culture, TGase was secreted and activated during differentiation. TGase may be involved in differentiation of Streptomyces.
     TGase was sereted and activated during the emergence of aerial hyphae rather then during the vegetative growth. And the seretion and activation process stopped when spores were formed. When white aerial hyphae first appeared at 48 h, TGase activaty was detected from the extract liquid (0.51 U/plate); after spores appeared at 144 h, TGase activity could not be detected. Pro-TGase activity from bovine trypsin activation first appeared at 48 h (0.03 U/plate). Subsequently, this activity increased gradually till reach 0.65 U/plate.
     Cystamine could inhibite TGase activity. Cystamine at the concentration of 25 mmol/L inhibited 75 % activity of TGase (0.17 U/mL). Cystamine (25 mmol/L) remarkablely delayed differentiation of S. hygroscopicus.
引文
1. Lorand L, Conrad S M. Transglutaminases. Mol Cell Biochem,1984, 58(1-2): 9-35.
    2. Nemes Z, Marekov L N, Fésüs L, et al. A novel function for transglutaminase 1: attachment of long-chainω-hydroxyceramides to involucrin by ester bond formation. Proc Natl Acad Sci USA, 1999, 96(15): 8402-8407.
    3. Grossowicz N, Wainfan E, Borek E, et al. The enzymatic formation of hydroxamic acids from glutamine and asparagine. J Biol Chem, 1950, 187:111-125.
    4. Bergamini C M, Signorini M, Barbato R, et al. Transglutaminase catalyzed polymerization of troponin in vitro. Biochem Biophys Res Commun, 1995, 206 (1): 201-206.
    5. Pasternack R, Laurent H-P, Rüth T, et al. A fluorescent substrate of transglutaminase for detection and characterization of glutamine acceptor compounds. Anal Biochem, 1997, 249 (1): 54-60.
    6. Clare D A, Gharst G., Sanders T H. Transglutaminase polymerization of peanut proteins. J Agric Food Chem, 2007, 55 (2): 432-8.
    7. Mariniello L, Giosafatto C V, Di Pierro P, et al. Synthesis and resistance to in vitro proteolysis of transglutaminase cross-linked phaseolin, the major storage protein from Phaseolus vulgaris. J Agric. Food Chem, 2007, 55(12): 4717-4721.
    8. Kellerby S S, Gu Y S, McClements D J, et al. Lipid oxidation in a menhaden oil-in-water emulsion stabilized by sodium caseinate cross-linked with transglutaminase. J Agric. Food Chem, 2006, 54(26):10222-10227.
    9. Flanagan J, Singh H. Conjugation of sodium caseinate and gum arabic catalyzed by transglutaminase. J Agric Food Chem, 2006, 54(19): 7305-7310.
    10. Siu N C, Ma C Y, Mine Y. Physicochemical and structural properties of oat globulin polymers formed by a microbial transglutaminase. J Agric Food Chem, 2002, 50 (9): 2660-2665.
    11. Autio K, Kruus K, Knaapila A, et al. Kinetics of transglutaminase-induced cross-linking of wheat proteins in dough. J Agric Food Chem, 2005, 53(4): 1039-1045.
    12. Truong V D, Clare D A, Catignani G. L, et al. Cross-linking and rheological changes of whey proteins treated with microbial transglutaminase. J Agric Food Chem, 2004, 52(5): 1170-1176.
    13. Nieuwenhuizen W F, Dekker H L, de Koning L J, et al. Modification of glutamine and lysine residues in holo and apo alpha-lactalbumin with microbial transglutaminase. J Agric Food Chem, 2003, 51(24): 7132-7139.
    14. Wilcox C P, Swaisgood H E. Modification of the rheological properties of whey proteinisolate through the use of an immobilized microbial transglutaminase. J Agric Food Chem, 2002, 50(20): 5546-5551.
    15. Siu N C, Ma C Y, Mock W Y, er al. Functional properties of oat globulin modified by a calcium-independent microbial transglutaminase.J Agric Food Chem, 2002,50(9): 2666-2672.
    16. Mizuno A, Mitsuiki M, Motoki M. Effect of transglutaminase treatment on the glass transition of soy protein. J Agric Food Chem, 2000, 48(8): 3286-3291.
    17. Eissa A S, Bisram S, Khan S A. Polymerization and gelation of whey protein isolates at low pH using transglutaminase enzyme. J Agric Food Chem, 2004, 52(14): 4456-4464.
    18. Jiang S T, Hsieh J F, Tsai G. J. Interactive effects of microbial transglutaminase and recombinant cystatin on the mackerel and hairtail muscle protein. J Agric Food Chem, 2004, 52(11): 3617-3625.
    19. Lantto R, Puolanne E, Kalkkinen N, et al. Enzyme-aided modification of chicken-breast myofibril proteins: effect of laccase and transglutaminase on gelation and thermal stability. J Agric Food Chem, 2005, 53(23): 9231-9237.
    20. Zhu Y, Rinzema A, Tramper J,et al. Microbial transglutaminase-a review of its production and application in food processing. Appl Microbiol Biotechnol, 1995, 44(5): 277-282.
    21. Griffin M, Casadio R, Bergamini C M. Transglutaminases: nature's biological glues. Biochem J, 2002, 368(Pt 2): 377-96.
    22. Cortez J, Bonner P L R, Griffin M. Application of transglutaminases in the modification of wool textiles. Enzyme and Microbial Technology, 2004, 34: 64-72.
    23. Cui L, Du G, Zhang D, et al. Thermal stability and conformational changes of transglutaminase from a newly isolated Streptomyces hygroscopicus. Bioresour Technol, 2008, 99(9): 3794-3800.
    24. Fontana A, Spolaore B, Mero A, et al. Site-specific modification and PEGylation of pharmaceutical proteins mediated by transglutaminase. Adv Drug Deliv Rev, 2008, 60(1): 13-28.
    25. Ai L, Kim W J, Demircan B, et al. The transglutaminase 2 gene (TGM2), a potential molecular marker for chemotherapeutic drug sensitivity, is epigenetically silenced in breast cancer. Carcinogenesis, 2008, (29): 510-518.
    26. Sugimura Y, Ueda H, Maki M, et al. Novel site-specific immobilization of a functional protein using a preferred substrate sequence for transglutaminase 2. J Biotechnol, 2007, 131(2): 121-127.
    27. Beninati S, Piacentini M. The transglutaminase family: an overview: Minireview article. Amino Acids, 2004, 26(4): 367-372.
    28. Ohtake Y, Nagashima T, Suyama-Satoh S, et al. Transglutaminase catalyzed dissociationand association of protein-polyamine complex. Life Sci, 2007, 81(7): 577-584.
    29. Ikura K, Otomo C, Natsuka S, et al. Inhibition of transglutaminase by synthetic tyrosine melanin. Biosci Biotechnol Biochem, 2002, 66(6): 1412-1414.
    30. Nicholas B, Smethurst P, Verderio E, et al. Cross-linking of cellular proteins by tissue transglutaminase during necrotic cell death: a mechanism for maintaining tissue integrity. Biochem J, 2003, 371(Pt 2): 413-422.
    31. Hasegawa G, Suwa M, Ichikawa Y, et al. A novel function of tissue-type transglutaminase: protein disulphide isomerase. Biochem J, 2003, 373(Pt 3): 793-803.
    32. Matsuda Y, Koshiba T, Osaki T, et al. An Arthropod Cuticular Chitin-binding Protein Endows Injured Sites with Transglutaminase-dependent Mesh. J Biol Chem, 2007, 282(52): 37316-3724.
    33. Folk J. Transglutamise. An. Rev Biochem. 1980, 49: 517-531.
    34. Cui L, Du G, Zhang D, et al. Purification and characterization of transglutaminase from a newly isolated Streptomyces hygroscopicus. Food Chemistry, 2007, 105: 612-618.
    35. Clarke D D, Mycek M J, Neidle A. The incorporation of amines into proteins. Arch Biochem Biophys, 1957, 79: 338-354.
    36. D A, M P. Transglutaminase: protein cross-linking enzymes in tissues and body fluids. Thrombosis and Haemostasis, 1994, 71: 402-415.
    37. Ando H, Adachi M, Umeda K. Purification and characteristics of a novel transglutaminase derived from microorganisms. Agric Biol Chem, 1989, 53: 2613-2617.
    38. Masao M., Atsushi O., Masahiko N., et al. Transglutaminase [P]. United States Patent, 1992, 5: 156-469.
    39. Hiroyasu A., Akira M., Susumu H. Process for producing a transglutaminase derived from streptomyces [P]. United States Patent, 1993, 5: 252-469.
    40. Ho ML, Leu SZ, Hsieh JF. Technical Approach to Simplify the Purification Method and Characterization of Microbial Transglutaminase Produced from Streptoverticilliun ladakanu. J Food Science, 2000, 65: 76-80.
    41. Wu J, Tsai J. Screening the microorganisms and some factors for the production of transglutaminase. Chinese Agric Chem Society, 1996, 34(2): 228-240.
    42. Barros SLH, Assmann F, Zachia A M A. Purification and Properties of a transglutaminase produced by a Bacillus circulans strain isolated from the Amazon environment. Biotechnol Appl Biochem, 2003, 37: 295-299.
    43. Suzuki S, Izawa Y, Kobayashi K. Purification and characterization of novel transglutaminase from Bacillus subtilis spores. Biosci Biotechnol Biochem, 2000, 64: 2344-2351.
    44. Paul P, Brookhart P L, McMahon M T. Purification of guinea pig liver transglutaminase using a phenylalanine–Sepharose 4B affinity column. Analytical Biochemistry, 1983, 128(1): 202-205.
    45. Worratao A, Yongsawatdigul J. Purification and characterization of transglutaminase from Tropical tilapia (Oreochromis niloticus), Food Chem. 2005, 93: 651-658.
    46. Ahvazi B, Kim H C, Kee S H, et al. Three-dimensional structure of the human transglutaminase 3 enzyme: binding of calcium ions changes structure for activation. EMBO J, 2002, 21(9): 2055-2067.
    47. Yee V C, Pedersen L C, Le Trong I, et al. Three-dimensional structure of a transglutaminase: human blood coagulation factor XIII. Proc Natl Acad Sci USA.1994, 91(15): 7296-7300.
    48. Ichinose A, Hendrickson L E, Fujikawa K, et al. Amino acid sequence of the a subunit of human factor XIII. Biochemistry, 1986, 25(22): 6900-6906.
    49. Hornyak T J, Shafer J A. Role of calcium ion in the generation of factor XIII activity. Biochemistry, 1991, 30(25): 6175-6182.
    50. Bishop P D, Teller D C, Smith R A, et al. Expression, purification, and characterization of human factor XIII in Saccharomyces cerevisiae. Biochemistry, 1990, 29(7): 1861-1869.
    51. Noguchi K, Ishikawa K, Yokoyama K, et al. Crystal structure of red sea bream transglutaminase. J Biol Chem, 2001, 276(15): 12055-12059.
    52. Ahvazi B, Boeshans K M, Steinert P M. Crystal structure of transglutaminase 3 in complex with GMP: structural basis for nucleotide specificity. J Biol Chem, 2004, 279(25): 26716-26725.
    53. Kanaji T, Ozaki H, Takao T, et al. Primary structure of microbial transglutaminase from Streptoverticillium sp. strain s-8112. J Biol Chem, 1993, 268(16): 11565-11572.
    54. Kashiwagi T, Yokoyama K, Ishikawa K, et al. Crystal structure of microbial transglutaminase from Streptoverticillium mobaraense. J Biol Chem, 2002, 277(46): 44252-44260.
    55. Washizu K, Ando K, Koikeda S, et al. Molecular cloning of the gene for microbial transglutaminase from Streptoverticillium and its expression in Streptomyces lividans. Biosci Biotechnol Biochem, 1994, 58(1): 82-87.
    56. Brookhart P P, McMahon P L, Takahashi M. Purification of guinea pig liver transglutaminase using a phenylalanine-sepharose 4B affinity column. Anal Biochem. 1983, 128(1): 202-205.
    57. Falcone P, Serafini–Fracassini D, Duca S D. Comparative studies of transglutaminase activity and substrates in different organs of helianthus tuberosus. Plant Physiol, 1993, 142:263-273.
    58. Yasueda H, Y K, M M. Purification and characterization of a tissue-type transglutaminase from red sea bream (Pagrus major). Biosci Biotechnol Biochem, 1994, 58: 2041-2045.
    59. Yokoyama K, Nio N, Kikuchi Y. Properties and applications of microbial transglutaminase. Appl Microbiol Biotechnol, 2004, 64(4): 447-454.
    60. Soares L H, Assmann F, Ayub M A. Production of transglutaminase from Bacillus circulans on solid-state and submerged cultivations. Biotechnol Lett, 2003, 25(23): 2029-2033.
    61. de Barros Soares L H, Assmann F, Zachia Ayub M A. Purification and properties of a transglutaminase produced by a Bacillus circulans strain isolated from the Amazon environment. Biotechnol Appl Biochem. 2003, 37(Pt 3): 295-299.
    62. Takehana S, Washizu K, Ando K, et al. Chemical synthesis of the gene for microbial transglutaminase from Streptoverticillium and its expression in Escherichia coli. Biosci Biotechnol Biochem, 1994, 58(1): 88-92.
    63. Marx C K, Hertel T C, Pietzsch M. Soluble expression of a pro-transglutaminase from Streptomyces mobaraensis in Escherichia coli. Enzyme and Microbial Technology, 2007, 40(6): 1543-1550.
    64. Kikuchi Y, Date M, Yokoyama K, et al. Secretion of active-form Streptoverticillium mobaraense transglutaminase by Corynebacterium glutamicum: processing of the pro-transglutaminase by a cosecreted subtilisin-Like protease from Streptomyces albogriseolus. Appl Environ Microbiol, 2003, 69(1): 358-366.
    65. Rajkarnikar A, Kwon H J, Ryu Y W, et al. Catalytic domain of AfsKav modulates both secondary metabolism and morphologic differentiation in Streptomyces avermitilis ATCC 31272. Curr Microbiol. 2006, 53(3): 204-208.
    66.刘志恒,姜成林.放线菌现代生物学与生物技术[M].科学出版社:北京, 2004.
    67. Volff J N, Altenbuchner J. Genetic instability of the Streptomyces chromosome. Mol Microbiol. 1998, 27(2): 239-246.
    68. Gunes G, Smith B, Dyson P. Genetic instability associated with insertion of IS6100 into one end of the Streptomyces lividans chromosome. Microbiology. 1999, 145( Pt 9): 2203-2208.
    69. Yang Y, Xu C, Ge F, et al. Heterologous expression of the single-mutation glucose isomerase (GIG138P) gene in Streptomyces lividans and its genetic instability. Curr Microbiol. 2001, 42(4): 241-247.
    70. Genay M, Catakli S, Kleinclauss A, et al. Genetic instability of whiG gene during the aerial mycelium development of Streptomyces ambofaciens ATCC23877 under differentconditions of nitrogen limitations. Mutat Res. 2006, 595(1-2): 80-90.
    71. Widenbrant E M, Kao C M. Introduction of the foreign transposon Tn4560 in Streptomyces coelicolor leads to genetic instability near the native insertion sequence IS1649. J Bacteriol, 2007, 189(24): 9108-9116.
    72. Arabolaza A, Banchio C, Gramajo H. Transcriptional regulation of the macs1-fadD1 operon encoding two acyl-CoA synthases involved in the physiological differentiation of Streptomyces coelicolor. Microbiology. 2006, 152(Pt 5): 1427-1439.
    73. Leblond P, Decaris B. New insights into the genetic instability of streptomyces. FEMS Microbiol Lett. 1994, 123(3): 225-232.
    74. Volff J N, Vandewiele D, Decaris B. Stimulation of genetic instability and associated large genomic rearrangements in Streptomyces ambofaciens by three fluoroquinolones. Antimicrob Agents Chemother. 1994, 38(9): 1984-1990.
    75. Fischer G, Decaris B, Leblond P. Occurrence of deletions, associated with genetic instability in Streptomyces ambofaciens, is independent of the linearity of the chromosomal DNA. J Bacteriol. 1997, 179(14): 4553-4558.
    76. Bentley S D, Chater K F, Cerdeno-Tarraga A M, et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature. 2002, 417(6885): 141-147.
    77. Pariza M W, Johnson E A. Evaluating the safety of microbial enzyme preparations used in food processing: update for a new century. Regul Toxicol Pharmacol. 2001, 33(2):173-186.
    78. Takano E. Gamma-butyrolactones: Streptomyces signalling molecules regulating antibiotic production and differentiation. Curr Opin Microbiol. 2006, 9(3): 287-294.
    79. Miguélez E M, Hardisson C, Manzanal M B. Streptomycetes: a new model to study cell death. Internatl Microbiol. 2000, 3(3): 153-158.
    80. San Paolo S, Huang J, Cohen S N, et al. rag genes: novel components of the RamR regulon that trigger morphological differentiation in Streptomyces coelicolor. Mol Microbiol. 2006, 61(5): 1167-1186.
    81. Willey J M, Willems A, Kodani S, et al. Morphogenetic surfactants and their role in the formation of aerial hyphae in Streptomyces coelicolor. Mol Microbiol. 2006, 59(3): 731-742.
    82. Claessen D, Rink R, de Jong W, et al. A novel class of secreted hydrophobic proteins is involved in aerial hyphae formation in Streptomyces coelicolor by forming amyloid-like fibrils. Genes Dev. 2003, 17(14): 1714-1726.
    83. Elliot M A, Karoonuthaisir N, Huang J, et al. The chaplins: a family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor. Genes Dev. 2003, 17(14): 1727-1740.
    84. Miguélez E M, Hardisson C, Manzanal M B. Hyphal Death during Colony Developmentin Streptomyces antibioticus: Morphological Evidence for the Existence of a Process of cell Deletion in a Muticellular Prokaryote. J Cell Bio. 1999, 145(3): 515-525.
    85. Nicieza R G, Huergo J, Connolly B A, et al. Purification, Characterization, and Role of Nucleases and Serine Proteases in Streptomyces Differentiation. J Biol Chem. 1999, 274(29): 20366-20375.
    86. Capstick D S, Willey J M, Buttner M J, et al. SapB and the chaplins: connections between morphogenetic proteins in Streptomyces coelicolor. Mol Microbiol. 2007, 64(3): 602-613.
    87. Claessen D, Stokroos I, Deelstra H J, et al. The formation of the rodlet layer of streptomycetes is the result of the interplay between rodlins and chaplins. Mol Microbiol. 2004, 53(2): 433-443.
    88. Talbot N J. Aerial morphogenesis: enter the chaplins. Curr Biol, 2003, 13(18): 696-698.
    89. Kodani S., Hudson M E, Durrant M C, et al. The SapB morphogen is a lantibiotic-like peptide derived from the product of the developmental gene ramS in Streptomyces coelicolor. Proc Natl Acad Sci USA, 2004, 101(31): 11448-11453.
    90. Casademont I, Chevrier D, Guesdon J L. Cloning of a sapB homologue (sapB2) encoding a putative 112-kDa Campylobacter fetus S-layer protein and its use for identification and molecular genotyping. FEMS Immunol Med Microbiol. 1998, 21(4): 269-281.
    91. Whalen M B, Piggot P J. Gain-of-function mutation of sapB that affects formation of alkaline phosphatase by Bacillus subtilis in sporulation conditions. Microbiology, 1997, 143( Pt 2): 577-583.
    92. Delaney C E. The scheduled associate to partner to buyout process: the SAPB. J Mass Dent Soc. 1991, 40(2): 75-78.
    93. Kim I, Lee K. Trypsin-like protease of Streptomyces exfoliatus SMF13, a potential agent in mycelial differentiation. Microbiology. 1996, 142 (Pt 7): 1797-1806.
    94. Iranzo M, Aguado C, Pallotti C, et al. Transglutaminase activity is involved in Saccharomyces cerevisiae wall construction. Microbiology, 2002, 148: 1329-1334.
    95. Kobayashi K, Suzuki S I, Izawa Y, et al. Transglutaminase in sporulating cells of Bacillus subtilis. J Gen Appl Microbiol. 1998, 44(1): 85-91.
    96. Gerber U, Jucknischke U, Putzien S, et al. A rapid and simple method for the purification of transglutaminase from Streptoverticillium mobaraense. Biochem. J. 1994, 299( Pt 3): 825-829.
    97. Pasternack R, Dorsch S, Otterbach J T, et al. Bacterial pro-transglutaminase from Streptoverticillium mobaraense Purification, characterisation and sequence of the zymogen. Eur J Biochem, 1998, 257: 570-576.
    98. Zotzel J, Keller P, Fuchsbauer H-L. Transglutaminase from Streptomyces mobaraensis isactivated by an endogenous metalloprotease. Eur J Biochem. 2003, 270(15): 3214-3222.
    99. Zotzel J, Pasternack R, Pelzer C, et al. Activated transglutaminase from Streptomyces mobaraensis is processed by a tripeptidyl aminopeptidase in the final step. Eur J Biochem. 2003, 270(20): 4149-4155.
    100.Kourteva Y, Boteva R. A novel extracellular subtilisin inhibitor produced by a Streptomyces sp. FEBS Lett. 1989, 247(2): 468-470.
    101. Terabe M, Kojima S, Taguchi S, et al. New subtilisin-trypsin inhibitors produced by Streptomyces: primary structures and their relationship to other proteinase inhibitors from Streptomyces. Biochimica Biophysica Acta. 1996, 1292(2): 233-240.
    102.Terabe M, Kojima S, Taguchi S, et al. A subtilisin inhibitor produced by Streptomyces bikiniensis possesses a glutamine residue at reactive site P1. J Biochem, 1995, 117(3): 609-613.
    103.Uchida K, Markley J L, Kainosho M. Carbon-13 NMR method for the detection of correlated hydrogen exchange at adjacent backbone peptide amides and its application to hydrogen exchange in five antiparallel beta strands within the hydrophobic core of Streptomyces subtilisin inhibitor (SSI). Biochemistry. 2005, 44(35): 11811-11820.
    104.Kato J Y, Hirano S, Ohnishi Y, et al. The Streptomyces subtilisin inhibitor (SSI) gene in Streptomyces coelicolor A3(2). Biosci Biotechnol Biochem. 2005, 69(8): 1624-1629.
    105.Oda M, Tamura A, Kanaori K, et al. Functional tolerance of Streptomyces subtilisin inhibitor toward conformational and stability changes caused by single-point mutations in the hydrophobic core. J Biochem. 2002, 132(6): 991-995.
    106.Van Mellaert L, Lammertyn E, Schacht S, et al. Molecular characterization of a novel subtilisin inhibitor protein produced by Streptomyces venezuelae CBS762.70. DNA Seq. 1998, 9(1): 19-30.
    107.Markaryan A, Beall C J, Kolattukudy P E. Inhibition of Aspergillus serine proteinase by Streptomyces subtilisin inhibitor and high-level expression of this inhibitor in Pichia pastoris. Biochem Biophys Res Commun. 1996, 220(2): 372-376.
    108.Lammertyn E, Van Mellaert L, Schacht S, et al. Evaluation of a novel subtilisin inhibitor gene and mutant derivatives for the expression and secretion of mouse tumor necrosis factor alpha by Streptomyces lividans. Appl Environ Microbiol. 1997, 63(5): 1808-1813.
    109.Sasakawa H, Tamura A, Akasaka K, et al. Backbone 1H, 13C, and 15N resonance assignments of Streptomyces subtilisin inhibitor. J Biomol NMR. 1999, 14(3): 285-286.
    110. Kim D W, Chater K, Lee K J, et al. Changes in the extracellular proteome caused by the absence of the bldA gene product, a developmentally significant tRNA, reveal a new targetfor the pleiotropic regulator AdpA in Streptomyces coelicolor. J Bacteriol. 2005, 187(9): 2957-2966.
    111. Tomono A, Tsai Y, Ohnishi Y, et al. Three chymotrypsin genes are members of the AdpA regulon in the A-factor regulatory cascade in Streptomyces griseus. J Bacteriol. 2005, 187(18): 6341-6353.
    112. Ganz P J, Bauer M D, Sun Y, et al. Stabilized variant of Streptomyces subtilisin inhibitor and its use in stabilizing subtilisin BPN'. Protein Eng Des Sel. 2004, 17(4): 333-339.
    113. Sasakawa H, Tamura A, Fujimaki S, et al. Secondary structures and structural fluctuation in a dimeric protein, Streptomyces subtilisin inhibitor. J Biochem. 1999, 126(5): 859-865.
    114. Terabe M, Kojima S, Taguchi S, et al. Primary structure and inhibitory properties of a subtilisin-chymotrypsin inhibitor from Streptomyces virginiae. Eur J Biochem. 1994, 226(2): 627-632.
    115. Taguchi S, Odaka A, Watanabe Y, et al. Molecular Characterization of a Gene Encoding Extracellular Serine Protease Isolated from a Subtilisin Inhibitor-Deficient Mutant of Streptomyces albogriseolus S-3253. Appl Environ Microbiol. 1995, 61(1): 180-186.
    116. Suzuki M, Taguchi S, Yamada S, et al. A Novel Member of the Subtilisin-Like Protease Family from Streptomyces albogriseolus. J Bacteriol. 1997, 179(2): 430-438.
    117. Shin S K, Xu D, Kwon H J, et al. S-adenosylmethionine activates adpA transcription and promotes streptomycin biosynthesis in Streptomyces griseus. FEMS Microbiol Lett. 2006, 259(1): 53-59.
    118. Hirano S, Kato J Y, Ohnishi Y, et al. Control of the Streptomyces Subtilisin inhibitor gene by AdpA in the A-factor regulatory cascade in Streptomyces griseus. J Bacteriol. 2006, 188(17): 6207-6216.
    119. Kato J Y, Ohnishi Y, Horinouchi S. Autorepression of AdpA of the AraC/XylS family, a key transcriptional activator in the A-factor regulatory cascade in Streptomyces griseus. J Mol Biol. 2005, 350(1): 12-26.
    120.Nguyen K T, Tenor J, Stettler H, et al. Colonial differentiation in Streptomyces coelicolor depends on translation of a specific codon within the adpA gene. J Bacteriol. 2003, 185(24): 7291-7296.
    121.柏映国,燕国梁,陈坚. Streptomyces hygroscopicus产谷氨酰胺转胺酶摇瓶发酵条件的优化[J].食品与发酵工业. 2004, 30: 27-31.
    122.黄亮.吸水链霉菌发酵法生产谷氨酰胺转胺酶过程中蛋白酶的产生及控制研究[D]. [硕士学位论文].无锡:江南大学生物工程学院, 2006.
    123.张程杰. Streptomyces hygroscopicus发酵生产谷氨酰胺转胺酶条件优化及中试研究[D]. [硕士学位论文].无锡:江南大学生物工程学院, 2005.
    124.郑美英,堵国成,陈坚.发酵生产谷氨酰胺转胺酶的摇瓶条件[J].无锡轻工大学学报1999, 18(3): 37-41.
    125.黄亮,张东旭,刘和等.微生物谷氨酰胺转胺酶制备过程中蛋白酶的抑制研究[J].食品与发酵工业. 2005, 31(12): 8-11.
    126.Yan G., Du G., Li Y., et al. Enhancement of microbial transglutaminase production by Streptoverticillium mobaraense: application of a two-stage agitation speed control strategy. Proc Biochem. 2005, 40: 963-968.
    127. Zheng M, Du G, Chen J, et al. A temperature-shift strategy in batch MTG fermentation with S. mobaraense. Process Biochem. 2001, 36: 525-530.
    128. Zheng M, Du G, Chen J. pH control strategy of batch microbial transglutaminase production with Streptoverticillium mobaraense. Enzyme Microb Technol. 2002, 31: 477-481.
    129.唐名山,王树英,陈坚等. Streptoverticillium mobaraense谷氨酰胺转胺酶的表达、纯化和复性[J].食品与发酵工业. 2004, 30(4): 17-21.
    130.张程杰,堵国成,李寅等.添加羟胺诱导Streptomyces hygroscopicus产谷氨酰胺转胺酶[J].过程工程学报. 2005, 5(4): 434-437.
    131.黄亮,刘和,张东旭等.超滤法浓缩谷氨酰胺转胺酶的影响因素研究[J].工业微生物. 2006, 36(3): 9-12.
    132.Kashiwagi T, Yokoyama K-i, Ishikawa K, et al. Crystal Structure of Microbial Transglutaminase from Streptoverticillium mobaraense. J Biol Chem. 2002, 46(277): 44252–44260.
    133.柏映国.谷氨酰胺转胺酶发酵中试研究及菌种选育和发酵条件优化[D]. [硕士学位论文].无锡:江南大学生物工程学院, 2004.
    134.程力,张东旭,堵国成等.添加CTAB促进吸水链霉菌产谷氨酰胺转胺酶[J].生物工程学报. 2007, 23(3): 497-501.
    135.Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72(1): 248-254.
    136.Sambrook J, Russell D W. Molecular cloning: a laboratory manual. 3rd ed. Cold Spring Harbor Press: Cold Spring Harbor, N.Y., 2001
    137.郭尧君.蛋白质电泳实验技术[M].第2版.北京:科学出版社, 2005.
    138.鲁时瑛,周楠迪,堵国成等.谷氨酰胺转胺酶的分离纯化及酶学性质[J].无锡轻工大学学报. 2002, 21(6): 564-568.
    139.周楠迪.谷氨酰胺转胺酶的分离纯化和酶学性质研究[D]. [硕士学位论文].无锡:江南大学生物工程学院, 2001.
    140. Lin Y-S, Chao M-L, Liu C-H, et al. Cloning of the gene coding for transglutaminase from Streptomyces platensis and its expression in Streptomyces lividans. Process Biochem. 2006, 41(3): 519-524.
    141. Liu XQ, Yang XQ, Xie FH, et al. On-column refolding and purification of transglutaminase from Streptomyces fradiae expressed as inclusion bodies in Escherichia coli. Protein Expr Purif. 2007, 51(2): 179-186.
    142. Taguchi S, Arakawa K, Yokoyama K, et al. Overexpression and purification of microbial pro-transglutaminase from Streptomyces cinnamoneum and in vitro processing by Streptomyces albogriseolus proteases. J Biosci Bioeng. 2002, 94(5): 478-481.
    143.任增亮,张东旭,堵国城等.吸水链霉菌谷氨酰胺转氨酶在大肠杆菌中的克隆和表达[J].微生物学报2008, 43(4): 480-485.
    144. Zhu H, Fan Y X, Shi N, et al. Activity and conformation changes of Chinese hamster dihydrofolate reductase in reverse micelles. Arch Biochem Biophys. 1999, 368(1): 61-66.
    145. Melo E P, Carvalho C M, Aires-Barros M R, et al. Deactivation and conformational changes of cutinase in reverse micelles. Biotechnol Bioeng. 1998, 58(4): 380-386.
    146.程力.吸水链霉菌产谷氨酰胺转氨酶的发酵条件优化[D]. [硕士学位论文].无锡:江南大学生物工程学院, 2007.
    147. Hirano S, Kato J, Ohnishi Y, et al. Control of the Streptomyces Subtilisin Inhibitor Gene by AdpA in the A-Factor Regulatory Cascade in Streptomyces griseus. J Bacteriol. 2006, 188(17): 6207-6216.
    148. Taguchi S, Kikuchi H, Suzuki M, et al. Streptomyces Subtilisin Inhibitor-Like Proteins Are Distributed Widely in Streptomycetes. Appl Environ Microbiol. 1993, 59(12): 4338-4341.
    149. Taguchi S, Kojima S, Kumagai I, et al. Isolation and partial characterization of SSI-like protease inhibitors from Streptomyces. FEMS Microbiol. Lett. 1992, 99(2-3): 293-297.
    150. Kuramoto A, Lezhava A, Taguchi S, et al. The location and deletion of the genes which code for SSI-like protease inhibitors in Streptomyces species. FEMS Microbiol. Lett. 1996, 139(1): 37- 42.
    151. Pu B, Chen D. A Study of the Measurement of Surface and Interfacial Tension by the Maximum Liquid Drop Volume Method. J Colloid Interface Sci. 2001, 235(2): 273-277.
    152. Claessen D, W?sten H A B, van Keulen G, et al. Two novel homologous proteins of Streptomyces coelicolor and Streptomyces lividans are involved in the formation of the rodlet layer and mediate attachment to a hydrophobic surface. Mol Microbiol. 2002, 44(6):1483-1492.
    153. Willey J M, Willems A, Kodani S, et al. Morphogenetic surfactants and their role in the formation of aerial hyphae in Streptomyces coelicolor. Mol Microbiol. 2006, 59(3): 731-742.
    154. Melino G, Annicchiarico-Petruzzelli M, Piredda L, et al. Tissue transglutaminase and apoptosis: sense and antisense transfection studies with human neuroblastoma cells. Mol Cell Biol. 1994, 14(10): 6584-6596.
    155. Yamaguchi H, Wang H G. Tissue transglutaminase serves as an inhibitor of apoptosis by cross-linking caspase 3 in thapsigargin-treated cells. Mol Cell Biol. 2006, 26(2): 569-579.
    156. Hsu T C, Huang C Y, Chiang S Y, et al. Transglutaminase inhibitor cystamine alleviates the abnormality in liver from NZB/W F1 mice. Eur J Pharmacol. 2008, 579(1-3): 382-389.
    157. Bailey C D, Johnson G V. The protective effects of cystamine in the R6/2 Huntington's disease mouse involve mechanisms other than the inhibition of tissue transglutaminase. Neurobiol Aging. 2006, 27(6): 871-879.
    158. Jeitner T M, Delikatny E J, Ahlqvist J, et al. Mechanism for the inhibition of transglutaminase 2 by cystamine. Biochem Pharmacol. 2005, 69(6): 961-970.
    159. Jeon J H, Lee H J, Jang G Y, et al. Different inhibition characteristics of intracellular transglutaminase activity by cystamine and cysteamine. Exp Mol Med. 2004, 36(6): 576-581.
    160. Datta S, Antonyak M A, Cerione R A. GTP-Binding-Defective Forms of Tissue Transglutaminase Trigger Cell Death. Biochem, 2007, 46(51): 14819-14829.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700