快淬钐铁基化合物的亚稳态结构与磁性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于具有较高的永磁性能和丰富的物理现象,一些具有亚稳态结构的稀土永磁材料如SmFe基化合物引起了人们的关注。这些亚稳态与平衡态之间,以及亚稳态结构之间的形成和转化对磁性材料的研究具有十分重要的意义,也为新型稀土永磁材料的探索提供了新的思路。基于此,本论文中采用快淬这种非平衡凝固工艺制备SmFe基化合物,采用X射线衍射(XRD)、透射电镜(TEM)、振动样品磁强计(VSM)穆斯堡尔谱等手段研究成分、工艺等对亚稳相的结构变化及性能的影响。
     首先通过快淬(40m/s)及热处理(600~1000℃)制备了SmFex(3≤x≤12)化合物,分析了各条件下亚稳态结构的形成及转变规律,绘制了结构-成分-温度之间的关系图。发现SmFe2相在两种条件下稳定存在,一种为x<4,另一种为4<x<8且热处理温度在900℃以下;Sm5Fe17亚稳相稳定范围为3<x<5且热处理温度在900℃以下;TbCu7型的SmFe9化合物在40m/s及以下难以形成单相的结构;各相的稳定程度为:Sm2Fe17-type, SmFe3-type> SmFe2-type> Sm5Fe17-type, SmFe9-type> amorphous。
     针对以上出现的Sm5Fe17和SmFe9两种化合物开展研究,首先分析了不同快淬速率(10~50m/s)和不同热处理工艺(600-900℃)下Sm5Fel7的结构和磁性。发现经过30m/s快淬和700℃热处理后Sm5Fe17化合物的矫顽力可达33.8kOe,结构中少量的SmFe2相使其矫顽力呈现“钉扎型”特征,但是也造成了退磁曲线上的“台阶”;添加Tb之后,Ms和Hcj下降明显,添加10%的Tb后矫顽力已经降低50%,主要原因在于加入Tb后晶粒尺寸从20-50nm长大到100nm以上,并且出现Tb6Fe23相,使矫顽力机制从“钉扎型”转向“形核型”;(Sm,Tb)5Fe17中各相之间的交换耦合作用消除了退磁曲线上的“台阶”。
     40m/s冷速条件下二元的SmFe9化合物中较易出现2:17和a-Fe,导致氮化后主相发生分解,磁性能难以提高,需要添加其他元素稳定亚稳态结构;对于Sm1-xZrxFe9.5+x来说,Zr具有与Sm相近的原子半径,加入后占据引起最低晶体弹性应变能的1aSm晶位,底面a轴长度缩短,同时随Zr增加Fe含量增多,c轴2e晶位上Fe的原子密度增大,c轴长度增大,这些均提高了晶体结构的长短轴比c/a,从而稳定亚稳态的TbCu7结构。
     研究了晶化过程对Sm1-xZrxFe95+xNy性能的影响,发现随着晶化温度的提高,矫顽力逐渐升高,剩磁在750~850℃范围内变化不大,温度大于900℃时,主相分解,剩磁出现明显下降;当Zr含量x=0.1和0.2时,综合性能较好,进一步提高Zr和Fe含量,矫顽力和磁能积出现明显下降;850℃×1h热处理,440℃×16h氮化后,Sm0.8Zr0.2Fe9.7NX的各综合性能较佳,(BH)m=6.63MGOe, Hcj=6.00kOe, Br为7.17kGs;氮化物磁粉的矫顽力具有明显的钉扎特性,随Zr和Fe的增多,结构中出现的α-Fe成为反磁化形核中心,矫顽力下降明显。
     在SmFe9化合物中加入Si、B形成SmFe9.5-xSixB0.1化合物,发现随着Si含量提高,c/a值增大,在x≥0.4后稳定并大于0.85,主要原因在于Si、B与Sm和Fe均具有较低的混合焓,加入后降低体系能量从而稳定TbCu7结构。在保持结构稳定的基础上,通过提高晶体结构中的Fe含量,抵消由于Si加入带来饱和磁化强度的降低,以SmFe9.3+xSi0.2B0.1(x=0,0.5,1.0)为例,增加的Fe优先占据晶格的2e晶位,带来Fe2e-Fe2e原子间距缩短,c/a值提高,在x=0.5时具有最大的超精细场29T,最高的居里温度477.68K;氮化后,居里温度相对快淬态平均提高265K,最终当x=0.5时,获得最优性能Hcj=4.31kOe,(BH)m=3.50MGOe=
     在TbCu7型Smo.7Zr0.1Fe9.6Bx化合物中,小原子B的加入可以提高化合物的非晶形成能力,抑制α-Fe的析出,730℃×90min处理之后仍无明显α-Fe出现,同时可与Zr一起稳定TbCu7结构,使其c/a值达到0.87;加入B后不需氮化即具有永磁特性,当x=0.8时达到2.8kOe,B对2e和3g晶位的占据可能是其具有永磁性能的主要原因。
The permanent magnetic materials with metastable structure like SmFe based compounds have attracted much attention due to the high magnetic properties and rich physical phenomenon. The research of the formation and transformation between these metastable and equilibrium state has vital significance on the understanding of crystal structures relationship and thermodynamic stability.
     So, SmFe based compounds are prepared by melt spun and subsequent heat treating. The influences of composition and preparing method to the phase transition, microstructure and magnetic properties are tested by X-ray diffraction (XRD), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and Mossbauer Spectroscopy.
     Firstly the SmFex(3≤x≤12) compounds were prepared by melt spinning (40m/s) and subsequent heat treatment (600-1000℃×1h). The formation and transition of the metastable phases are mainly indexed by XRD. The relationship diagram of Phase-Composition-Temperature (PCT diagram) is ploted. The glass forming ability can be enhanced by the increase of Sm content to x<5. Metastable Sm5Fe17-type structure exists when3 SmFe2-type> Sm5Fe17-type, SmFe9-type> amorphous.
     The Sm5Fe17and SmFeg based compounds according to the PCT diagram are studied in detail. The structure and magnetic properties of Sm5Fe17under different quenching velocity (10-50m/s) and different heat treatment (600-900℃) process are analysed. The highest coercivity of33.8kOe are prepared under30m/s and700℃×1h. The coervicity is increased by the "domain wall pinning" mechanism due to SmFe2phase, which also caused the "kink" in the demagnetization curve. Saturation magnetization and coercivity are dropping obviously after the adding of Terbium (decreased by50%, from30kOe to17kOe after adding10%Tb). The main reason is due to the increase of crystal size from20-50nm to100nm and emerging of soft magnetic phase Tb6Fe23in the700℃×1h heat treated samples, which caused the coercivity mechanism changed from domain wall pinning to nucleation gradually. The exchange coupling effect in the (Sm,Tb)5Fe17compounds smoothed the demagnetization curve.
     It's different to elevate the final magnetic properties of SmFe9Nx compounds due to the unstable TbCu7type structure under40m/s. The similar atomic radius of Zr to Sm leads to the occupation of1α crystal site to avoid increasing of crystal elastic strain energy. The TbCu7type structure is stabilized as the c/a value increase to higher than0.86.
     The coercivity of Sm1-xZrxFe9.5+xNxmagnetic powders after crystalized and nitrided is increasing with the heat treating temperature. As to saturation magnetization, no obvious change can be observed from750to850℃while falling rapidly after900℃. Considering about composition, better properties are those Sm1-xZrxFe9.5+xNy samples with x=0.1and0.2. The coercivity and saturation magnetization dropped steeply when the content of Zr and Fe increase, especially when x>0.4and the magnetic properties fall to about zero. The best properties can be obtained when x=0.2and the procedure of heat treated at850℃×1h and nitrided at440℃×16h, which can be (BH)m=6.63MGOe, Hcj=6.00kOe, Br=7.17kGs. The nitride powders have obvious domain wall pinning mechnism to explain high coercivity while more reverse magnetization nucleation center formed in the higher a-Fe content samples which cause the decrease of coercivity.
     Besides of Zr, the combined adding of Si and B can stabilized the metastable TbCu7-type structure because of low mixing enthalpy with Sm and Fe. The samples' saturation magnetization decreases with the added non-magnetic elements Si. As to SmFe93+xSi0.2B0.1(x=0,0.5,1.0), the extra Fe atoms prefer to take2e site, which bring the shrink of atom distance between Fe2e-Fe2e sites and increase of the value of c/a. The highest hyperfine field of29T and Curie temperature of477.68K can be obtained when x=0.5. After nitridation, the Curie temperature increase about265K. The best magnetic properties of Hcj=4.31kOe,(BH)m=3.5MGOe can be found when x=0.5.
     B in the melt spun Sm0.7Zr0.1Fe9.6Bx samples can elevated the glass forming ability and inhibited the precipitation of a-Fe. No a-Fe can be found in the730℃×90min treated samples. The high c/a value of0.87means the stability of this SmZrFeB compounds. After crystallization, the Smo.7Zr0.1Fe9.6Bx samples have obvious permanent magnetic properties. The coercivity increase with the Boron content to highest of2.8kOe at x=0.8. The boron rich phase emerged as the Boron content continue to increase. The preferential occupation of2e or3g sites may the main reason to have these permanent magnetic properties.
引文
[1]J. M. D. Coey. Magentism and Magnetic Materials[M]. Cambridge:Cambridge University Press,2010:1-7.
    [2]Hadjipanayis G. C., Gaunt P. Interaction effects in a random anisotropy crystalline alloy[J]. Journal of Applied Physics,1981,52(3):2093.
    [3]Coehoorn R., Mooji D. B., Duchateau J. P., et al. Novel Permanent Magnetic Materials Made by Rapid Quenching[J]. Journal de Physique Colloques:Tous les numerous,1988.49(C8):669-670.
    [4]Schrefl T., Fidler J., Kronmuller H. Remanence and coercivity in isotropic nanocrystalline permanent magnets[J]. Physical Review B,1994,49(9):6100-6110.
    [5]Croat J. J., Herbst J. F., Lee R. W., et al. Pr-Fe and Nd-Fe based materials:A new class of high- performance permanent magnets (invited)[J]. Journal of Applied Physics,1984,55(6):2078-2082.
    [6]Sagawa M., Fujimori S., Togawa M., et al. New material for permanent magnets on a base of Nd and Fe (invited)[J]. Journal of Applied Physics,1984,55(6):2083-2087.
    [7]Hirosawa S., Matsuura Y., Yamamoto H., et al. Magnetization and magnetic anisotropy of R2Fe14B measured on single crystals[J]. Journal of Applied Physics, 1986,59(3):873-879.
    [8]Goll D., Seeger M., Kronmuller H. Magnetic and microstructural properties of nanocrystalline exchange coupled PrFeB permanent magnets[J]. Journal of Magntism and Magnetic Materials,1998,185(1):49-60.
    [9]Buschow K. H. J., de Mooij D. B., Denissen C. J. M. Note on the formation and the magnetic properties of the compound Nd2Fe14C[J]. Journal of the Less Common Metals,1988,141(1):L15.
    [10]Lui W., Zhang Z., Sun X. K., et al. Room temperature magnetic anisotropy of rare-earth transition-metal intermetallics R2Fe14C (R= Lu, Gd, Nd) and R2Fe14B (R= Gd, Nd)[J]. Solid State Communications,1990,76(12):1375-1378.
    [11]Strnat K. J. Ferromagnetic Materials[M]. Amsterdam:North-Holland,1988.4:131.
    [12]Coey J. M. D. Magnetic Nitride[A]. Proceedings of the 6th International Conference on Ferrites[C]. Kyoto:Japan,1992,1064.
    [13]Hu Z., Yelon W. B., Kaogirou O., et al. Site occupancy and lattice changes on nitrogenation in Nd3Fe29-xTixNy[J]. Journal of Applied Physics.1996,80(5): 2955-2959.
    [14]Yang Fu Ming, Nasunjilegal B, Wang Jian Li, et al. Magnetic properties of a novel Sm3(Fe,Ti)29Ny nitride[J]. Journal of Applied Physics.1994.76(3):1971-1973
    [15]Sakurada S., Tsutai A., Hirai T., et al. Structural and magnetic properties of rapidly quenched (R,Zr)(Fe,Co)10Nx (R=Nd,Sm) [J]. Journal of Applied Physics,1996,79(8): 4611-4613.
    [16]Buschow K. H. J. Permanent magnet materials based on tetragonal rare earth compounds of the type RFe12 xMx[J]. Journal of Magntism and Magnetic Materials, 1991,100(1-3):79-89.
    [17]Wang Y. Z., Hadjipanayis G. C., Kim A., et al. Structure and magnetic properties of RFe10V2Nx compounds[J]. Journal of Magntism and Magnetic Materials,1992, 104-107(Part 2):1132-1134.
    [18]Li H. S., Coey J. M. D. Ferromagnetic Materials[M]. Amsterdam:North-Holland, 1991:6841-6843.
    [19]Kneller E. F., Hawig R. The exchange-spring magnet:a new material principle for permanent magnets[J]. IEEE Transactions on Magnetics,1991,27(4):3588-3560.
    [20]Coene W., Hakkens F., Coehoorn R., et al. Magnetocrystalline anisotropy of Fe3B, Fe2B and Fe14Co0.6B as studied by Lorentz electron microscopy, singular point detection and magnetization measurements[J]. Journal of Magntism and Magnetic Materials,1991,96(1-3):189-196.
    [21]W. M. Hubbard, E. Adams, J. V. Gilfrich. Magnetic Moments of Alloys of Gadolinium with Some of the Transition Elements[J]. Journal of Applied Physics, 1960,31:S368-S369.
    [22]K. Strnat, G. Hoffer, J. Olson, et al. A Family of new cobalt- base permanent magnet materials[J]. Journal of Applied Physics,1967,38(3):1001-1002.
    [23]G. I. Hoffer, K. J. Strnat. Magnetocrystalline anisotropy of YCo5 and Y2Co17[J]. IEEE Transactions on Magnetics,1966,2(3):487-489.
    [24]K. H. J Buschow, W. Liuten, P. A. Naastepad, et al. Magnet material with a (BH)max of 18.5 million gaussorested[J]. Philips Technical Review,1968,29:336-337.
    [25]Das D.Twenty million enegry Porduct samarium-cobalt magnet[J]. IEEE Transactions on Magnetics.1969,5(3):214-216.
    [26]Das D. Influence of sinetring temperature on magnetic Properties of samarium-cobalt magnet[J]. IEEE Transactions on Magnetics,1971,7(3):432-435.
    [27]T. Ojima, S. Tomizawa, T. Yoneyama, et al. New type rare earth cobalt magnets with an energy product of 30MGOe[J]. Japan Journal of Applied Physics,1977,4: 671-672.
    [28]国家发展和改革委员会产业协调司.中国稀土2011[J].稀土信息,2012,4:4-8.
    [29]J. J. Croat. Preparation and coercive force of melt-spun Pr-Fe alloys[J]. Applied Physics Letters,1980,37(12):1096-1098.
    [30]J. J. Croat. Observation of large room-temperature coercivity in melt-spun Nd0.4Feo.6[J]. Applied Physics Letters,1981,39(4):357-358.
    [31]G. C. Hadjipanayis, R. C. Hazelton, K. R. Lawless. Cobalt-free permanent magnet materials based on iron-rare-earth alloys (invited)[J]. Journal of Applied Physics, 1984,55(6):2073-2077.
    [32]M. Sagawa, S. Fujimura, M. Togawa, et al. New material for permanent magnets on a base of Nd and Fe[J]. Journal of Applied Physics,1984,55(6):2083-2087.
    [33]J. J. Croat, J. F. Herbst, R. W. Lee, et al. Pr-Fe and Nd-Fe based material:a new class of high-performance permanent magnets[J]. Journal of Applied Physics,1984,55(6): 2078-2082.
    [34]W. Rodewald, B. Wall, M. Katter, et al. Top Nd-Fe-B magnets with greater than 56 MGOe energy density and 9.8 kOe coercivity [J]. IEEE Transactions on Magnetics. 2002,38 (5):2955-2957.
    [35]Y. Matsuura. Recent development of Nd-Fe-B sintered magnets and their applications [J]. Journal of Magntism and Magnetic Materials.2006,303(2):344-347.
    [36]S. Sugimoto. Current status and recent topics of rare-earth permanent magnets[J]. Journal of Physics D:Applied Physics,2011,44(064001):1-11.
    [37]Fidler J., Sasaki S., Estevez-Rams E. High Performance Magnets- Microstructure and Coercivity [A]. Advanced hard and soft magnetic materials symposium, Advanced hard and soft magnetic materials [C]. Cambridge:the British Library Board and other contributors,1999,577:291-302.
    [38]Endoh M., Shindo M. Material Design and Fabrication of high Energy Nd-Fe-B sintered Magnets[A]. Proceedings of 13th International Workshop On RE Magnets and their Applications[C]. UK:Birmingham,1994,397.
    [39]Rodewald W., Wall B., Fernengel W. Grain growth kinetics in sintered Nd-Fe-B magnets[J]. IEEE Transactions on Magnetics,1997,33(5):3841-3843.
    [40]Sagawa M., Nagata H., Itatani O., et al. Novel processing technology for permanent magnets[A]. Proceedings of 2nd International Workshop on Material Science[C]. Vietnam:Hanoi,1995,635.
    [41]Rodewald W., Katter M., Wall B., et al. Dependence of the coercivity Hcj of high energy Nd-Fe-B magnets on the alignment coefficient[J]. IEEE Transactions on Magnetics,2000,36(6):3279-3281.
    [42]Velicescu M., Schrey P. Dy-distribution in the grains of high-energy (Nd, Dy)FeB magnets[A].15th International Workshop on RE Magnets and their Applications[C]. Germany:Dresden,1998,411.
    [43]Sagawa M, Une Y. Preparation of ultrafine jet-milled powders for Nd-Fe-B sintered[A]. Proc.20th International Workshop on Rare Earth Permanent Magnet and their Applications[C]. Greece:Admore,2008,103-105.
    [44]Park K. T., Hiraga K., Sagawa M. Effect of Metal-Coating and Consecutive Heat Treatment on Coercivity of Thin Nd-Fe-B Sintered Magnets[A]. Proceeding of 16th International Workshop on Rare Earth Permanent Magnet and their Applications[C]. Sendai, Japan:The Japan Institute of Metals,2000:257-264.
    [45]Nakamura H., Hirota K., Shimao M., et al. Magnetic properties of extremely small Nd-Fe-B sintered magnets[J]. IEEE Transactions on Magnetics,2005,41(10):3844-3846.
    [46]Hirota K., Nakamura H., Shimao M., et al. Coercivity Enhancement by the Grain Boundary Diffusion Process to NdFeB Sintered Magnets[J]. IEEE Transactions on Magnetics,2006,42(10):2909-2911.
    [47]Nagata H. New Method for Preparing Dy saving sintered Magnet. BM News of The Japan Association of Bonded Magnetic Materials (JABM),2008,40:47.
    [48]Hitachi Metals. Development of New Manufacturing Method for Advanced Sintered Neodymium (Rare-Earth) Magnets[EB/OL], http://www.hitachi-metals.co.jp,2008-06-26
    [49]Hidaka T. Japanese Permanent Magnets and Applications. BM News of The Japan Association of Bonded Magnetic Materials (JABM),2008,43:105 (in Japanese).
    [50]Coehoorn R., Mooji D. B., Duchateau J. P., et al. Novel Permanent Magnetic Materials Made by Rapid Quenching[J]. Journal de Physique Colloques:Tous les numerous,1988,49(C8):669-670.
    [51]Coehoorn R., Mooji D. B., DeWaard C. Melt spun permanent magnet materials containing Fe3B as the main phase [J]. Journal of Magntism and Magnetic Materials, 1989,80(1):101-104.
    [52]Manaf A., Zhang P. Z., Ahamad I., et al. Magnetic properties and microstructural characterisation of isotropic nanocrystalline Fe-Nd-B based alloys[J]. IEEE Transactions on Magnetics,1993,29(6):2866-2868.
    [53]Ding J., Mccormick P. G., Street R. Remanence enhancement in Mechanically alloyed isotropic Sm7Fe93 nitride[J]. Journal of Magntism and Magnetic Materials,1993, 124(1-2):1-4.
    [54]周寿增,董清飞.超强永磁体[M].第2版.北京:冶金工业出版社,2004:333-335.
    [55]Book D., Harris I. R. The disproportionation of Nd2Fe14B under hydrogen in NdFeB alloy[J].IEEE Transactions on Magnetics,1992,28(5):2125.
    [56]Verdier M., Morros J., Pere D., et al. Hydrogen absorption behaviours of some Nd-Fe-B-type alloys[J]. IEEE Transactions on Magnetics,1994,30(2):660-662.
    [57]Takeshita T, Nakayama R. Aspects of NdFeB HDDR Powders:Fundamentals and Processing[A].1989 Proceedings of 10th International Workshop on Rare Earth Magnets and their Applications[C]. Japan:Society of Non-Traditional Technology, 1987,551.
    [58]Gutfleisch O., Harris I. R. Fundamental and practical aspects of the hydrogenation, disproportionation, desorption and recombination process[J]. Journal of Physics D: Applied Physics,1996,29(9):2255.
    [59]Gutfleisch O., Martinez N., Verdier M., et al. Phase transformations during the disproportionation stage in the solid HDDR process in a Nd16Fe76B8 alloy[J]. Journal of Alloys Compounds,1994,215(1-2):227-233.
    [60]Fujita A., Harris I. R. Hydrogen absorption and desorption study of Nd-TM-B system [J]. IEEE Transactions on Magnetics,1994,30(2):860-862.
    [61]Nakamura H., Sugimoto S., Tanaka T., et al. Effects of additives on hydrogenation, disproportionation, desorption and recombination phenomena in Nd2Fe14B compounds[J]. Journal of Alloys Compounds,1995,222(1-2):136-140.
    [62]Sugimoto S., Gutfleisch O., Harris I. R. Resistivity measurements on hydrogenation disproportionation desorption recombination phenomena in NdFeB alloys with Co, Ga and Zr additions[J]. Journal of Alloys Compounds,1997,260(1-2):284-291.
    [63]Kubis M., Gutfleisch O., Muller K. H., et al. Hydrogenation and disproportionation of Sm2Fe17-xGax at high hydrogen pressures[J]. Journal of Applied Physics,1998, 83(11):6905-6907.
    [64]Handstein A., Kubis M., Gutfleisch O., et al. HDDR of Sm-Co alloys using high hydrogen pressures[J]. Journal of Magntism and Magnetic Materials,1999,192(1): 73-76.
    [65]O. Gutfleisch, M. Matzinger, J. Fidler, et al. Characterisation of solid-HDDR processed Nd16Fe76Bg alloys by means of electron microscopy [J]. Journal of Magnetism and Magnetic Materials,1995,147(3):320-330.
    [66]Aichi Steel Corporation. MagFine Magnetic Powders[EB/OL]. www.magfine.net. 2010-7-15.
    [67]Coey J. M. D., Sun H. Improved magnetic properties by treatment of iron-based rare earth intermetallic compounds in anmonia[J]. Journal of Magntism and Magnetic Materials,1990,87(3):L251-L254.
    [68]Yang Ying-chang, Zhang Xiao-dong, Kong Lin-shu, et al. Structural and magnetic properties of nitride compounds of the type R2Fe17Nx, R2Fe14BNx and RTiFe11Nx[J]. Journal of the Less Common Metals,1991,170(1):37-44.
    [69]Onneby C., DeBroy T., Seetharaman S. Experimental studies on nitrogen solubility in B alloy in the temperature range 773-1143K[J]. Journal of Magntism and Magnetic Materials,1993,127(3):307-314.
    [70]Blach T. P., MacA Gray E. Nitrogen-induced degradation of Nd2Fe14B[J]. Journal of Magntism and Magnetic Materials,1998,177-181 (Part 1):985-986.
    [71]Katter M., Wecker J., Kuhrt C., et al. Structural and intrinsic magnetic properties of Sm2(Fe1-xCox)17Ny[J]. Journal of Magntism and Magnetic Materials,1992,114(1-2): 35-44.
    [72]H. Kawamoto, H. Ishikaza, S. Yasuda, et al. Sm2Fe17N3 magnet powder made by reduction and diffusion method[A]. Digests of the 21st Annual Conference on Magnetics in Japan[C]. Japan:Magnetics Society of Japan,1997,371.
    [73]X. Chen, Z. Altounian. Hydrogenation decomposition desorption recombination magnets based on Sm2+δFe17M0.4 carbonitrides (M=IVB/VB/VIB group elements) [J]. Journal of Applied Physics,1994,75(10):6012-6014.
    [74]A. E. Platts, I. R. Harris, J. M. D. Coey. Improvement in the cast structure of Sm2Fe17 alloys by niobium additions[J]. Journal of Alloys Compounds,1992,185(2):251.
    [75]B. Saje, A. E. Platts, S. Kobe Besenicar, et al. Microstructure and magnetic properties of Sm-Fe-Ta based alloys[J]. IEEE Transactions on Magnetics,1994,30(2):690-692.
    [76]Gebel B., Kubis M., Muller K. H. Permanent magnets prepared from Sm10.5Fe88.5Zr1.0Ny without homogenization[J]. Journal of Magntism and Magnetic Materials,1997,174(1-2):L1-L4.
    [77]J. M. D. Coey. Interstitial intermetallics[J]. Journal of Magntism and Magnetic Materials,1996,159(1-2):80-89.
    [78]H. Fujii, K. Koyama, K. Tatami, et al. Recent development of basic magnetism in interstitially modified rare-earth iron nitrides R2Fe17N3 [J]. Physica B:Condensed Material,1997,237-238(7):534-540.
    [79]Coey J. M. D., Sun H. Improved magnetic properties by treatment of iron-based rare earth intermetallic compounds in anmonia[J]. Journal of Magntism and Magnetic Materials,1990,87(3):L251-L254.
    [80]R. Skomski, J. M. D. Coey. Nitrogen diffusion in Sm2Fe17 and local elastic and magnetic properties [J]. Journal of Applied Physics,1993,73(11):7602-7611.
    [81]Y. D. Zhang, J. I. Budnick, W. A. Hines. Study of the nitrogen diffusion mechanism in R2Fe,7[J]. Journal of Applied Physics,1996,79(8):4596.
    [82]Y. D. Zhang, J. I. Budnick, W.A. Hines, et al. Nitrogen diffusion in R2Fe17 lattice:a trapping diffusion process[J]. Journal of Physics:Condensed Matter.1997.9(6):1201
    [83]R. Skomski, S. Brennan, J. M. D. Coey. Catalytic mechanism of nitrogen absorption by intermetallic compounds[J]. Physica Status Solidi (a),1993,139(1):Kl 1-K15.
    [84]S. Suzuki, S. Suzuki, M. Kawasaki. Magnetic properties of Sm2(Fe,V)17Ny coarse powder[J]. Journal of Applied Physics,1994.76(10):6708-6710.
    [85]H. Kronmuller, K. D. Durst, M. Sagawa. Analysis of the magnetic hardening mechanism in RE-Fe-B permanent magnets[J]. Journal of Magntism and Magnetic Materials,1988,74(3):291.
    [86]A. Fukuno, C. Ishizaka, T. Yoneyama. Characterization of nitrogenation of Sm2Fe17[A]. Proceeding of 12th International Workshop on Rare-Earth Magnets and their Applications[C]. Australia:Canberra,1992,60.
    [87]K. Kobayashi, T. Iriyama, T. Yamaguchi, et al. Magnetic properties of the single magnetic domain particles of Sm2Fe17Nx compounds[J]. Journal of Alloys Compounds,1993,193(1-2):235-238.
    [88]K. Machida, H. Izumi, A. Shiomi, et al. New Processing Routes for the Preparation of Sm2Fe17Mx (M:C and/or N) Materials[A]. Proceedings of the 14th International Workshop on Rare-Earth Magnets and Their Applications[C]. Singapore:World Scientific,1996,203.
    [89]Tada S, Tominoto T, Kume M. High-Coercivity Anisotropic SmFeN Magnetic Materials[A]. Proceedings of the 22nd International Workshop on Rare-Earth Permanent Magnets and their Applications[C]. Japan:Nagasaki,2012,48-53
    [90]Yang Y. C., Kebe B., James W. J. Structure and magnetic properties of Y(Mn1-xFex)12[J]. Journal of Applied Physics,1981,52(3):2077-2078.
    [91]Yang Yingchang, Zhang Xiaodong, Kong Linshu, et al. Magnetocrystaline anisotropies of RFe11TiNx coupounds[J]. Applied Physics Letters,1991,58(18): 2042-2044.
    [92]Yang Yingchang, Zhang Xiaodong, Ge Senlin, et al. Magnetic and crystallographic properties of Novel Fe-rich rare earth nitrides of the RTiFe11Nx[J]. Journal of Applied Physics,1991,70(10):6001-6005.
    [93]Yang Jinbo, Mao Weihua, Cheng Benpei, et al. Magnetic Properties and Domain structure of NdFe10.5Mo1.5N1.5[J]. Applied Physics Letters,1997,71(22):3290-3292.
    [94]Hu Bo-Ping, Wang Kai-Ying, Wang Yi-Zhong, et al. Structure and magnetic properties of RFe11.35Nbo.65 and RFe11.35Nbo.65Ny; R= Y, Sm, Gd, Tb, Dy, Ho, Er and Lu[J]. Physical Review B,1994,51(5):2905-2919.
    [95]Buschow K. H. J, de Mooij D. B. Note on the spin reorientation in ErFe10V2[J]. Journal of the Less Common Metals,1989,155(1):L9-L11.
    [96]V. K. Sinha, S. K. Malik, D. T. Adroja, et al. AC susceptibility measurements in some RTiFe11-xCox(R=Dy, Ho, Er) compounds:Spin-reorientation behavior [J]. Journal of Magntism and Magnetic Materials,1989,80(2-3):281-284.
    [97]Yang Jinbo, Cui Bo, Cheng Benpei, et al. Preparation of NdFe10.5V1.5Nx powders with potential as high-performance permanent magnets[J]. Journal of Physics D:Applied Physics,1998,31(3):282-286.
    [98]L. Schultz, K. Schnitzke, J. Wecker, et al. Permanent magnets by mechanical alloying (invited)[J]. Journal of Applied Physics,1991,70(10):6339-6344.
    [99]Jun Yang, Ou Mao, Z. Altounian. Structure and magnetic properties of mechanically alloyed Nd(Fe,V)12Nx compounds[J]. Journal of Applied Physics,1996,79(8): 5519-5521.
    [100]S. J. Collocott, R. K. Day, J. B. Dunlop, et al. Rare-earth Permanent Magnets:New Magnetic Materials and Applications[A]. Proceedings of the 7th International Symposium on Magnetic Anisotropy and Coercivity in RE-TM Alloys [C], Canberra, 1992,437.
    [101]Yang F. M., Nasunjilegal B., Wang J. L., et al. Magnetic properties of a novel Sm3(Fe,Ti)29Ny nitride[J]. Journal of Applied Physics,1994,76(3):1971-1973.
    [102]J. M. Cadogan, H. S. Li, A. Margarian, et al. New rare-earth intermetallic phases R3(Fe,M)29Xn:(R=Ce, Pr, Nd, Sm, Gd; M=Ti, V, Cr, Mn; and X=H, N, C) (invited)[J]. Journal of Applied Physics,1994,76(10):6138-6143.
    [103]Li H. S., Cadogan J. M., Davis R. L., et al. Structural properties of a novel magnetic ternary phase:Nd3(Fe1-xTix)29 (0.04≤ x≤ 0.06)[J]. Solid State Communications,1994, 90(8):487-492.
    [104]S. J. Collocott, R. K. Day, J. B. Dunlop, et al. Rare-earth Permanent Magnets:New Magnetic Materials and Applications [A]. Proceedings of the 7th International Symposium on Magnetic Anisotropy and Coercivity in RE-TM Alloys[C], Canberra, 1992,437.
    [105]B. P. Hu, G. C. Liu, Y. Z. Wang, et al. A hard magnetic property study of a novel Sm3(Fe,Ti)29Ny nitride[J]. Journal of Physics:Condensed Matter,1994,6(14):L197.
    [106]Z. Hu, W. B. Yelon, O. Kalogirou, et al. Site occupancy and lattice changes on nitrogenation in Nd3Fe29-xTixNy[J]. Journal of Applied Physics,1996,80(5): 2955-2957.
    [107]H. Saito, M. Takahashi, T. Wakiyama. Magnetic properties and structure change from tetragonal to hexagonal for the rapidly quenched SmTiFe11 alloy ribbons [J]. Journal of Applied Physics,1988,64(10):5965-5967.
    [108]M. Katter, J. Wecker, L. Schultz. Structural and hard magnetic properties of rapidly solidified Sm-Fe-N[J]. Journal of Applied Physics,1991,70(6):3188-3186.
    [109]J. Ding, P. G. McCormick, R. Street. Structure and magnetic properties of mechanically alloyed SmxFe100-x nitride[J]. Journal of Alloys Compounds,1992, 189(1):83-86.
    [110]J. Ding, Y. Liu, P. G. McCormick, et al. Remanence enhancement in isotropic Sm-Co powders[J]. Journal of Magntism and Magnetic Materials,1993,123(3):L239-L242.
    [111]J. Ding, P. G. McCormick, R. Street. Structure and magnetic properties of mechanically alloyed SmxCo1-x [J]. Journal of Alloys Compounds,1993,191(2): 197-201.
    [112]J. Ding, P. G. McCormick, R. Street. A study of Sm13(Co1-xFex)g7 prepared by mechanical alloying[J]. Journal of Magntism and Magnetic Materials,1994,135(2): 200-204.
    [113]J. Ding, P. G. McCormick, R. Street. Mechanically alloyed R11Fe84Ti5 with R=Nd and Sm and their nitrides[J]. Journal of Alloys Compounds,1995,217(1):108.
    [114]Liu Wei, Qun Wang, X. K. Sun, et al. Metastable Sm-Fe-N magnets prepared by mechanical alloying[J]. Journal of Magntism and Magnetic Materials,1994,131(3): 413.
    [115]Liu Wei, Qun Wang, X. K. Sun, et al. Nitrogenation behaviour and thermostability of mechanically alloyed Sm12.5Fe87.5 nitride [J]. Journal of Alloys and Compounds,1994, 215(1-2):257.
    [116]Liu Wei, Qun Wang, X. K. Sun, et al. Structural and magnetic properties of mechanically alloyed Smx(Fe1-yCoy)100-x nitrides [J]. Solid State Communications, 1994,91(12):971.
    [117]Djega Mariadassou, L. Bessais. Emergence of order in nanocrystalline SmFe9[J]. Journal of Magntism and Magnetic Materials,2000,210(1-3):81-87.
    [118]A. Teresiak, M. Kubis, N. Mattern, et al. Formation of modified TbCu7 and type structures during annealing of mechanical-alloyed Sm-Fe powders[J]. Journal of Alloys and Compounds,1998,274(1-2):284-293.
    [119]S. Sakurada, A. Tsutai, T. Hirai, et al. Structural and magnetic properties of rapidly quenched (R,Zr)(Fe,Co)10Nx(R=Nd,Sm)[J]. Journal of Applied Physics,1996,79 (8): 4611-4613.
    [120]Shinya Suzuki, Shunji Suzuki, Himshi Yamamoto. Magnetic Properties of Melt-Spun Smio(Fe,V)9oNy with TbCu7Type Structure[J]. IEEE Transactions on Magnetics, 1995,31(1):902-905.
    [121]Hiroshi Yamamoto, Hironori Iwase. Magnetic Properties of TbCu7-type Sm-Fe-Co-W-Cu System Nitriding Compounds[J]. Journal of the Japan Society of Powder and Powder Metallurgy,2003,50(1):16-21.
    [122]Hiroshi Yamamoto, Naohiro Mitani. Magnetic Properties of TbCu7type Sm-Fe-Co-Cr-Y System Nitriding Compounds[J]. Journal of the Japan Society of Powder and Powder Metallurgy,2006,53(7):590-596.
    [123]Hiroshi Yamamoto, Kenta Osanai. Magnetic Properties of TbCu7-type Sm-Fe-Co-Mn-Ti-Y System Nitrides[J]. Journal of the Japan Society of Powder and Powder Metallurgy,2006,55(7):522-528.
    [124]Hiroshi Yamamoto, Tetsuya Ooi. Magnetic Properties of TbCu7type Sm-Fe-Co-W-Cr System Nitriding Compounds[J]. Transactions of the Institute of Electrical Engineers of Japan, Fundamentals and Materials Society,2003,123(6):581-586.
    [125]Mitsuaki Mochizuki, Michihisa Shimizu, Masao Murakawa, et al. Magnetic Properties and Crystal Structures of Nanocrystalline Sm-Fe-Co-Nb-B Compounds[J]. Journal of the Japan Society of Powder and Powder Metallurgy,2003,50(1):22-27.
    [126]R. Omatsuzawa, K. Murashige, T. Iriyama. Magnetic Properties of TbCu7-type SmFeN melt-spun Ribbons[J]. Transactions of the Magnetic Society of Japan,2004, 4(4-1):113-116.
    [127]O. Mao, J. Yang, Z. Atounian, et al. Metastable RFe7 compounds (R=rare earths) and their nitrides with TbCu7 structure[J]. Journal of Applied Physics,1996,79(8): 4605-4607.
    [128]G. C. Hadjipanayis, A. Tsoukatos, J. Strzeszewski, et al. A new hard magnetic phase in binary Nd-Fe and Pr-Fe alloys[J]. Journal of Magnetism and Magnetic Materials, 1989,78(1):L1-L5.
    [129]G. Schneider, F. J. G. Landgraf, F. P. Missell. Additional ferromagnetic phases in the Fe-Nd-B system and the effect of a 600℃ annealing[J]. Journal of the Less Common Metals,1989,153(1):169-180.
    [130]T. Saito, S. Ozawa, T. Motegi. Magnetic properties of Nd-Fe binary alloys produced by a metallic mold casting method[J]. Journal of Applied Physics,2002,91(10): 8828.
    [131]F. J. G. Landgraf, F. P. Missell, H. R. Rechenberg, et al. Magnetic and structural characterization of Nd5Fe17 [J]. Journal of Applied Physics,1991,70 (10):6125.
    [132]J. F. Herbst. R2Fe14B materials:Intrinsic properties and technological aspects[J]. Reviews of Modern Physics,1991,63 (4):819-898.
    [133]H. H. Stadelmaier, G. Schneider, E. Th. Henig, et al. Magnetic Fe17R5 in the Fe-Nd and Fe-Ti-Sm systems, and other phases in Fe-Nd [J]. Material Letters,1991,10(7-8): 303-309.
    [134]M. Katter, J. Wecher, L. Schultz, et al. Magnetic hardening of Sm-Fe-Ti alloys[J]. Journal of Applied Physics,1990,67(9):4951-4953.
    [135]Yang Jinling, Wang Qun, X. K. Sun, et al. The Structure and Magnetic Hardening in Mechainically Alloyed Sm-Fe-Ti System [J]. Journal of Magnetism and Magnetic Materials,1994,132(1-3):197-206.
    [136]Tetsuji Saito. High coercivity in Sm5Fe17 melt-spun ribbon[J]. Journal of Alloys and Compounds,2007,440(1-2):315-318.
    [137]Tetsuji Saito. Magnetic properties of Sm5Fe17 melt-spun ribbon[J]. Journal of Applied Physics,2007,101(09K517):1-3.
    [138]Tetsuji Saito, Tomokazu Furutani. Synthesis and magnetic properties of (Pr1-xSmx)5Fe17(x= 0-1) phase[J]. Journal of Alloys and Compounds,2009,488: 13-17.
    [139]Er. Girt, Z. Altounian, Jun Yang. Structural and magnetic properties of Nd2Fe17-δCrδ (5=0,0.5,1,1.9) [J]. Journal of Applied Physics,1997,81(8):5118.
    [140]顾正飞,刘正义,F.R.de Boer,et al.AlGa原子择优占位对Gd2Co17化合物磁晶各向异性的影响[J].材料研究学报.2004.18(1):88-95.
    [141]Shinya Sakurada, Takahiro Hirai, Akihiko Tsutai, et al. Magnetic Material[P]. US Patent:US5482573,1992-10-16.
    [142]A. Teresiak, M. Kubis, N. Mattern, et al. Formation of modified TbCu7 and Th2Zn17 type structures during annealing of mechanical-alloyed Sm-Fe powders[J]. Journal of Alloys and Compounds,1998,274(1-2):284-293.
    [143]A. Takeuchi, A. Inoue. Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element[J]. Materials Transactions,2005, 46(12):2817-2829.
    [144]Yang Fuming, Li Xinwen, N. Tang, et al. Magnetic properties of Sm2Fe17Ny with Al substituted for Fe[J]. Journal of Alloys and Compounds,1995,221(1-2):248-253.
    [145]Baogen Shen, Fangwei Wang, Huayang Gong, et al. Magnetic properties of Sm2Fe17-xGaxC2 compounds[J]. Journal of Physics:Condensed Matter,1995,7(5): 883-888.
    [146]C. Djega-Mariadassou, L. Bessais. Emergence of order in nanocrystalline SmFe9[J]. Journal of Magnetism and Magnetic Materials,2000,210(1-3):81-87.
    [147]L. Bessais, C. Djega-Mariadassou, A. Nandra, et al. Hard magnetic Sm(Fe,Si)9 carbides:Structured and magnetic properties[J]. Physical Review B,2004,69(6): 0644021-0644028.
    [148]L. Bessais, E Dorolti, C. Djega-Mariadassou. Combined effect of gallium and carbon on the structure and magnetic properties of nanocrystalline SmFe9[J]. Journal of Physics:Condensed Matter,2006,18(15):3845-3859.
    [149]Y. Chen, X. L. Chen, J.K.Liang, et al. Phase relation, crystal structure and magnetic properties of Nd-Co-B borides[J]. Chemistry of Materials,2000,12(5):1240-1247.
    [150]Yi Chen, X. Li, L. Chen, et al. Synthesis, structure and magnetic properties of Pr5Co19B6[J]. Physical Review B,2000,61(5):3502-3507.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700