功能梯度材料板壳结构的耦合问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功能梯度材料(Functionally graded material,简写FGM)是一种特殊的非均匀材料。自从1984年日本科学家首次提出其设计概念以来,FGM在制造、设计和应用方面引起了广大学者的极大关注。虽然提出FGM的最初设想是作为热隔栅应用于航空航天领域,但目前发现它在电子、化学、核能、光学、声学、生物医学及土木工程等诸多领域,都有十分广阔的应用前景。对FGM结构力学行为的研究,既有丰富非均匀材料力学的需要,也有实际工程应用的需要。
     FGM的不均匀性,给FGM结构的理论分析增加了难度。目前对FGM结构的力学研究有很大一部分利用了建立在均匀材料基础上的假定和理论,这种做法的合理性值得商讨。本文首先利用状态空间法结合三角级数展开技术,对简支的FGM梁、板、圆柱壳结构进行了弹性理论分析。FGM的不均匀性,使得状态方程具有变系数的特性,为此文中引入层合模型进行分层近似处理。由于状态方程直接从弹性力学基本方程导得,没有引入任何有关应力和位移的假定,因此所得结果可以作为其它各种简化理论和数值方法的检验标准。通过分析发现,改变FGM的不均匀程度,可以明显改变FGM结构的静力和动力响应。因此工程设计中可以通过调整FGM的梯度指标(反映FGM材料常数分布情况的量),达到设计目的。
     压电FGM结构是一种新型的智能结构,其应用越来越广泛。由于制造时存在的缺陷,或服役时出现的损坏,或人为特意的设置,压电层与FGM之间的粘结面有时会变得非完美。本文采用线性弹簧模型,引入界面传递矩阵,对此进行了分析,讨论了界面特性对智能结构响应的影响。
     本文还采用了Soldatos提出的层合板简化理论,对各种边界条件下单跨和多跨FGM板的柱形弯曲进行分析。与传统简化理论预先给定厚度向位移分布函数不同,Soldatos理论用一个位移分布形函数来描述位移沿厚度向的变化,通过求解三维平衡方程来确定这个形函数,可以反映材料不均匀性对厚度向位移分布的影响。其中形函数的确定、单跨平衡方程的求解以及多跨FGM板的传递都采用了状态空间法,提高了计算效率。通过对比发现,传统的经典薄板理论、一阶剪切变形理论和Rdddy的三阶剪切变形理论,在分析FGM结构时,都会由于材料的不均匀性而使计算精度降低。
     在上述工作中,本文考虑了多个耦合因素,包括结构与弹性介质的耦合、圆柱壳与流体的耦合;力场与温度场的耦合、力场与电场的耦合。这些耦合因素同样会影响FGlM结构的静力和动力响应,对FGM结构的服役设计具有重要的指导意义。
As nonhomogeneous materials, functionally graded materials (FGMs) were first introduced by a group of Japanese scientists to address the needs of aggressive environment of thermal shock. Since then, FGMs have received more and more attention. Nowadays, FGMs have extended their first applications in aerospace to electronics, chemistry, optics, biomedicine, acoustics, nuclear engineering, civil engineering and the like. Research on the behavior of FGM structures not only benefits the development of mechanics of nonhomogeneous materials, but also satisfies the needs of practice.The inhomogeneity of FGM makes it very difficult to analyze the FGM structures. Most of the present works on FGM structures employed kinds of assumptions or theories derived for the homogeneous materials, which may become doubtful for FGM structures. So, we employ an elasticity method, i.e. state space method, to analyze the simply-supported FGM beams, plates and cylindrical shells. For FGM, the coefficient matrix of the state equation is not constant and is very difficult to solve directly. The FGM plates/shells are then approximated by a laminate model. Since no assumptions are introduced on the deformations or stress fields in the analysis, the presented results can serve as benchmarks for clarifying the reliability of various approximate theories or numerical methods. We find that the inhomogeneity of FGM will affect the response of FGM structures effectively, which will be crucial to the design in the practice.As new smart structures, piezoelectric FGM structures have gained much interest recently. The interface between the piezoelectric actuator or sensor layers and the FGM layers, however, may become debonding during the service time. In some cases, weak bonding is particularly introduced to achieve some particular aims. A linear spring-layer model is adopted in this paper to simulate the weakness of bonding and the effect of bonding is discussed.Finally, a generalized refined theory suggested by Soldatos is employed to analyze the cylindrical bending of single- or multi-span FGM plates under various boundary conditions. Since the shape function of displacements is determined by the elasticity equations of equilibrium, it can be self-adjusted with the gradient index, which makes this theory more suitable for analyzing FGM structures. To improve the efficiency of calculations, the state space method is adopted to derive the shape function and solve the equations governing the FGM plate deformation. The numerical comparisons between several theories show that the inhomogeneity of FGM will decline the accuracy of the classical thin plate theory, the first-order shear
引文
[1] Koizumi M, 1997. FGM activities in Japan. Composites B 28, 1-4.
    [2] 新野正之,平井敏雄,渡边龙山,1987.倾斜机能材料-宇宙机用超耐热材料目指.日本复合材料学会志 13,257-264.
    [3] Rabin BH, Shiota I, 1995. Functionally gradient materials. Materials Research Society Bulletin 20, 14-18.
    [4] 余茂黎,魏明坤,1992.功能梯度材料的研究动态.功能材料23,184-191.
    [5] Hirai T, Chen L, 1999. Recent and prospective development of functionally graded materials in Japan. Materials Science Forum 308-311,509-514.
    [6] 郭成,朱维斗,金志浩,1995.功能梯度材料的研究现状与展望.稀有金属材料与工程 24,19-25.
    [7] 李永,宋健,张志民,2003.梯度功能力学.清华大学出版社,北京.
    [8] 郑慧雯,茹克也木·沙吾提,章娴君,2002.功能梯度材料的研究进展.西南师范大学学报(自然科学版)27,788-793.
    [9] 王保林,韩杰才,张幸红,2003.非均匀材料力学.科学出版社,北京.
    [10] 李永,张志民,马淑雅,2000.耐热梯度功能材料的热应力研究进展.力学进展 30,571-580.
    [11] Zavaliangos A, 1999. Challenges and opportunities for PM in functionally graded materials. Metal Powder Report 54, 37-38.
    [12] Kieback B, Neubrand A, Riedel H, 2003. Processing techniques for functionally graded materials. Materials Science and Engineering: A 362, 81-106.
    [13] Koizumi M, 1993. The concept of FGM. Ceramic Trans, Functionally Gradient Materials 34, 3-10.
    [14] Tanigawa Y, 1995. Some basic thermoelastic problems for nonhomogeneous structural materials. Applied Mechanics Reviews 48, 287-300.
    [15] 王保林,杜善义,韩杰才,1999.功能梯度材料的热/机械耦合分析研究进展.力学进展29,528-548.
    [16] 1991. Survey for application of FGM, (Eds by FGM Forum). The Society of Non-Traditional Technology, Tokyo.
    [17] Maalej M, Ahmed SFG, Paramasivam P, 2003. Corrosion durability and structural response of functionally-graded concrete beams. Journal of Advanced Concrete Technology 1, 307-316.
    [18] Truesdeli C. The rational mechanics of flexible or elastic bodies (1688-1788). Turici MCMLX.
    [19] Datta AN, 1956. Longitudinal propagation of elastic disturbance for linear variations of elastic parameters. Indian Journal of Theoretical Physical 4, 43-50.
    [20] Sternberg E, Chakravorty JG, 1959. On the propagation of shock waves in a nonhomogeneous elastic medium. Journal of Applied Mechanics 26, 528-536.
    [21] Sur SP, 1961. A note on the longitudinal propagation of elastic disturbance in a thin inhomogeneous elastic rod. Indian Journal of Theoretical Physical 9, 61-67.
    [22] Lindholm US, Doshi KD, 1965. Wave propagation in an elastic nonhomogeneous bar of finite length. Journal of Applied Mechanics 32, 135-142.
    [23] Payton RG, 1966. Elastic wave propagation in a non-homogeneous rod. Quarterly Journal of Mechanics and Applied Mathematics 19, 83-91.
    [24] Eason G, 1967. Wave propagation in inhomogeneous elastic media. Bulletin of the Seismological Society of America 57, 1267-1277.
    [25] Clements DL, Rogers C, 1974. On wave propagation in inhomogeneous elastic media. International Journal of Solids and Structures 10, 661-669.
    [26] Gibson RE, 1967. Some results concerning displacements and stresses in a non-homogeneous elastic half-space. Geotechnique 17, 58-67.
    [27] Awojobi AO, Gibson RE, 1973. Plane strain and axially symmetric problems of a linearly nonhomogeneous elastic half-space. Quarterly Journal of Mechanics and Applied Mathematics 26, 285-302.
    [28] Gibson RE, Sills GC, 1975. Settlement of a strip load on a non-homogeneous orthotropic incompressible elastic half-space. Quarterly Journal of Mechanics and Applied Mathematics 28, 233-243.
    [29] Clements DL, Rogers C, 1976. Antiplane deformations of inhomogeneous elastic materials. Journal of Elasticity 6, 327-329.
    [30] Clements DL, Atkinson C, Rogers C, 1978. Antiplane crack problems for an inhomogeneous elastic material. Acta Mechanica 29, 199-211.
    [31] Clements DL, Hill DL, Rogers C, Mazumdar J, 1984. On some boundary value problems in anisotropic inhomogeneous thermostatics and Elastostatics. SIAM Journal of Applied Mathematics 44, 969-981.
    [32] Frantziskonis G, Renaudin P, Breysse D, 1997. Heterogeneous solids-Part Ⅰ: analytical and Numerical 1-D results on boundary effects. European Journal of Mechanics-A/Solids 16, 409-423.
    [33] 叶开沅,1987.力学发展简史.知识出版社,北京.
    [34] 纪振义,叶开沅,1989.任意变系数微分方程的精确解析法.应用数学和力学10,841-852.
    [35] 叶开沅,纪振义,1990.非均匀变截面梁的稳定和自由振动的阶梯折算法.兰州大学学报(自然科学版)26,40-46.
    [36] 纪振义,叶开沅,1991.轴对称非均匀圆柱壳非线性屈曲的一般解.上海力学 12,77-85.
    [37] 纪振义,1991.非均匀Reissner板弯曲的精确元法.应用数学和力学 12,997-1005.
    [38] 纪振义,叶开沅,1992.非均匀薄板弯曲的精确元法.应用数学和力学13,659-666.
    [39] 叶开沅,童晓华,纪振义,1992.非均匀变厚度梁的动力响应的一般解.应用数学和力学13,753-764.
    [40] 纪振义,叶开沅,1992.非均匀弹性地基圆薄板大挠度问题的一般解.应用数学和力学13,951-962.
    [41] 纪振义,叶开沅,1994.非均匀变截面梁动力响应的一般解.应用数学和力学15,381-388.
    [42] Olszak W, 1958. Nonhomogeneity in elasticity and plasticity. Symposium Warsaw, Pergamon Press, New York.
    [43] 郑泉水,1999.非均质材料的力学国际研讨会介绍,力学进展 29,441-444.
    [44] Shen HS, 2002. Postbuckling analysis of axially loaded functionally graded cylindrical panels in thermal environments. International Journal of Solids and Structures 39, 5991-6010.
    [45] Shen SH, 2002. Nonlinear bending response of functionally graded plates subjected to transverse loads and in thermal environments. International Journal of Mechanical Sciences 44, 561-584.
    [46] Huang XL, Shen HS, 2004. Nonlinear vibration and dynamic response of functionally graded plates in thermal environments. International Journal of Solids and Structures 41, 2403-2427.
    [47] Shen HS, 2002. Postbuckling analysis of axially-loaded functionally graded cylindrical shells in thermal environments. Composites Science and Technology 62, 977-987.
    [48] Shen HS, 2004. Thermal postbuckling behavior of functionally graded cylindrical shells with temperature-dependent properties. International Journal of Solids and Structures 41, 1961-1974.
    [49] 舒小平,2003.梯度功能材料板热弹性分析模型.复合材料学报20,51-54.
    [50] 赵军,艾兴,张建华,1998.基于高承载能力的梯度功能材料设计.陶瓷学报19,125-129.
    [51] Woo J, Meguid SA, 2001. Nonlinear analysis of functionally graded plates and shallow shells. International Journal of Solids and Structures 38, 7409-7421.
    [52] Ma LS, Wang TJ, 2003. Nonlinear bending and post-buckling of a functionally graded circular plate under mechanical and thermal loadings. International Journal of Solids and Structures 40, 3311-3330.
    [53] Jabbari M, Sohrabpour S, Eslami MR, 2002. Mechanical and thermal stresses in a functionally graded hollow cylinder due to radially symmetric loads. International Journal of Pressure Vessels and Piping 79, 493-497.
    [54] Ye GR, Chen WQ, Cai JB, 2001. A uniformly heated functionally graded cylindrical shell with transverse isotropy. Mechanics Research Communications 28, 535-542.
    [55] Vel SS, Batra RC, 2003. Three-dimensional analysis of transient thermal stresses in functionally graded plates. International Journal of Solids and Structures 40, 7181-7196.
    [56] Cheng ZQ, Batra RC, 2000. Three-dimensional thermoelastic deformations of a functionally graded elliptic plate. Composites: Part B 31, 97-106.
    [57] Reddy JN, Cheng ZQ, 2001. Three-dimensional thermomechanical deformations of functionally graded rectangular plates. European Journal of Mechanics-A/Solids 20, 841-855.
    [58] Ootao Y, Tanigawa Y, 2000. Three-dimensional transient piezothermoelasticity in functionally graded rectangular plate bonded to a piezoelectric plate. International Journal of Solids and Structures 37, 4377-4401.
    [59] Tsukamoto H, 2003. Analytical method of inelastic thermal stresses in a functionally graded material plate by a combination of micro-and macromechanical approaches. Composites: Part B 34, 561-568.
    [60] Ding HJ, Wang HM, Chen WQ, 2002. Analytical thermo-elastodynamic solutions for a nonhomogeneous transversely isotropic hollow sphere. Archive of Applied Mechanics 72, 545-553.
    [61] Ding HJ, Wang HM, Chen WQ, 2003. Dynamic responses of a functionally graded pyroelectric hollow sphere for spherically symmetric problems. International Journal of Mechanical Sciences 45, 1029-1051.
    [62] Ding H J, Wang HM, Chen WQ, 2004. Analytical solution of a special non-homogeneous pyroelectric hollow cylinder for piezothermoelastic axisymmetric plane strain dynamic problems. Applied Mathematics and Computation 151, 423-441.
    [63] Liew KM, Kitipornchai S, Zhang XZ, Lim CW, 2003. Analysis of the thermal stress behaviour of functionally graded hollow circular cylinders. International Journal of Solids and Structures 40, 2355-2380.
    [64] Chen WQ, Ye GR, Cai JB, 2002. Thermoelastic stresses in a uniformly heated functionally graded isotropic hollow cylinder. Journal of Zhejiang University (Science) 3, 1-5.
    [65] Chen WQ, Lee KY, 2003. Alternative state space formulations for magnetoelectric thermoelasticity with transverse isotropy and the application to bending analysis of nonhomogeneous plates. International Journal of Solids and Structures 40, 5689-5705.
    [66] 许杨健,赵志岗,1999.梯度功能材料板瞬态温度场有限元分析.功能材料30,103-104.
    [67] 许杨健,涂代惠,2003.对流换热边界下梯度功能材料板瞬态热传导有限元分析.材料科学与工程学报21,76-79.
    [68] 许杨健,涂代惠,2002.换热边界下梯度功能材料板稳态温度场研究.机械工程材料 26,10-12.
    [69] 许杨健,涂代惠,2003.换热边界下变物性梯度功能材料板稳态热传导分析.湘潭矿业学院学报18,44-47.
    [70] 许杨健,赵志岗,2001.梯度功能材料薄板瞬态热弹性弯曲有限元分析.工程力学18,71-81.
    [71] 王慧,赵志岗,2003.梯度功能材料薄壳动态热挠度的Laplace变换有限元分析.河北科技大学学报24,73-76.
    [72] Becker Jr TL, Cannon RM, Ritchie RO, 2000. An approximate method for residual stress calculation in functionally graded materials. Mechanics of Materials 32, 85-97.
    [73] Mahmoud NA, 2003. Reduction of thermal stresses by developing two-dimensional functionally graded materials. International Journal of Solids and Structures 40, 7339-7356.
    [74] Reddy JN, Chin K, 1998. Thermomechanical behavior of functionally graded cylinder and plates. Journal of Thermal Stresses 21, 593-626.
    [75] Shabana YM, Noda N. 2001. Thermo-elasto-plastic stresses in functionally graded materials subjected to thermal loading taking residual stresses of the fabrication process into consideration. Composites: Part B 32, 111-121.
    [76] Bruck HA, Gershon AL, 2002. Three-dimensional effects near the interface in a functionally graded Ni-Al_2O_3 plate specimen. International Journal of Solids and Structures 39, 547-557.
    [77] 刘杰,肖金生,覃峰,崔东周,2002.陶瓷/金属梯度热障涂层圆筒的传热与热应力有限差分分析.武汉理工大学学报:交通科学与工程版26,379-382.
    [78] Sladek J, Sladek V, Zhang Ch, 2003. Transient heat conduction analysis in functionally graded materials by the meshless local boundary integral equation method. Computational Materials Science 28, 494-504.
    [79] 张开银,张建刚,吕运冰,1997.功能梯度材料复合板的热应力计算分析.湛江海洋大 学学报17,34-38.
    [80] 杨杰,沈惠申,2002.面内预应力功能梯度材料矩形板的横向弯曲.力学季刊23,342-346.
    [81] 杨杰,沈惠申,2003.热/机械载荷下功能梯度材料矩形厚板的弯曲行为.固体力学学报24,119-124.
    [82] 张琳楠,石志飞,2002.简支梯度压电梁的解析解.北方交通大学学报26,71-76.
    [83] 黄彬彬,石志飞,2002.梯度功能压电悬臂梁的几个解析解.复合材料学报19,106-113.
    [84] Sankar BV, 2001. An elasticity solution for functionally graded beams. Composites Science and Technology 61, 689-696.
    [85] 李永,宋健,张志民,2002.功能梯度材料悬臂梁受复杂载荷作用的分层剪切理论.宇航学报23,62-67.
    [86] 李永,张志民,马淑雅,2002.梯度功能材料层梁受机械/热载作用的结构特性分析.强度与环境29,20-26.
    [87] Cheng ZQ, 2001. Nonlinear bending of inhomogeneous plates. Engineering Structures 23, 1359-1363.
    [88] Wu XH, Chen CQ, Shen YP, Yian XG, 2002. A high order theory for functionally graded piezoelectric shells. International Journal of Solids and Structures 39, 5325-5344.
    [89] Rooney F, M, 2001. Tension, bending, and flexure of functionally graded cylinders. International Journal of Solids and Structures 38, 413-421.
    [90] Abdulhakim A, Minoru T, Steven H, 2001. Analysis of out-of-plane displacement and stress field in a piezocomposite plate with functionally graded microstructure. International Journal of Solids and Structures 38, 3377-3391.
    [91] Soldatos KP, 2004. Complex potential formalisms for bending of inhomogeneous monoclinic plates including transverse shear deformation. Journal of the Mechanics and Physics of Solids 52, 341-357.
    [92] Ma LS, Wang TJ, 2004. Relationships between axisymmetric bending and buckling solutions of FGM circular plates based on third-order plate theory and classical plate theory. International Journal of Solids and Structures 41, 85-101.
    [93] 刘进,武兰河,张晓炜,2003.功能梯度材料板的弯曲问题.石家庄铁道学院学报16,1-5.
    [94] Wu XH, Shen YP, Chen CQ, 2003. An exact solution for functionally graded piezothermoelastic cylindrical shell as sensors or actuators. Materials Letters 57, 3532-3542.
    [95] Chen WQ, Ding HJ, Liang J, 2001. The exact elasto-electric field of a rotating piezoceramic spherical shell with a functionally graded property. International Journal of Solids and Structures 38, 7015-7027.
    [96] Chen WQ, Ding H J, 2000. Bending of functionally graded piezoelectric rectangular plates. Acta Mechanica Solida Sininca 13, 312-319.
    [97] Chen WQ, 2000. Stress distribution in a rotating elastic functionally graded material hollow sphere with spherical isotropy. Journal of Strain Analysis for Engineering Design 35, 13-20.
    [98] Chen WQ, Lu Y, Ye GR, Cai JB, 2002. 3D electroelastic fields in a functionally graded piezoceramic hollow sphere under mechanical and electric loadings. Archive of Applied Mechanics 72, 39-51.
    [99] Yang YY, 2000. Time-dependent stress analysis in functionally graded materials. International Journal of Solids and Structures 37, 7593-7608.
    [100] 李春雨,邹振祝,1998.受内压的功能梯度材料圆筒应力分析.工程力学增刊,153-156.
    [101] Saizonou C, Njiwa RK, Stebut JV, 2002. Surface engineering with functionally graded coatings: a numerical study based on the boundary element method. Surface and Coatings Technology 153, 290-297.
    [102] Aboudi J, Pindera MJ, Arnold SM, 1999. Higher-order theory for functionally graded materials. Composites: Part B 30, 777-832.
    [103] 李永,张志民,马淑雅,2001.三维梯度功能材料层间力学模型与应力分析.宇航学报 22,79-85.
    [104] 李永,宋健,张志民,2003.非均质梯度功能材料复合结构的Kantorovich宏细观精化解法.中国科学:E辑33,29-41.
    [105] 伍晓红,沈亚鹏,2003.压电功能梯度板自由振动的三维解.固体力学学报24,75-82.
    [106] 黄小林,沈惠申,2004.带压电层功能梯度复合材料混合层合板的自由振动和动力响应.强度与环境2004,13-19.
    [107] Reddy JN, Cheng ZQ, 2002. Frequency correspondence between membranes and functionally graded spherical shallow shells of polygonal planform. International Journal of Mechanical Sciences 44, 967-985.
    [108] Cheng ZQ, Batra RC, 2000. Exact correspondence between eigenvalues of membranes and functionally graded simply supported polygonal plates. Journal of Sound and Vibration 229, 879-895.
    [109] 陈伟球,叶贵如,蔡金标,丁皓江,2001.横观各向同性功能梯度材料矩形板的自由振动.振动工程学报14,263-267.
    [110] Chen WQ, Lee KY, Ding HJ, 2005. On free vibration of non-homogeneous transversely isotropic magneto-electro-elastic plates. Journal of Sound and Vibration 279, 237-251.
    [111] 陈伟球,叶贵如,蔡金标,丁皓江,2001.球面各向同性功能梯度球壳的自由振动.力学学报33,768-775.
    [112] Chen WQ, 1999. Effect of radial inhomogeneity on natural frequencies of an anisotropic hollow sphere. Journal of Sound and Vibration 226, 787-794
    [113] Chen WQ, Wang X, Ding HJ, 1999. Free vibration of a fluid-filled hollow sphere of a functionally graded material with spherical isotropy. Journal of the Acoustical Society of America 106, 2588-2594.
    [114] Ye GR, Chen WQ, Cai JB, Ding HJ, 2000. On the free vibration of a submerged FGM hollow sphere. Acta Mechanica Solida Sinica 13, 223-229.
    [115] Chen WQ, 2000. Vibration theory of non-homogeneous, spherically isotropic piezoelastic bodies. Journal of Sound and Vibration 236, 833-860.
    [116] Chen WQ, Wang LZ, Lu Y, 2002. Free vibrations of functionally graded piezoceramic hollow spheres with radial polarization. Journal of Sound and Vibration 251, 103-114.
    [117] Liew KM, He XQ, Kitipornchai S, 2004. Finite element method for the feedback control of FGM shells in the frequency domain via piezoelectric sensors and actuators. Computer Methods in Applied Mechanics & Engineering 193,257-273.
    [118] Han X, Liu GR, Lam KY, 2000. A quadratic layer element for analyzing stress waves in FGMs and its application in material characterization. Journal of Sound and vibration 236, 307-321.
    [119] He XQ, Ng TY, Sivashanker S, Liew KM, 2001. Active control of FGM plates with integrated piezoelectric sensors and actuators. International Journal of Solids and Structures 38, 1641-1655.
    [120] Li Y, Ramesh KT, Chin ESC, 2001. Dynamic characterization of layered and graded structures under impulsive loading. International Journal of Solids and Structures 38, 6045-6061.
    [121] Ng TY, Lam KY, Liew KM, Reddy JN, 2001. Dynamic stability analysis of functionally graded cylindrical shells under periodic axial loading. International Journal of Solids and Structures 38, 1295-1309.
    [122] Yang J, Shen SH, 2003. Free vibration and parametric resonance of shear deformable functionally graded cylindrical panels. Journal of Sound and Vibration 261, 871-893.
    [123] Pranhan SC, Loy CT, Lam KY, Reddy JN, 2000. Vibration characteristics of functionally graded cylindrical shells under various boundary conditions. Applied Acoustics 61, 111 -129.
    [124] Liu GR, Dai KY, Han X, Ohyoshi T, 2003. Dispersion of waves and characteristic wave surfaces in functionally graded piezoelectric plates. Journal of Sound and Vibration 268, 131-147.
    [125] Yang J, Shen SH, 2001. Dynamic response of initially stressed functionally graded rectangular thin plates. Composite Structures 54, 497-508.
    [126] Yang J, Shen SH, 2002. Vibration characteristics and transient response of shear-deformable functionally graded plates in thermal environments. Journal of Sound and Vibration 255, 579-602.
    [127] Ng TY, Lam KY, Liew KM, 2000. Effects of FGM materials on the parametric resonance of plate structures. Computer Methods in Applied Mechanics & Engineering 190, 953-962.
    [128] Han X, Liu GR, 2002. Effects of SH waves in a functionally graded plate. Mechanics Research Communications 29, 327-338.
    [129] Yang J, Kitipornchai S, Liew KM, 2003. Large amplitude vibration of thermo-electro- mechanically stressed FGM laminated plates. Computer Methods in Applied Mechanics & Engineering 192, 3861-3885.
    [130] Liu GR, Han X, Lam KY, 2001. An integration technique for evaluating confluent hypergeometric functions and its application to functionally graded materials. Computers and Structures 79,1039-1047.
    [131] Han X, Xu D, Liu GR, 2002. Transient responses in a functionally graded cylindrical shell to a point load. Journal of Sound and Vibration 251, 783-805.
    [132] Han X, Liu GR, Xi ZC, Lam KY, 2001. Transient waves in a functionally graded cylinder. International Journal of Solids and Structures 38, 3021-3037.
    [133] Chakraborty A, Gopalakrishnan S, Reddy JN, 2003. A new beam finite element for the analysis of functionally graded materials. International Journal of Mechanical Sciences 45, 519-539.
    [134] Chakraborty A, Gopalakrishnan S, 2003. A spectrally formulated finite element for wave propagation analysis in functionally graded beams. International Journal of Solids and Structures 40, 2421-2448.
    [135] Hou PF, Wang HM, Ding HJ, 2003. Analytical solution for the axisymmetric plane strain electroelastic dynamics of a special non-homogeneous piezoelectric hollow cylinder.
     International Journal of Engineering Science 41, 1849-1868.
    [136] Ding HJ, Wang HM, Chen WQ, 2003. Analytical solution for the electroelastic dynamics of a nonhomogeneous spherically isotropic piezoelectric hollow sphere. Archive of Applied Mechanics 73, 49-62.
    [137] Ding HJ, Wang HM, Chen WQ, 2002. Elastodynamic solution of a non-homogeneous orthotropic hollow cylinder. Acta Mechanica Sininca 18, 621-628.
    [138] Ding HJ, Wang HM, Chen WQ, 2003. A solution of a non-homogeneous orthotropic cylindrical shell for axisymmetric plane strain dynamic thermoelastic problems. Journal of Sound and Vibration 263, 815-829.
    [139] Shen HS, 2003. Postbuckling analysis of pressure-loaded functionally graded cylindrical shells in thermal environments. Engineering Structures 25, 487-497.
    [140] Yang J, Shen HS, 2003. Non-linear analysis of functionally graded plates under transverse and in-plane loads. International Journal of Non-Linear Mechanics 38, 467-482.
    [141] Yang J, Shen HS, 2003. Nonlinear bending analysis of shear deformable functionally graded plates subjected to thermo-mechanical loads under various boundary conditions. Composites: Part B 34, 103-115.
    [142] Najafizadeh MM, Eslami MR, 2002. Buckling analysis of circular plates of functionally graded materials under uniform radial compression. International Journal of Mechanical Sciences 44, 2479-2493.
    [143] Liew KM, Yang J, Kitipornchai S, 2003. Postbuckling of piezoelectric FGM plates subject to thermo-electro-mechanical loading. International Journal of Solids and Structures 40, 3869-3892.
    [144] Erdogan F, 1995. Fracture mechanics of functionally graded materials. Composites Engineering, 753-770.
    [145] Jin ZH, Batra RC, 1996. Some basic fracture mechanics concepts in functionally graded materials. Journal of Mechanics and Physics of Solids 44, 1221-1235.
    [146] 胡克强,仲政,金波,2001.功能梯度压电材料反平面断裂问题研究.强度与环境 4,29-37.
    [147] 胡克强,仲政,金波,2002.功能梯度压电材料反平面裂纹问题.力学季刊 23,70-76.
    [148] Li CY, Weng GJ, Duan ZP, 2001. Dynamic behavior of a cylindrical crack in a functionally graded interlayer under torsional loading. International Journal of Solids and Structures 38, 7473-7485.
    [149] 张幸红,李亚辉,韩杰才,王保林,2001.TiC-Ni系功能梯度材料的断裂力学有限元分析.复合材料学报 18,87-92.
    [150] 谢迎洪,李振环,杨文兵,王乘,2003.压电梯度材料薄板中切口端部场的有限元分析.华中科技大学学报(自然科学版)31,83-85.
    [151] 何沛祥,李子然,吴长春,2001.无网格法与有限元法的耦合及其对功能梯度材料断裂计算的应用.中国科学技术大学学报 31,673-680.
    [152] 陈建,吴林志,杜善义,2000.采用无单元法计算含边沿裂纹功能梯度材料板的应力强度因子.工程力学 17,139-144.
    [153] Rousseau CE, Tippur HV, 2000. Compositionally graded materials with cracks normal to the elastic gradient. Acta Materialia 48, 4021-4033.
    [154] Rousseau CE, Tippur HV, 2001. Influence of elastic gradient profiles on dynamically loaded functionally graded materials cracks along the gradient. International Journal of Solids and Structures 38, 7839-7856.
    [155] Rousseau CE, Tippur HV, 2002. Influence of elastic variations on crack initiation in functionally graded glass-filled epoxy. Engineering Fracture Mechanics 69, 1679-1693.
    [156] Bahr HA, Balke H, Fett T, Hofinger I, Kirchhoff G, Munzb D, Neubrand A, Semenov AS, Weiss H J, Yang YY, 2003. Cracks in functionally graded materials. Materials Science and Engineering A362, 2-16.
    [157] Dolbow JE, Gosz M, 2002. On the computation of mixed-mode stress intensity factors in functionally graded materials. International Journal of Solids and Structures 39, 2557-2574.
    [158] Noda N, Wang BL, 2002. Transient thermoelastic responses of functionally graded materials containing collinear cracks. Engineering Fracture Mechanics 69, 1791-1809.
    [159] 张双寅,2003.功能梯度材料裂纹能量释放率.力学与实践 25,22-23.
    [160] Wang BL, Han JC, Du SY, 2000. Cracks problem for non-homogeneous composite material subjected to dynamic loading. International Journal of Solids and Structures 37, 1251-1274.
    [161] Nadeau JC, Ferrari M, 1999. Microstructural optimization of a functionally graded transversely isotropic layer. Mechanics of Materials 31, 637-651.
    [162] 李琼,曾宪友,金升平,肖金生,1999.基于遗传算法的功能梯度材料的优化设计.武汉交通科技大学学报 23,473-476.
    [163] Huang J, Fadel GM, Blouin VY, Grujicic M, 2002. Bi-objective optimization design of functionally gradient materials. Material Design 23, 657-666.
    [164] Emilio Carlos Nelli Silva, Glaucio H Paulino, 2004. Topology optimization applied to the design of functionally graded material (FGM) structures. ⅩⅪ ICTAM 15-21, Poland.
    [165] Bruck HA, 2000. A one-dimensional model for designing functionally graded materials to manage stress waves. International Journal of Solids and Structures 37, 6383-6395.
    [166] Molchanov IS, Chiu SN, Zuyev SA, 2000. Design of inhomogeneous materials with given structural properties. Physics Reviews (E) 62, 4544-4552.
    [167] Afsar AM, Sekine H, 2001. Optimum material distributions for prescribed apparent fracture toughness in thick-walled FGM circular pipes. International Journal of Pressure Vessels and Piping 78, 471-4841.
    [168] Sergio Turteltaub, 2002. Functionally graded materials for prescribed field evolution. Computer Methods in Applied Mechanics and Engineering 191, 2283-2296.
    [169] Obata Y and Noda N, 1996. Optimum material design for functionally gradient material plate. Archive of Applied Mechanics 66, 581-589.
    [170] Ludmila P, Jordanka I, Nikolina B, 2004. Optimal design of functionally graded plates with thermo-elastic plastic behaviour. Comptes Rendus Mecanique 332, 493-498.
    [171] Han X, Xu D, Liu GR, 2003. A computational inverse technique for material characterization of a functionally graded cylinder using a progressive neural network. Neurocomputing 51, 341-360.
    [172] Liu GR, Han X, Xu YG, Lam KY, 2001. Material characterization of functionally graded material by means of elastic waves and a progressive-learning neural network. Composites Science and Technology 61, 1401-1411.
    [173] 钟万勰,1995.弹性力学求解新体系.大连理工大学出版社,大连.
    [174] 陈屏,1983.状态变量法及其应用.电子工业出版社,北京.
    [175] 范家让,1998.强厚度叠层板壳的精确理论.科学出版社,北京.
    [176] Pestel EC, Leckie FA, 1963. Matrix Methods in Elasto Mechanics. McGraw-Hill, New York.
    [177] Fan JR, Zhang JY, 1992. Analytical solutions for thick, doubly curved, laminated shells, Journal of Engineering Mechanics 118, 1338-1356.
    [178] Wu CCM, Kahn M, Moy W, 1996. Piezoelectric ceramics with functional gradients: A new application in material design. Journal of American Ceramic Society 79, 809-812.
    [179] Li CY, Weng GJ, 2002. Antiplane crack problem in functionally graded piezoelectric materials. Journal of Applied Mechanics 69, 481-488.
    [180] Kashtalyan M, 2004. Three-dimensional elasticity solution for bending of functionally graded rectangular plates. European Journal of Mechanics-A/Solids 23, 853-864.
    [181] Vel S S, Batra RC, 2004. Three-dimensional exact solution for the vibration of functionally graded rectangular plates. Journal of Sound and Vibration 272, 703-730.
    [182] Wang YM, Tarn JQ, Hsu CK, 2000. State space approach for stress decay in laminates. International Journal of Solids and Structures 37, 3535-3553.
    [183] Tarn JQ, Wang YM, 2001. Laminated composite tubes under extension, torsion, bending, shearing and pressuring: a state space approach. International Journal of Solids and Structures 38, 9053-9075.
    [184] Tam JQ, 2002. A state space formalism for anisotropic elasticity. Part Ⅰ: Rectilinear anisotropy. International Journal of Solids and Structures 39, 5143-5155.
    [185] Tarn JQ, 2002. A state space formalism for anisotropic elasticity. Part Ⅱ: Cylindrical anisotropy. International Journal of Solids and Structures 39, 5157-5172.
    [186] 杨正光,仲政,戴瑛,2004.功能梯度矩形板的三维弹性分析.力学季刊 25,15-20.
    [187] Zhong Z, Shang ET, 2003. Three-dimensional exact analysis of a simply supported functionally gradient piezoelectric plate. International Journal of Solids and Structures 40, 5335-5352.
    [188] Bellman R, 1970. Introduction to Matrix Analysis. McGraw-Hill, New York.
    [189] Delale F, Erdogan F, 1988. On the mechanical modeling of the interfacial region in bonded half-planes. Journal of Applied Mechanics 55, 317-324.
    [190] Chen WQ, Ding HJ, 2002. On free vibration of a functionally graded piezoelectric rectangular plate. Acta Mechanica 153, 207-216.
    [191] 尚尔涛,仲政,2003.功能梯度热释电材料平板柱形弯曲问题的精确解.应用力学学报20.122-125.
    [192] 仲政,尚尔涛,2003.功能梯度热释电材料矩形板的三维精确分析.力学学报 35,542-552.
    [193] Tarn JQ, Wang YM, 2004. End effects of heat conduction in circular cylinders of functionally graded materials and laminated composites. International Journal of Heat and Mass Transfer 47, 5741-5747.
    [194] Tarn JQ, 2001. Exact solutions for functionally graded anisotropic cylinders subjected to thermal and mechanical loads. International Journal of Solids and Structures 38, 8189-8206.
    [195] 丁皓江,陈伟球,2000.弹性力学状态空间法的一类新方程.现代数学和力学 Ⅷ,49-53.
    [196] 丁皓江,陈伟球,徐荣桥,2001.横观各向同性层合矩形板弯曲、振动和稳定的三维精 确分析.应用数学和力学 22,16-22.
    [197] 丁皓江等,1997.横观各向同性弹性力学.浙江大学出版社,杭州.
    [198] Reddy JN, Wang CM, Kitipornchai S, 1999. Axisymmetric bending of functionally graded circular and annular plates. European Journal of Mechanics A/Solids 18: 185-199.
    [199] Junger MC, Mass C, 1952. Vibrations of elastic shells in a fluid medium and the associated radiation of sound. Journal of Applied Mechanics 74, 439-445.
    [200] Jain RK, 1974. Vibration of fluid-filled, orthotropic cylindrical shells. Journal of Sound and Vibration 37, 379-388.
    [201] Zhang XM, Liu GR, Lam KY, 2001. Coupled vibration analysis of fluid-filled cylindrical shells using the wave propagation approach. Applied Acoustics 62, 229-243.
    [202] Upadhyay PC, Mishra BK, 1988. Non-axisymmetric dynamic response of buried orthotropic cylindrical shells. Journal of Sound and Vibration 121, 149-160.
    [203] Chen WQ, Ding HJ, Guo YM, Yang QD, 1997. Free vibrations of fluid-filled orthotropic cylindrical shells. Journal of Engineering Mechanica-ASCE 123, 1130-1133.
    [204] Chen WQ, Ding HJ, 1999. Natural frequencies of fluid-filled transversely isotropic cylindrical shells. International Journal of Mechanical Sciences 41, 677-684.
    [205] Chen WQ, Ding HJ, Xu RQ, 1998. On exact analysis of free vibrations of embedded transversely isotropic cylindrical shells. International Journal of Pressure Vessels and Piping 75, 961-966.
    [206] Uchino K, 1996, Piezoelectric actuators and ultrasonic motors. Kluwer, Boston.
    [207] Rogacheva N, 1994. The theory of piezoelectric shells and plates. CRC Press, Boca Raton, LA.
    [208] Chen CQ, Shen YP, 1996. Piezothermoelasticity analysis for a circular cylindrical shell under the state of axisymmetric deformation. International Journal of Engineering Science 34, 1585-1600.
    [209] Chen CQ, Shen YP, Wang XM, 1996. Exact solution of orthotropic cylindrical shell with piezoelectric layers under cylindrical bending. International Journal of Solids and Structures 33, 4481-4494.
    [210] Chen CQ, Shen YP, 1996. Stability analysis of piezoelectric circular cylindrical shells. Journal of Applied Mechanics 64, 847-852.
    [211] Chen CQ, Shen YP, 1998. Three-dimensional analysis for the free vibration of finite-length orthotropic circular cylindrical shells. Journal of Vibration & Acoustics 120, 194-198.
    [212] Kapuria S, Sengupta S, Dumir PC, 1997. Three-dimensional solution for simply-supported piezoelectric cylindrical shell for axisymmetric load. Computer Methods in Applied Mechanics and Engineering 140, 139-155.
    [213] Zhu JQ, Chen CQ, Shen YP, 2003. Three dimensional analysis of the dynamic stability of piezoelectric circular cylindrical shells. European Journal of Mechanics-A/Solids 22, 401-411.
    [214] Zhu JQ, Shen YP, Chen CQ, 2004. Analysis of the dynamic stability of electrical graded piezoelectric circular cylindrical shells. Acta Mechanica Solida Sininca 17, 113-120.
    [215] Zhu JQ, Chen CQ, Shen YP, Wang SL, 2005. Dynamic stability of functionally graded piezoelectric circular cylindrical shells. Materials Letters 59, 477-485.
    [216] Ding HJ, Chen WQ, Guo YM, Yang QD, 1997. Free vibrations of piezoelectric cylindrical shells filled with compressible fluid. International Journal of Solids and Structures 34, 2025-2034.
    [217] Takahashi S, Miyamoto N, Ichinose N, 2002. Functionally gradient piezoelectric ceramics for ultrasonic transducers. Japanese Journal of Applied Physics (Part 1) 41, 7103-7107.
    [218] Ichinose N, Miyamoto N, Takahashi S, 2004. Ultrasonic transducers with functionally graded piezoelectric ceramics. Journal of the European Ceramic Society 24, 1681-1685.
    [219] Jin B, Zhong Z, 2002. A moving mode-Ⅲ crack in functionally graded piezoelectric material: permeable problem. Mechanics Research Communications 29, 217-224.
    [220] Liew KM, He XQ, Ray Tapabrata, 2004. On the use of computational intelligence in the optimal shape control of functionally graded smart plates. Computer Methods in Applied Mechanics and Engineering 193, 4475-4492.
    [221] Loy CT, Lam KY, Reddy JN, 1999. Vibration of functionally graded cylindrical shells. International Journal of Mechanical Sciences 41, 309-324.
    [222] Yu YY, Syracuse NY, 1955. Free vibrations of thin cylindrical shells having finite lengths with freely supported and clamped edges. Journal of Applied Mechanics 22, 547-552.
    [223] Ding HJ, Chen WQ, 2001. Three dimensional problems of piezoelasticity. Nova Science Publishers, New York.
    [224] Soldatos KP, Hadhgeorgiou VP, 1990. Three-dimensional solution of the free vibration problem of homogeneous isotropic cylindrical shells and plates. Journal of Sound and Vibration 137, 369-384.
    [225] Xu KM, Noor AK, 1996. Three-dimensional analytical solutions for coupled thermoelectroelastic response of multi-layered cylindrical shells. AIAA Journal 34, 802-812.
    [226] Xu KM, Noor AK, Burton WS, 1997. 3D solutions for free vibration of initially stressed thermoelectroelastic multilayered cylinders. Journal of Engineering Mechanics 123, 45-51.
    [227] Zhou JP, Li DK, Li AL, 1999. Analysis of laminated piezoelectric cylindrical shells. Acta Mechanica. Sinica 15, 145-154.
    [228] Paul HS, Venkatesan M, 1987. Vibrations of a hollow circular cylinder of piezoelectric ceramics. Journal of the Acoustical Society of America 82, 952-956.
    [229] 尹林,沈亚鹏,1998.压电类智能结构的力学行为和工程应用.力学进展 28,163-172.
    [230] Pagano NJ, 1969. Exact solutions for composite laminates in cylindrical bending. Journal of Composite Materials 3, 398-411.
    [231] Liew KM, He XQ, Ng TY, Sivashanker S, 2001. Active control of FGM plates subjected to a temperature gradient: Modelling via finite element method based on FSDT. International Journal for Numerical Methods in Engineering 52, 1253-1271.
    [232] Liew KM, He XQ, Ng TY, Kitipornchai S, 2002. Active control of FGM shells subjected to a temperature gradient via piezoelectric sensor/actuator patches. International Journal for Numerical Methods in Engineering 55: 653-668.
    [233] He XQ, Liew KM, Ng TY, Kitipornchai S, 2002. A FEM model for the active control of curved FGM shells using piezoelectric sensor/actuator layers. International Journal for Numerical Methods in Engineering 54, 853-870.
    [234] Ng TY, He XQ, Liew KM. Finite element modeling of active control of functionally graded shells in frequency domain via piezoelectric sensors and actuators. Computational Mechanics, 2002; 28: 1-9.
    [235] Liew KM, He XQ, Ng TY, Kitipornchai S, 2003. Finite element piezothermoelasticity analysis and the active control of FGM plates with integrated piezoelectric sensors and actuators. Computational Mechanics 31,350-358.
    [236] Shen HS, Liew KM, 2004. Postbuckling of axially loaded functionally graded cylindrical panels with piezoelectric actuators in thermal environments. Journal of Engineering Mechanics 130, 982-995.
    [237] Yang J, Kitipornchai S, Liew KM, 2004. Non-linear analysis of the thermo-electro- mechanical behaviour of shear deformable FGM plates with piezoelectric actuators. International Journal for Numerical Methods in Engineering 59, 1605-1632.
    [238] Cheng ZQ, Jemah AK, Williams FW, 1996. Theory for multilayered anisotropic plates with weakened interfaces. Journal of Applied Mechanics 63, 1019-1026.
    [239] Seeley CE, Chattopadhyay A, 2999. Modeling of adaptive composites including debonding. International Journal of Solids and Structures 36, 1823-1843.
    [240] Librescu L, Schmidt R, 2001. A general linear theory of laminated composite shells featuring interlaminar bonding imperfections. International Journal of Solids and Structures 38, 3355-3375.
    [241] Lipton R, 2001. Effect of interfacial bonding on fiber reinforced shafts subject to antiplane shear. International Journal of Solids and Structures 38, 369-387.
    [242] He LH, Lim CW, 2003. Electromechanical responses of piezoelectric fiber composites with sliding interface under anti-plane deformations. Composites Part B: Engineering 34, 373-381.
    [243] Rokhlin SI, Wang L, Xie B, Yakovlev VA, Adler L, 2004. Modulated angle beam ultrasonic spectroscopy for evaluation of imperfect interfaces and adhesive bonds. Ultrasonics 42, 1037-1047.
    [244] Chen WQ, Cai JB, Ye GR, 2003. Exact solutions of cross-ply laminates with bonding imperfections. AIAA Journal 41, 2244-2250.
    [245] Chen WQ, Lee KY, 2004. Three-dimensional exact analysis of angle-ply laminates in cylindrical bending with interfacial damage via state-space method. Composite Structures 64, 275-283.
    [246] Chen WQ, Ying J, Cai JB, Ye GR, 2004. Benchmark solution of laminated beams with bonding imperfections. AIAA Journal 42,426-429.
    [247] Cai JB, Chen WQ, Ye GR, 2004. Effect of interlaminar bonding imperfections on the behavior of angle-ply laminated cylindrical panels. Composites Science and Technology 64, 1753-1762.
    [248] Chen WQ, Wang YF, Cai JB, Ye GR, 2004. Three-dimensional analysis of cross-ply laminated cylindrical panels with weak interfaces. International Journal of Solids and Structures 41,2429-2446.
    [249] Chen WQ, Lee KY, 2004. Exact solution of angle-ply piezoelectric laminates in cylindrical bending with interfacial imperfections. Composite Structures 65, 329-337.
    [250] Chen WQ, Cai JB, Ye GR, Wang YF, 2004. Exact three-dimensional solutions of laminated orthotropic piezoelectric rectangular plates featuring interlaminar bonding imperfections modeled by a general spring layer. International Journal of Solids and Structures 41, 5247-5263.
    [251] Chen WQ, Ying J, Cai JB, Ye GR, 2004. Benchmark solution of imperfect angle-ply laminated rectangular plates in cylindrical bending with surface piezoelectric layers as actuator and sensor. Computers & Structures 82,1773-1784.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700