转谷氨酰胺酶对草鱼糜凝胶性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鱼糜制品在水产品加工业中占有重要的地位。鱼糜及其制品的加工原料多为海产品类,但受海洋捕捞和海水养殖生产不同程度的停滞,海产品的供应趋势明显减少,满足不了鱼糜及鱼糜制品的市场需求,因此开发淡水鱼鱼糜及鱼糜制品是今后鱼糜加工业的重要课题。但是淡水鱼糜的凝胶能力普遍较差,尤其是经过冷冻储藏之后,研究发现转谷氨酰胺酶(Transglutaminase,简称TGase)可以提高鱼糜的凝胶强度。本文以草鱼为研究对象,研究鱼中内源性转谷氨酰胺酶(FishTransglutaminase,简称FTG)的活性,内源性及微生物转谷氨酰胺酶对草鱼糜中蛋白质的交联性的影响,及微生物转谷氨酰胺酶(Microbial Transglutaminase,简称MTG)对草鱼糜凝胶特性的影响。
     草鱼糜中的内源性转谷氨酰胺酶的活性会受到PH、温度、离子强度、激活剂、抑制剂及鱼糜冻藏时间等因素的影响。研究表明,草鱼糜的内源性转谷氨酰胺酶的最适pH为8-9,最适温度为45℃,需要钙离子(1 mmol/L)激活,DTT在低浓度(0-1 mM)范围内可以保护酶的活性基团,从而提高酶的活性,Cu2+Ba2+、Zn2+、Mn2+、Fe2+、Pb2+、Fe3+、Li+、Mg2+、K+、Na+等金属离子及一些酶活抑制剂会抑制酶的活性,甚至导致酶失活,酶活也受鱼糜冻藏时间的影响,冻藏时间越长,酶活也越低。
     在加热过程中,加入TGase的溶液中,测得溶液中自然肌动球蛋白(Natural actomyosin,简称NAM)的含量比不加酶时要低,说明加入TGase可以增强NAM的交联程度。比较加入相同酶活单位的MTG和FTG后,发现MTG对NAM交联程度的影响比草鱼糜中内源性转谷氨酰胺酶要好。溶液中NAM含量受温度影响很大。低温条件(25-35℃),溶液中NAM的含量随着温度的上升略有上升;在40-45℃时,溶液NAM含量降到最低,说明这个温度下,NAM的交联程度最大;随着温度的进一步升高,NAM的交联程度大大降低,可能是因为组织蛋白酶在较高温度下被激活的原因。
     在加酶量为1.5%、自然PH值下,于42℃保温0.5h,草鱼糜的凝胶强度达到最大。MTG作用条件对白度、持水性、蒸煮损失的研究表明,鱼糜凝胶的白度与凝胶强度及凝胶含水量有一定的关系,持水性及蒸煮损失一般与鱼糜凝胶强度成正相关。钙离子浓度在20-50mmol/kg时可以增强草鱼糜凝胶强度,草鱼糜中加入EDTA或NH4C1,鱼糜凝胶变差。
     在MTG优化条件下,添加马铃薯淀粉、小麦淀粉、玉米淀粉的鱼糜凝胶品质较好,研究马铃薯淀粉添加量的影响表明,淀粉添加量在100%-15%的鱼糜品质较好,水分添加量在15%-25%时,鱼糜凝胶的品质较好。
Surimi products occupies an important position in processing industry of aquatic products. The raw material of surimi and surimi products mostly are seafood. But the supply of seafood is reducing and it can't meet the market demands of surimi and surimi products, because marine fishing and aqua culture production is stagnated to varying degrees. Therefore the development of freshwater surimi products is an important issue in the future surimi processing industry. However the gelation of freshwater surimi is generally poor, especially after frozen storage. It has been found that transglutaminase can enhance surimi gel strength. In this thesis which focuced on grass carp, we studied the characterization of transglutaminase (TGase) from grass carp under different conditions, effects of FTG and MTG on cross-linking of natural actomyosin, and effects of MTG on gel strength of grass carp.
     The activity of TGase from grass carp can be affected by PH, setting temperature, ionic strength, activator, inhibitor, frozen storage time and other factors. The results showed that optimal pH and optimal temperature of transglutaminase from grass carp were 8-9 and 25-45℃, respectively. It could be activated by calcium. Dithiothreitol (DTT) at low concentrations (0~1 mM)can protect the active groups of enzyme, so as to increase the enzyme activity. Cu2+、Ba2+、Zn2+、Mn2+、Fe2+、Pb2+、Fe3+、Li+ Mg2+、K+、Na+ and other metal ions can inhibit the activity of TGase, and even lead to enzyme inactivation. Enzyme activity can also be affected by frozen storage time of surimi, enzyme activity decreases with frozen storage time.
     It was measured that the concentration of natural actomyosin (NAM) in solution which was added TGase was lower than which wasn't added in the heating process. It indicated adding TGase in solution can enhance the craoss-linking of NAM. Cross-linking of NAM in solution was more improved by MTG when MTG and FTG were added to solution both at 3 U TGase/ml. The concentration of NAM was greatly affected by temperature. It reduced to a minimum in 40~45℃. It indicated the cross-linking of NAM was best in this temperature. As the temperature increased further, the cross-linking of NAM significantly reduced, probably because of cathepsin is activated in higher temperatures.
     Surimi gel strength of grass carp was biggest under sunch conditions as 1~1.5% enzyme dosage, setting 0.5h at 42℃with natural PH value. Studies on whiteness, water holding capacity, cooking-loss of surimi gels under different conditions have shown whiteness of surimi gels had a certain relationship to gel strength and water content of surimi gels, and water holding capacity and cooking-loss of surimi gels is generally positively related to the gel strength of surimi. Calcium could improve the gel strength of surimi in concentration of 20-50mmol/kg. The gelation of surimi became bad by adding EDTA or NHUCl.
     Under optimized conditions, surimis adding potato starch, wheat starch or corn starch would form good gels. The adding amount of potato starch in 10~15%, surimi gels quality was better. The adding amount of water in 15~25%, surimi gels quality was better.
引文
[1]Ferry J D. Protein gels[J]. Adv Protein Chem,1948,4(1):1-2
    [2]FoegEding E A, Dayton W R, Allen C E. Interaetion of myosin fibrinogen to form protein gels. Journal of Food science,1986,51(1):280-285
    [3]An H, Peters M Y, and Seymour T A. Roles of endogenous enzymes in surim gelation [J].Trends in Food Seienee & Technology,1996,7:321-327
    [4]Funatsu Y, Kato N, and Arai K. Gel forming ability and cross-linking ability of myosin heavy chain of salt-ground meat from sardine surimi acidified by lacticacid [J]. NIPPon Suidan Gakkaishi,1993,59:1093-1098
    [5]Kumazawa Y, Numazawa T, Segro K & Mootoki M. Suppression of surimi gel setting by transglutaminase inhibitors[J].Journal of Food Science,1995,60:715-717
    [6]Worratao A, Yongsawadiaul J. Purification and characterization of transglutaminase from Tropical tilapia (Oreochromis niloticus) [J]. Food Chemistry, 2005,93:651-658
    [7]Nozawa H, Mamegoshi S, Segi N. Partial purification and characterization of six transglutaminase from ordinary muscles of various fishes and marine invertebrates [J]. Comparative Biochemistry and physiology B,1997,118:313-317
    [8]Yasueda H, Kumazaway Y, MOTOKI M. Purification and characterization of a tissue-type transglutaminase from red sea bream (Pagrus major) [J]. Bioscience Biotechnology and Biochemistry,1994,58:2041-2045
    [9]Piyadhammaviboon P, Yongsawatdiaul J. Protein cross-linking ability of sarcoplasmic proteins extracted from threafin bream [J]. Food Science and Technology,2009,42:37-43
    [10]Kumazawa Y, Naknishi K, Yasueda H, et al.. Purification and characterization of transglutaminase from walleye pollack liver. Fisheries Science,1996,62:959-964
    [11]于红,冯月荣,王艳丽.冷冻鱼糜的制作及品质控制.肉类工业,2008,6(326):21-24.
    [12]沈月新.水产食品学[M].北京:中国农业出版社,2001
    [13]Niwa E. Chemistry of surimi gelation. New York:MarcelDekker, Ine,1992: 389-438
    [14]Siriporn Riebroy, Soottawat Benjakul&Wonnop. Etal. Acid -induced gelation of natural actomyosin from Atlantic cod and burbot[J]. Food Hydrocolloids, 2007,(11):1-14
    [15]Chan J K, et al. Thermal aggregation of myosin subfragments from Cod and Herring[J]. Journal of Food Science,1993,58 (5):1057-10611
    [16]Sano T, Noguchi S F. Matsumoto J J and Tsuehiya T. Thermal gelation characteristics of myosin subfragments [J]. Journal of Food Science,1990,55(1):55-58,70
    [17]Sano T, Ohno T, Otsuka-Fuchino H, Matsumoto J J, Tsuchiya T. Carp natural actomyosin:Thermal denaturation mechanism [J]. Journal of Food Science,1994, 59:1002-1008
    [18]Hossain M 1, Itoh Y, Morioka K, and Obatake A. Contributin of the Polymerization of protein by disulfide bonding to increased gel strength of walleye Pollaek surimi gel with Preheating time [J].Fisheries Science,2001,67:710-717
    [19]Jiang S T, Lan C C, Tsao C Y. New approach to improving the quality of mince fish products from freeze thawed Cop and Mackerel[J].Joumal of FoodScience,1986, 51(2):310-312
    [20]Benjakul S, Visessanguan W, Srivilai C. Porcine plasma protein as proteinase inhibitor in bigeye sannpper (Priacanthus tayenus) muscle and surimi[J]. Journal of the Science of Food and Agriculture,2001a,81:1039-1046.
    [21]曲楠,曾名勇,赵元辉.鱼糜凝胶性能研究进展.肉类研究,2009,10(128):80-84
    [22]Gill T A, Chan J K, Phonchareon K F. Food Recserh International,1992,25:333.
    [23]张俊杰,曾庆孝.我国淡水鱼鱼糜的研究情况[J].食品与发酵工业,2002,28(9):58-62
    [24]汪秋宽,李振民,刘俊荣.鲤在-20℃冻藏过程中的质构变化[J].水产学报,1997,21(2):185-188
    [25]Roura S I, Saavedra J P, Truco R E. Conformational change in actomyosin from post-spawned Hake stored on ice[J]. JFS,1992,57(5):1109-1111
    [26]Suvanich V, Jahncke M L, Marshall D L. Changes in selected chemical quality characteristics of channel catfish frame mince during chill and frozen storage[J]. JFS, 2000,65(1):24-29
    [27]Miki H, Nishimoto J, Yamanaka T. Relation between protein denaturation and lipid oxidation in fish muscle during storage at low temperatures[J]. Nippon Suisan Gakkaishi,1994,60(5):631-634
    [28]Azuma Y, Konno K. Freeze denaturation of Carp myofibrils compared with thermal denaturation[J]. Fisheries Science,1998,64(2):287-290
    [29]Lian P Z, Lee C M, Hufnagel L. Phisicochemical properties of frozen Red Hake mince as affected by cryoprotective ingredients [J].JFS,2000,65(7):1117-1123
    [30]Yamashita M, Konagaya S. Hydrolytic action of salmon cathepsins B and L to muscle structural proteins in respect of muscle softing[J].Nippon Suisan Gakkaishi, 1991,57(10):1917-1922
    [31]An H, Weerasinghe V. Cathepsin degradation of Pacific whiting Surimi proteins[J]. J.Food Sci,1994,59:1010-1017
    [32]潘锦锋,罗永康.鲢鱼鱼糜在冻藏过程中理化特性的变化[J].肉类研究,2008,9(115):45-49
    [33]周国艳,郭堂鹏.鲢鱼鱼糜在储藏过程中新鲜度和盐溶性蛋白质变化研究[J].食品科技,2008(8):240-243
    [34]王金余,刘承初.白鲢鱼糜肌球蛋白交联反应和凝胶化最适条件的研究[J].食品科学,2008,29(11),223-227
    [35]Lanier T C. Functional properties of surimi [J]. Food Technol,1986,40 (3): 107-112
    [36]丁玉庭,,鲍晓瑾,刘书来.鱼糜制品凝胶强度的提高及其影响因素.浙江工业大学学报,2007,35(6):631-635
    [37]汪之和,陈明洲,顾红梅,范秀娟.漂洗工艺和抗冻剂对几种西非鱼鱼糜凝胶特性和色泽的影响[J].中国水产科学,2001,8((2):80-84
    [38]王利琴,汪之和,龚蓉珠.漂洗水温对淡水鱼鱼糜蛋白质热变性的影响[J].上海水产大学学报,2002,11(2):134-137
    [39]张松,彭增起,周光宏.漂洗和抗冻剂在冷冻鱼糜生产中的应用研究.肉类研究,2007,1(90):29-32
    [40]刘红英,齐凤生,张辉.水产品加工与贮藏[M].北京:化学工业出版社,2006.
    [41]王锡昌,汪之和.鱼糜制品加工技术[M].北京:中国轻工业出版社,1997
    [42]Moniejano J G, Hamanr D D, Lanier T C. Final strengths and rheological changes during processing of thermally induced fish muscle gels[J]. Journal of Rheology,1983,27(2):577-582
    [43]Benjakul S, Visessaanguan W. Effect of medium temperaturesetting on gelling characteristics of surimi from some tropical fishes[J]. Food Chemistry,2003,82(2): 567-574
    [44]Klesk K, Yongsawatdigul J, Park J W, et al. Gel forming ability of tropical tilapia surimi as compared with Alaska Pollock and Pacific whiting surimi[J]. Journal of Aquatic Food Product Technology,2000,9(3):91-104
    [45]Benjakul S, Visessanguan W, Chantarasuwan C. Effect of high-temperature setting on gelling characteristic of surimi from some tropical fish[J]. International Journal of Food Science and Technology,2004,39(3):671-680
    [46]Smyth A B, Neill E. Heat-induced gelation properties of surimi from mechanically separated chicken[J]. Journal of Food Science,1997,62(2):326-330
    [47]Funatsu Y, Kato N, and Arai K. Gel forming ability and cross-linking ability of Myosin heavy chain of salt-ground meat from sardine surimi aeidified by lacticacid[J]. Nippon Suidan Gakkaishi,1993,59:1093-1098
    [48]徐辉.谷氨酰胺转氨酶对秘鲁鱿鱼肌原纤维蛋白凝胶特性的影响[D].杭州:浙江工商大学硕士学位论文,2007
    [49]Kim J M, Lee C M. Effect of starch of textural properties of surimi gel[J]. Journal of Food Science,1987,52(3):722-725
    [50]周蕊,曾庆孝,朱志伟,张崟.淀粉对罗非鱼鱼糜凝胶品质的影响.现代食品科技,2008,24(8):759-762
    [51]Park J W. Effects of salt, surimi and/or starch content on fracture properties of gels at various test temperatures [J]. Journal of Aquatic Food Product Technology, 1995,4(1):75-84
    [52]陈艳,丁玉庭,邹礼根等.鱼糜凝胶过程的影响因素分析[J].食品研究与开发,2003,24(3)1:2-15
    [53]周爱梅,曾庆孝.鳙鱼鱼糜凝胶特性改良的研究[J].华南农业大学学报,2004,5(2):104-107
    [54]陈海华,薛长湖.亲水胶体对竹荚鱼鱼糜凝胶特性的影响[J].农业机械学学报,2009,40(2):119-125
    [55]Ramirez J A, Barrera M, Morales O S, Vazquez M. Effect of xanthan and locust bean gums on the gelling properties of myofibrillar protein[J]. Food Hydrolcolloids, 2002,16:11-16
    [56]Kimura I M, Sugimoto M, Toyoda K, et al. A study on the cross-links reaction of myosin in kamaboko "suwari" gels[J]. Nippon Surisan Gakkaishi,1991,57: 1386-1396
    [57]钱世钧.转谷氨酞胺酶在食品工业中的应用[J].肉品卫生,2001,(6):6-10
    [58]Seki N. et al. Transglutaminase activity in Alaska Pollack Muscle and Surimi, and its Reaction with Myosin B. Nippon Suisan Gakkaishi,1990,56:125-132
    [59]Nielsenpm. Reaction and potential industrial applications of transglutaminase. Food Biotech,1995,9(2):119-156
    [60]Penprabha P, Yongsawatdigul J. Protein cross-linking ability of sarcoplasmic proteins extracted from threadfin bream. Food Science and Technology 2009,42: 37-43
    [61]张崟,张浩,蒋妍,王卫,刘达玉.大豆分离蛋白的添加方式对罗非鱼鱼糜凝胶性能的影响.河南工业大学学报(自然科学版),2009,30(6):9-12
    [62]石径,罗永康,黄辰,吕元萌,吴蒙蒙,刘栋.乳清蛋白与凝胶化条件对鱼糜凝胶特性的影响.渔业现代化,2008,38(3):35-38
    [63]陈海华,薛长湖.乳清浓缩蛋白对竹荚鱼鱼糜凝胶化和凝胶劣化的影响.食品科学,2010,31(11):25-30
    [64]周爱梅,曾庆孝,刘欣,Soottawat Benjakul,潘珂.两种蛋白类添加剂对鳙鱼鱼糜凝胶特性的改良.华南理工大学学报(自然科学版),2005,33(4):87-90
    [65]陈海华,薛长湖.3种非肌肉蛋白对竹荚鱼鱼糜凝胶特性的影响.食品科学,2010,,31(13):31-35
    [66]万建荣,胡梅.添加小麦蛋白对马面鲀鱼糜凝胶强度影响的研究.海洋渔业,1987,5:67-69
    [67]Benjakul S, Visessanguan W, Ishizaki S, Tanaka M. Differences in gelation characteristics of natural actomyosin from two species of Bigeye snapper, Priacanthus tayenus and Priacanthus macracanthus[J]. Journal of Food Science,2001b,66(9): 1311-1318
    [68]Rawdkuen S, Benjakul S, Visessanguan W. Chicken Plasma Protein affects gelation of surimi protein from Bigeye snapper (Priacanthus tayenus) [J]. Food Hydro colloids,2004,18:291-294
    [69]Shann T J, Lan C C, Ching Y T. New approach to improve the quality of minced fish products from freeze thawed Cod and Mackerel[J]. Journal of Food Science, 1986,51(2):310-312
    [70]Ando H,Adadi M,Umeda K,et al.Purification and characteristics of a novel transglutaminase derived from microorganisms[J]. Agric.Biol. Chem,1989,53: 2613-1617
    [71]Nonaka M, Sawa A, Matsuura Y, et al.Deamidation of Several Food Proteins Using Free and Immobilized Ca2+-Independent Microbial Transglutaminase[J]. Biosci. Biotech. Biochem,1996,60(3):532-533
    [72]Clarke D D, Mycek M J, Neidle A and Waelsch H. The incorporation of amines into proteins. Arch. Biochem. Biophys.1957,79:338-354
    [73]Pisano J J, Finlayson J S and Peyton M P. Cross-link in fibrin polymerized by factor 13:e-(c-glutamyl)lysine. Science,1968,160:892-893
    [74]Kanaji T, Ozaki H, Takao T,Kawajiri H, Ide H, Motok M and Shimonishi Y. Primary structure of microbial trans glutaminase from Streptovertic ilium sp. strain S-8112, Jounal of Biological Chemistry.1993,268:11565-11572
    [75]Del D S, Beninati S and Sera F D. Polyamines in chloroplasts:identification of their glutamyl and acetyl derivatives. Biochem J..1995,305:233-237
    [76]Singh R N and Mehta K. Purification and characterisation of a novel transglutaminase from filarial nematode Brugia Malayi. Eur. J. Biochem.1994,225: 625-634
    [77]Zhang J and Masui Y. Role of amphibian egg transglutaminase in the development of secondary cytostatic factor in vitro. Mol. Reprod. Dev.1997,47: 302-311
    [78]Yasueda H, Kumazawa Y and Motoki M. Purification and characterization of a tissue-type transglutaminase from red sea bream (Pagrus major). Biosci. Biotechnol. Biochem.1994,58:2041-2045
    [79]Puszkin E G and Raghuraman V. Catalytic properties of a calmodulin-regulated transglutaminase from human platelet and chicken gizzard. Jounal of Biological Chemistry.1985,60:16012-16020
    [80]Zhu Y, Rinzema A, Tramper J, et al. Microbial Tranglutaminase-A review of its reproduction and application in food processing[J]. Appl Microbial Biotechnol, 1995,44:277-282
    [81]Anulak W, Yongsawatdigul J. Purification and characterization of tansglutaminase from Tropical tilapia (Oreochromis niloticus). Food Chemistry 2005, 93:651-658
    [82]Motoki M and Seguro K. Transglutaminase and its use for food processing. Trends in Food Science and Technology 1998,9:204-210
    [83]严青.转谷氨酰胺酶对淡水鱼糜凝胶特性的影响.华中农业大学研究生学位论文,2003
    [84]司晶星,张瑾,翟付群.谷氨酰胺转氨酶生产及研究进展.学术探讨,2009,6:227
    [85]江波等.谷氨酞胺转胺酶对火腿肠凝胶性质的影响[J].食品与发酵,2000,27(4):1-6
    [86]尚永彪,夏杨毅,李洪军.转谷氨酰胺酶对猪肉肌原纤维蛋白凝胶性质的影响.食品科学,2009,30(21):135-139
    [87]Abdulatef M A, Tetsuo N, Michio M. Impact of transglutaminase on the textural, physicochemical, and structural properties of chicken skeletal, smooth, and cardiac muscles. Meat Science,83 (2009):759-767
    [88]王淼,范崇东,徐榕榕.转谷氨酰胺酶对牛乳酪蛋白功能性质的影响.无锡轻工大学学报,2002,21(5):499-502
    [89]岳振峰,彭志英,徐建祥等.壳聚糖固定化葡萄糖苷酶的研究[J].食品与发酵工业,2001,27(4):20-24
    [90]倪新华等.谷氨酞胺转胺酶在小麦粉制品中的应用[J].食品工业,2002,(5):6-8
    [91]Yamazaki K. Manufacture of noodle with transglutaminase. Japan Patent,1996, 8(51):944
    [92]王淼,吴朋.转谷氨酰胺酶对豆腐凝胶性能的影响.粮油食品科技,2004,4(12):17-19
    [93]Soottawat Benjakul, Wonnop Visessanguan. Suwari gel properties as affected by transglutaminase activator and inhibitors. Food Chemistry 2004,85:91-99.
    [94]Montero P. Transglutaminase activity in pressure-induced gelation assisted by prior setting. Food Chemistry,2005,90:751-758
    [95]Bung O H, Eunice CY. Li Chan, Yongsawatdigul J. Thermal stability of fish natural actomyosin affects reactivity to cross-linking by microbial and fish transglutaminases. Food Chemistry 2008,111:439-446
    [96]于红,冯月荣,王艳丽.冷冻鱼糜的制作及品质控制[J].肉类工业,2008(6):21-24
    [97]Yongsawatdiaul J, Worratao A, Park J W. Effect of endogenous transglutaminase on threadfin bream surimi gelation [J]. Journal of Food Science,2002,67(9): 3258-3263
    [98]Kumazawa Y, Sano K, Seguro K, et al.. Purification and Characterization of Transglutaminase from Japanese Oyster (Crassostrea gigas) [J]. Journal of Agricultural and Food Chemistry,1997,45:604-610
    [99]Worratao A, Yongsawatdiaul J. Purification and characterization of transglutaminase from Tropical tilapia (Oreochromis niloticus) [J]. Food Chemistry, 2005,93:651-658
    [100]Benjakul S, Visessanguanb W, Chantarasuwan C. Cross-linking activity of sarcoplasmic fraction from bigeye snapper (Priacanthus tayenus) muscle [J]. Lebensm.-Wiss. u.-Technol,2004,37:79-85
    [101]Piyadhammaviboon P, Yongsawatdiaul J. Protein cross-linking ability of sarcoplasmic proteins extracted from threafin bream [J]. Food Science and Technology,2009,42:37-43
    [102]Akagi J, Saito Y. Kikuchi T, Inada Y. Modification of transglutaminase assay:use of ammonium sulfate to stop the reaction [J]. Analytical of Biochemistry, 1986,153:295-298
    [103]Yasueda H, Kumazawa Y, Motoki M. Purification and characterization of a tissue-type transglutaminase from red sea bream (Pagrus major) [J]. Bioscience Biotechnology and Biochemistry
    [104]Kumazawa Y, Nakanishi K, Yasueda H, et al.. Purification and characterization of transglutaminase from walleye pollack liver. Fisheries Science,1996,62:959-964
    [105]Noguchi K, Ishikawa k, Yokoyama K I, et al.. Crystal structure of red sea bream transglutaminase[J]. Journal of Biological Chemistry,2001,276:12055-12059
    [106]Benjakul S,Visessanguanb W. Transglutaminase-mediated setting in bigeye snapper Surimi [J]. Food Research International 2003,36:253-266
    [107]Ashie I N A, Lanier T C. Transglutaminase in seafood processing [M]. In N. F. Haard,& B. K. Simpson (Eds.). New York:Marcel Dekker, Inc,2000:147-166
    [108]生物化学实验技术
    [109]Hemung B, Yongsawatdigul J. Partial purification and characterization of transglutaminase from threadfin bream (Nemipterus sp.) liver [J]. Journal of Food Biochemistry,2008,32:182-200
    [110]Nozawa h, Mamegoshi S, Segi N. Partial purification and characterization of six transglutaminase from ordinary muscles of various fishes and marine invertebrates [J]. Comparative Biochemistry and physiology B,1997,118:313-317
    [111]孔保华,耿欣,高兴华等.不同漂洗方法对鲍鱼糜凝胶特性的影响[J].食品工业,2000,1:42-43
    [112]Smith D M..Faetors influencing texture formation in comminuted meats. Reciprocal Meat Conference proeeedings[J].1998,41:48-51
    [113]Uresti R M, Ramirez J A, Lopen-Arias N et al. Negative effect of combining microbial transglutaminase with low methoxyl pectins on the mechanical properties and colour attributes of fish gels[J]. FoodChemistry,2003,80:551-556
    [114]Yang H, Park J W. Effects of starch properties and thermal-processing conditions on surimi-starch gels[J].Lebensmittel-wissenschaft und technologie,1998, 31(4):344-353

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700