分瓣式卡瓦的力学理论分析与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
封隔器是油田开发中常用的工具,其质量的优劣及可靠性将直接影响油田的开发成本。封隔器分掰式卡瓦是封隔器重要部件之一,其工作性能直接影响封隔器的性能,因此,对封隔器卡瓦进行力学理论分析与实验研究,降低其生产成本,提高其工作效率及可靠性,已经成为世界各国油田公司竞相研究的热点。
     随着我国主力油田已陆续进入中、高含水阶段以及深井、超深井油气田的发现,油气田开发活动对封隔器及其配套工具的性能和技术指标提出了新的、更高的要求。即耐温、耐压、下入深度等性能需要相应的提高。而在实际应用过程中,经常出现坐封不稳、卡瓦易损坏及套管受损等问题。这些问题发生的主要原因是卡瓦的结构设计不尽合理,因此迫切需要对封隔器卡瓦进行力学分析及结构优化设计,研究封隔器卡瓦和套管的应力分布规律,并优化出封隔器卡瓦的最佳结构。本文将基础理论研究、实验研究和应用技术研究有机地结合起来,建立了一种封隔器卡瓦优化设计的新方法,这对提高封隔器的设计水平、促进相关学科发展具有一定的理论意义。
     本文涉及到弹性力学、塑性力学、实验力学、光弹理论、相似理论及非线性有限元分析,同时还需研究金属的本构关系等多种学科,是材料非线性、接触非线性和瞬态动力学多重耦合的问题。本文通过力学分析,建立了封隔器卡瓦的力学模型及有限元模型。运用动量定理和动力学原理建立了封隔器卡瓦在有限变形范围内的守恒方程和瞬态动力学平衡方程。根据封隔器卡瓦的结构参数和运动条件推导了接触界面不可侵彻度量方程,并根据变分原理和完全的Lagrange格式推导了平衡方程的弱形式。采用增广Lagrange乘子法建立封隔器卡瓦与套管的界面动量方程。采用有限元方法,运用载荷增量法、增广Lagrange乘子法、Newmark法计算封隔器卡瓦在多重耦合情况下的受力和变形状态。
     通过受力分析和实验研究,明确了卡瓦与套管的受力状况及咬合力分布规律,为卡瓦的优化设计奠定了基础。在卡瓦的优化设计中,首先确定了卡瓦每个相关结构参数变化时,计算结果的变化规律。然后比较每个结构参数所对应结果,如卡瓦和套管的当量摩擦系数、最大Von Miese应力、接触径向压力等,找出每个结构参数最佳值。最后将需要优化结构参数通过正交设计方法进行组合,确定出卡瓦的最优结构参数组合。这为优化封隔器及类似的工具提供了新的思路、新的方法。
     虽然数值计算方法的功能越来越强,计算结果的精度对于工程解也是可靠的,但是对于模型的建立以及边界条件的确定,单靠数值计算是不够的,还需要通过实验应力分析技术来进行必要的验证。为了检验计算结果的正确性,本文采用光弹性实验模拟封隔器构件模型。将实验结果与计算结果相对比后,两模型中卡瓦和套管的应力分布规律比较一致,且在计算模型中,若卡瓦与套管的摩擦系数等于0.28时,两组结果符合的相对好。
     本文所提出的优化方法对油田目前出现的新问题具有较强的针对性,所得出的结果为封隔器的设计提供了理论基础。为保证封隔器的正常作业、延长作业周期、提高原油产量和降低生产成本提供了保证,对提高油田经济效益具有一定的现实意义和实用价值。
Packers are commonly used tools in the oilfield development. Their qualities and reliability will directly affect the oilfield development’s cost. The slips are very important parts in the packers, whose working performance directly influences the packers’performance. Therefore, the packer slips’mechanical analysis and experimental research can effectively reduce the production cost, increase the working efficiency, and enhance the working reliability. The studies on the packer slips have become the research focus of many oilfield companies in the world.
     With the main reservoirs in China have entered into the medium or high water cut period and the discovery of many oilfields with deep wells and super deep wells, the packer’s performance and its accessories needs to have new and higher requirements---that is temperature resistance, pressure resistance and running depth need to be improved. During the field operation, some problems usually take places, such as packers’unstable setting, slips easily broken and casing damage. The reasons are mainly due to the unreasonable design on the packer slips. As a result, it is urgent to do the mechanical analysis and optimum design for the slips and to study the stress distribution laws of packer slips and casing. Consequently, the best structure for packers can be optimized. This paper combines basic theory studies with experimental research with application technologies. A new design way for optimizing the packers’structure has been constructed, which can improve the packers’design level and promote the relevant subjects development.
     The paper is involved in many subjects, for instance, elastic mechanics, plastic mechanics, experimental mechanics, photo-elastic theory, similar theory, and non-linear FEA. At the same time, it includes many disciplines about metal structure relation, such as multiple coupling problems about material non-linearity, contact non-linearity and transient dynamics. By the mechanical analysis, mechanical model and finite element model of packer’s slip are set up in this paper. Conservation equation and transient dynamics balance equation of packer’s slip are set up by using momentum theorem and dynamics principle in the scope of finite distortion. Non-embed measurement equation of contact surface is derived from the slip’s structure parameters and movement condition. The weak style of balance equation is derived from variation principle and updated Lagrange format. Adopting augmented Lagrange multiplier method sets up the interface’s momentum equation between slips and casing. At last, the force and deformation state of packers are calculated on the conditions of multiple coupling by using FEA (finite element analysis) method, load increment method, augmented Lagrange multiplier method, and Newmark method.
     The force of packers and casing and the occlusive force distribution laws are found out by force analysis and experimental research, which establish the theory basis for optimizing slips. In the process of optimizing slips, the computing results should be confirmed firstly with the change of slips’each relative parameter. Then by comparing each structure parameter, such as the equivalent friction coefficient between slips and casing, the maximum Von Mises stress, contacting radial stress and so on, the each slip’s optimum structure parameters are determined. At last, the optimum structure parameters of slips are confirmed by orthogonalizing each parameter. All of those studies provide new ideas and methods for optimizing packers and similar tools.
     Although the function of numerical calculation method becomes stronger and the precision of computing results are reliable, the numerical calculation is not enough for setting up the model and the boundary condition, which also need to be confirmed by the experimental stress analysis technology. Photo-elasticity experiment is adopted to simulate the packers’component model in order to verify the correctness of results. The stress distributing law of slips and casing in computing model is comparatively consistent with that in experimental model after comparing the experimental results with the computing results. Moreover, the two model results are coincident when the frictional coefficient in computing model is equal to 0.28.
     The optimum methods put forward in the paper are good guidance for the new problems arising from the oilfield development. The achieved results provide the theoretical basis in designing packers, which guarantee packers’working operation, prolonging duty cycle, increasing production rate and reducing production costs. The significance of increasing oilfield economic benefits is quite clearly.
引文
[1]张伯年,李海金,刘章节等.封隔器理论基础与应用[M].第1版.北京:石油工业出版社,1983.1~5.
    [2]Robert E etc.High pressure well completions[J].World oil,1979,188(2):51~56
    [3]М.А.Абдупаев.Пакеры[J].Азрнешр,1963,125.
    [4]程心平,党伟.Y422—117可取式封隔器的结构及应用[J].钻采工艺,1999,22(2):37~39..
    [5]盖旭波,王兴伟,李占军等.G6型封隔器工作原理及应用[J],钻采工艺,2002,25(4):91~92.
    [6]单晶,王志清.雷雨田.液力可取式桥塞堵水装置[J].石油机械,2000,28(5):31~33.
    [7]王志清,雷雨田,刘崇利,等.HNY441双向锚定封隔器[J].石油机械,2000,28(3):32~33.
    [8]王倩,雷宇,刘天良.Y455-115型桥塞试验研究[J].石油矿场机械,2002,31(1):16~18.
    [9]徐建,魏军,甘典国,等.可取式桥塞封堵技术[J].油气井测试, 2002, 11(5):63~65.
    [10]刘化国,车登先,杨玉生.桥塞挤水泥工艺及其应用[J].石油机械, 1997, 25 (6):26~29.
    [11]代理震,康宜华.可钻可取式注水封隔器的研究[J].石油机械,2002,30(5):28~30.
    [12]王峰,苟天成.ZY755-6型封隔器的研制与应用[J].石油矿场机械,2003,32(2):55~56.
    [13]石建设,顾春元,龙远强.软卡瓦注水封隔器的研制与应用[J].石油机械,2003,31(增):51~53.
    [14]李艳丽.Y221-80型小井眼压裂封隔器的研制[J].石油机械,2005,33(7):53~54.
    [15]黎文才,张胭脂,董建伟.ZYT441-114桶式卡瓦封隔器的研制[J].石油机械,2001,29(4):36~37.
    [16]智勤功,谢金川.Y445-150型防中途坐封安全处理封隔器[J].石油机械,2001,29(12):31~33.
    [17]Mason N . E . Interventionless hydrostatic packer in west of Shetlandcompletions[J].J. Pet. Tech,2002,54(5):53~55.
    [18]ГергедаваШ.К.Заканчиваниескважинсиспользованиемпакерныхсистемдляодновременнойраздельнойэксплуатациидвухиболееобъектов[J].Каротажник,2001,(79):52~58.
    [19]Wilson P,Corey E. Hoffman, Weatherford.Zonal isolation in stimulation treatments and gas/water shutoff using thermally compensated inflatable packers and plugs[J].SPE 59139.
    [20]Eslinger D.M,Kohli, H.S,Schlumberger Dowell.Design and testing of a high-performance inflatable packer[J].SPE 37483.
    [21]“Doc”Stokley C. O.New selection criteria help boost success of inflatable packers[J].Pet. Engr. Int.,1997,70(12):67~70.
    [22]Fennell B.Elf studies retrievable packers for HPHT wells[J].Pet. Engr. Int.,1994,66(10):23~25.
    [23]ВарламовП.С.Пакерыгидромеханическиедляопрессовкиобсадныхколонн[J].Нефт.х-во,1993,(8):12~14.
    [24]Ogden S.Inflatable packers provide options for horizontal well[J].Pet. Engr,1991,63(11):37,38,40,42.
    [25]冯耀忠,向正杰.磁性粘弹体封隔器的开发与应用[J].石油机械,1997,25(3):27~28.
    [26]王增林.膨胀式长胶筒封隔器及其应用[J].石油钻采工艺,2000,22(4):34~36.
    [27]唐庆春,李志军,曹志军.Y221-76型小直径封隔器的研制与应用[J].石油机械,2000,28(10):37~38.
    [28]李晶,陈德林,祝杨,等.GDY445型封隔器的研制与应用[J].石油矿场机械,2001,30(6):38~40.
    [29]胡风涛.Y441E型液压封隔器[J].石油机械,2002,30(1):12~13,24.
    [30]马国兴,鲁青玲,李国保.QHY331型自封式封隔器的研制与应用[J],石油机械,2002,30(8):28~29.
    [31]李志升,周继斌,李际瑞,等.一体两级封隔器的研究与应用[J].石油机械,2002,30(11):28~29.
    [32]陈宁.Y241-114封隔器研究与应用[J].钻采工艺,2003,26(1):50~51,67.
    [33]王隆慧,刘汝福,韩进,等.Y341-110QJ型封隔器的研制与应用[J].石油矿场机械,2003,32(1):22~24.
    [34]崔奋,马庆贤.Y342系列封隔器的研制与应用[J].石油矿场机械,2003,32(2):39~41.
    [35]陈莉.可洗井自验封Y341-IIS型封隔器的研制与应用[J].石油矿场机械,2003,32(3):49~50.
    [36]刘庆峰,张瑜瑾,郑永生,等.BK361系列补偿式热采封隔器[J].石油机械,2003,31(3):36~37.
    [37]M.T. Triolo, .F. Anderson, M.V Smith.Resolving the Completion Engineer's Dilemma: Permanent or Retrievable Packer[J].SPE.76711.
    [38]John Fothergill.Ratings Standardization for Producticu Packers[J].SPE, 80945.
    [39]Martin Beveridge,Thomas Robb,Steve Herron.A Novel Underbalanced Perforating Gun Deployment System Using Production Packer Technology Successfully Completes HP/HT Offshore Horizontal Well in a Single Trip[J].SPE.78313.
    [40]J.A. Trantham, L.F. Anderson.Development of a One-Piece Liner Hanger/Liner Top Packer/Production Packer System for Monobore Wells in Alaska's Kuparuk River Field[J].SPE, 78285.
    [41]Marvin L. Harris.Innovative Through-Tubing Cement Packer Technique[J].SPE, 77804.
    [42]P.H. Javora, S. Gosch, S. Berry, R. Pearcy. Development and Application of Insulating Packer Fluids in the Gulf of Mexico[J].SPE.73729.
    [43]Loughlin, Michael J.History of and Applications for a Coil-Tubing-Conveyed, Inflatable, Selective Injection Straddle Packer[J].SPE.50655.
    [44]Rune Freyer, Arve Huse.Swelling Packer for Zonal Isolation in Open Hole Screen Completions[J].SPE,78312.
    [45]Dreesen D. S.Analytical and experimental evaluation of expanded metal packers for well completion service[J].SPE 22858.
    [46]卢宾,李亚洲,黄海,等.复合式三防FF-K344封隔器的研制与应用[J].石油机械, 2006,34(7):28~29.
    [47]辛林涛,孙鑫宁,刘海涛,等.新型压差丢手Y445型封隔器的研制与应用[J].石油钻采工艺,2006,28 (3):78~80.
    [48]高斌,李文波,董海生,等.Y341-100型液压封隔器的研制[J].油气井测试,2006,15(1):58~59.
    [49]秦世群.Y341C-114多级堵水封隔器的研制与应用[J],钻采工艺,2006,29(1):71~73.
    [50]胡玉志,王锐.大通径金属密封封隔器的研究与应用[J].石油矿场机械,2005,34(4):78~80.
    [51]孙立华,旺建立,赵家文,等.新型丢手封隔器及配套不压井技术研究[J].石油机械,2005,33(7):76~77,87.
    [52]袁发勇,唐永祥.RH封隔器在西部油田的应用[J].江汉石油职工大学学报,2005,18(4):71~72.
    [53]沈磊,辜志宏.用于高温高压的可取式封隔器设计问题[J].石油机械,2001,29(7):52~54.
    [54]吴月先.金属密封封隔器的开发研制技术现状综述[J].石油矿场机械,2006,35(4):47~49.
    [55]庞浩.嵌入式卡瓦结构参数分析与应用[J].浙江万里学院学报,2000,13(2):30~32.
    [56]尤长国,孔德福,李志文,等.卡瓦封隔器在套管井中不坐封原因浅析[J].油气井测试,2005,14(2):48~49.
    [57]高志刚,高波,孟楠.喇嘛甸油田注入井高渗透层胶筒封堵技术研究[J].大庆石油地质与开发.2003,22(3):75~77.
    [58]夏青.浅析Y441-114(2)型封隔器的现场坐封压力[J].石油钻采工艺.1994,16 (3):75~77.
    [59]李晓芳,杨晓翔,王洪涛.封隔器胶筒接触应力的有限元分析[J].润滑与密封,2005,590~92,125.
    [60]张富仁.压缩式缩径井封隔器胶筒的结构优化研究[J].石油机械,2006 ,34(6):67~68.
    [61]陈爱平.压缩式封隔器胶筒耐温耐压浅析[J].石油机械.1999,27(3):45~48.
    [62]王彦兴.KZ113-5-50(H)型胶筒的研制与使用[J].石油矿场机械.2000,29(1):12~14.
    [63]葛乐清.采油用封隔器密封问题的探讨[J].长春光学精密机械学院学报.2000,23(3):64~67.
    [64]高金榜.油井封隔器厚壁胶筒的模具结构和硫化工艺[J].橡胶工业.2000,47(12):730~733.
    [65]杨凤香.耐高温高压封隔器胶筒的研制[J].橡胶工业.2002,49(5):317~318.
    [66]侯宗,毛道华.封隔器压缩胶筒“防突”新结构[J].石油机械.2002,30(9):49~50.
    [67]李世民,韩进.小直径封隔器胶筒的研制[J].橡胶工业.2003,50(6):357~359.
    [68]范家齐.非线性有限元混合法分析油井封隔器胶筒[J].西南石油学院学报.1991,1.:129~138.
    [69]季公明,周先军.封隔器胶筒接触应力的数值模拟分析[J].石油矿场机械,2002,31(5):46~47.
    [70]徐立,吴桂忠.有限元分析中橡胶应变能函数的若干形式[J].橡胶工业.1999,46(12):707~711.
    [71]张系斌,王越之.压差作用下封隔器胶筒与井壁间的剪应力分析[J].石油机械.2000,28(6):47~48.
    [72]周先军,平利.封隔器胶筒接触应力分布有限元计算[J].钻采工艺,2002,25(4):51~52,57.
    [73]王燕群,岳澄.逆解法求封隔器胶筒与石油套管内壁挤压应力[J].天津大学学报,2002,35(5):634~636.
    [74]杨秀娟.液压封隔器胶筒座封过程数值分析[J].石油大学学报(自然科学版),2003,27(5):84~87.
    [75]刘清友.井下封隔器接触有限元模型研究[J].钻采工艺,2005,28(2):58~67.
    [76]金保森,施纪泽,田有锋,等.封隔件接触应力测试法的研究[J].《石油矿场机械》,1990,19(5):10~14.
    [77]王海兰.Y341-148型井下封隔器有限元数值模拟研究[J].石油矿场机械,2006,35(1):19~23.
    [78]湛精华.井下封隔器工作行为仿真研究[J].石油矿场机械,2006,35(2):9~12.
    [79]Mustafa Onur.Integrated Nonlinear Regression Analysis of Multiprobe Wireline Formation Tester Packer and Probe Pressure and Flow Rate Measurements[J].SPE,56616,October 1999.
    [80]王岚.封隔器工作状态模拟系统[J].应用科技.2000, 27 (2):12~13.
    [81]Lubinski.A.etc.Helical Bucking of Tubing Sealed in Packers[J].J.Pet,Tech, 1962.(6):655~670.
    [82]D.J.Hammerlindl.Movement. Forces. and Stresses Associated with Combination Tubing Strings Sealed in Packers[J].SPE5143.
    [83]Mitchell R F . Buckling behavior of well tubing:the packer effect[J].SPEJ,1982,(3):616~624.
    [84]Sorenson K G.Post-buckling behavior of circular rod constrained within a circular cylinder[J].Transaction of ASME,J App Mech,1986,(3):929~934.
    [85]刘凤梧.封隔器对油管螺旋屈曲的影响分析[J].清华大学学报自然科学版.1999,39 (8):104~107.
    [86]李钦道.井内有流体时管柱弯曲临界力分析[J].钻采工艺.2001,24(4):44~46.
    [87]李钦道.“虚力”产生的原因及特点分析[J].钻采工艺.2001,24(5):67~71,74.
    [88]李钦道.初始管柱压缩量计算分析[J].钻采工艺.2001,24(6):48~51,54.
    [89]李钦道.自由移动封隔器管柱变形量计算分析[J].钻采工艺,2002,25(1):60~64.
    [90]李钦道.不能移动封隔器管柱变形受力分析[J].钻采工艺,2002,25(2):53~57.
    [91]窦益华,胡宏涛.井下工具零件应力分析[J].石油矿场机械,1995,24(2):32~37.
    [92]赵远纲. ZY251型卡瓦封隔器卡瓦锚设计参数优选的理论计算[J].中原钻采技术,1989.6:76~79.
    [93]肖照平.卡瓦轨道式封隔器卡瓦配合锥度与脱卡力的计算[J].采油工艺,1990.3:58~61.
    [94]刘占广.卡瓦式封隔器在井下的受力分析[J].石油钻采工艺, 1994, 16(5):53~59.
    [95]邵立国,岳澄.卡瓦与套管咬合力的实验与计算混合研究[J].力学与实践,1998, 20(6):37~38.
    [96]邓民敏.封隔器用整体式卡瓦设计原理与设计方法的研究[D].博士.北京:石油大学,1998. 148~181.
    [97]刘天良,谢洪德.封隔器卡瓦损伤套管的模拟实验研究[J].石油矿场机械,2001,30(2):49~51.
    [98]李桐,马庆贤.封隔器卡瓦咬合过程受力模拟研究[J].石油矿场机械,2004,33(增刊):11~13.
    [99]阚淑华.卡瓦式封隔器支撑卡瓦有限元分析[J].石油矿场机械,2005,34 (1):62~64.
    [100]伍开松.封隔器卡瓦的三维接触有限元分析[J].石油矿场机械,2005,34 (6):47~49.
    [101] Ted belytschko,Wing Kam liu,Brian Moran.连续体和结构体的非线性有限元庄茁[M].第1版.北京清华大学出版社,2002. 64~186.
    [102]天津大学材料力学教研室光弹组主编.光弹性原理及测试技术[M].第1版.北京.科学出版社,1980.6:85~126.
    [103]成大先主编.机械设计手册[S].第四版.北京:化学工业出版社,2002.1.1~7.
    [104]马逢时.应用概率统计[M].第一版.上海:高等教育出版社,1989.10.240~287.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700