Mo-Ni_2P/SBA-15堇青石整体式催化剂加氢脱硫催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着世界各国对环保要求的提高,进一步激发和促进了石油加氢脱硫技术的发展。研究表明磷化镍在加氢脱硫反应过程中显示出优异的深度脱硫性能,被认为是新一代加氢脱硫催化剂。整体式催化剂以其床层压降底和内扩散阻力小等特点受到越来越广泛的关注。
     经过前期的研究工作发现Ni2P/SBA-15颗粒催化剂和Ni2P/SBA-15/堇青石整体式催化剂具有优异的深度加氢脱硫性能。本文的研究思路考虑将将金属Mo作为助剂引入至Ni2P/SBA-15颗粒催化剂及Ni2P/SBA-15/堇青石整体式催化剂中,通过XRD、N2吸脱附等温线、SEM和XPS等分析手段对所得催化剂进行结构表征,最后采用二苯并噻吩的加氢脱硫模型反应评价催化剂的性能,考察助剂Mo对催化剂活性和稳定性的影响。
     以介孔分子筛SBA-15为载体,采用浸渍法制备了不同Mo含量的Mo-Ni2P/SBA-15前驱体,通过程序升温还原法得到了Mo-Ni2P/SBA-15颗粒式催化剂(w(Mo)=0%,1.0%,3.0%,5.0%,7.0%,10.0%)。所得样品均保留有介孔结构;当w(Mo)≤7.0%时,活性相为Ni2P;当w(Mo)=10.0%时,活性相为Ni2P和MoNiP2的混合相;Mo-Ni2P/SBA-15 (w(Mo)=1.0%)具有最好的DBT加氢脱硫活性,在380℃时DBT的转化率已达99.0%。
     将制备的Mo-Ni2P/SBA-15前驱体均匀涂敷至预处理过的堇青石上,通过程序升温还原制备得Mo-Ni2P/SBA-15/堇青石整体式催化剂(w(Mo)=0%,0.6%,1.8%,3.0%,4.2%,6.0%)。所的样品都具有介孔结构,活性相为Ni2P, Ni、Mo、P元素均可以检测到以过渡金属磷化物的Niδ+、Moδ+、Pδ-价态存在,w(Mo)=4.2%时催化剂活性最好,在380℃时DBT的转化率达99.0%以上,温度的上升可以提高产物CHB的选择性,380℃直接脱硫和预加氢脱硫机理均起着重要作用。
     对Ni2P/SBA-15堇青石整体式催化剂进行不同DBT浓度下的稳定性实验发现,在w(DBT)=1.0%时催化剂对DBT的脱除效果最佳,转化率保持在86%,稳定性实验后样品的比表面积、孔容积有所增大,孔径为6nm的介孔结构分布增多,但Niδ+、Pδ-的流失使催化剂活性下降幅度较大。对Mo-Ni2P/SBA-15堇青石整体式催化剂进行w(DBT)=1.0%的加氢脱硫100h稳定性实验,DBT转化率保持在90%,样品的比表面积、孔容积和孔径变化不大,Niδ+、Moδ+、Pδ-流失不多,说明Mo-Ni2P/SBA-15堇青石整体式催化剂具有很好的加氢脱硫活性和稳定性。
Recently, the oil hydrodesulfurization(HDS) technology needs a high development with the improving of environmental requirements in the world. Nickel phosphides(Ni2P) as the active component in the hydrodesulfurization process which have showed excellent desulfurization performance is considered as new generation of HDS catalysts. As a new-type catalyst, monolithic catalysts have better mass transfer performance and lower pressure drop.
     In previous research work, Ni2P/SBA-15 catalysts and Ni2P/SBA-15/cord monolithic catalysts had showed deep HDS activity, but the effect of promoters has not been studied. Therefore, in this paper, molybdenum was added into Ni2P/SBA-15 and Ni2P/SBA-15/cord monolithic catalyst as promoters. Then, the prepared catalysts were characterized by XRD, N2 adsorption-desorption isotherms, SEM and XPS. Finally, the catalytic performances of the catalysts were evaluated by HDS of dibenzothiophene (DBT).
     A series of Mo-Ni2P/SBA-15 precursors that varied the Mo contents were prepared by co-impregnation method using mesoporous molecular sieve SBA-15 as support. Then, the Mo-Ni2P/SBA-15 catalysts were obtained by temperature-programmed carburization (TPC) method(w(Mo)=0%,1.0%, 3.0%,5.0%,7.0%,10.0%). All obtained samples had well mesoporous structure. When w(Mo)≤7.0%, the active phase was Ni2P; when w(Mo)=10.0%, the active phase were mixtures of Ni2P and MoNiP2. Mo-Ni2P/SBA-15(w(Mo)=1.0%) had the best DBT HDS activity at 380℃while the conversion had reached 99.0%.
     Mo-Ni2P/SBA-15 precursors were coated to the pretreated cordierite and Mo-Ni2P/SBA-15/cordierite monolithic catalysts(w(Mo)=0%,0.6%,1.8%, 3.0%,4.2%,6.0%) were obtained by TPR. All the samples had mesoporous structures, the active phase was Ni2P. Ni, Mo, P elements were found to be Niδ+, Moδ+, Pδ- valence in the transition metal phosphides. When w(Mo)=4.2%, the DBT conversion was 99.0% at 380℃, the selectivity of CHB increased with the improving of temperature, DDS and HYD mechanism both played an important role.
     In the stability tests of different DBT concentrations, the best DBT conversion remained at 86% when w(DBT)=1.0% on Ni2P/SBA-15 cordierite monolithic catalyst.After the experiment, the surface area and pore volume had increased, the pore size distribution of 6nm increased. Niδ+ and Pδ- of the catalyst decreased greatly. In the 100h stability test of Mo-Ni2P/SBA-15 cordierite monolithic catalyst for w(DBT)=1.0%, DBT conversion remained at 90%. The sample surface area, pore volume and pore diameter changing little and Niδ+, Moδ+ and Pδ- few loss indicated Mo-Ni2P/SBA-15 cordierite monolithic catalyst had excellent HDS activity and stability.
引文
[1]Levv R L, Boudart M. Platinum-like behavior of tungsten carbide in surface catalysis[J]. Science,1973,181:547-549
    [2]Oyama S T. Preparation and catalytic properties of transition metal carbides and nitrides [J]. Catal. Today.1992,15(2):179-200
    [3]Clark P, Wang X, Oyama, S T. Characterization of silica-supported molybdenum and tungsten phosphide hydorpocressing catalysts by 31P nuclear magnetic resonance spectroscopy [J]. J. Catal.,2002,207(2):256-265
    [4]Zuzaniuk V, Prins R. Synthesis and characterization of silica-supported transition-metal phosphides as HDN catalysts [J]. J. Catal.,2003,219(2):85-96
    [5]李翠清,王洪学,李成岳,等.WP/γ-Al2O3催化剂负载方式对噻吩加氢脱硫性能的影响[J].燃料化学学报,2003,31(5):439-443
    [6]Oyama S T, Wang X, Lee Y K, el al. Effect of phosphorus content in nickel phosphide catalysts studied by XAFS and other techniques [J]. J. Catal,2002,210(1):207-217
    [7]Sawhill S J, Layman K A,Van Wyk D R, et al. Thiophene hydrodesulfurization over nickel phosphide catalysts:effect of the precursor composition and support[J]. J. Catal,2005,231 (2): 300-313
    [8]孙福侠,李灿.过渡金属磷化物的加氢精制催化性能研究进展[J].石油学报(石油加工),2005,21(6):1-11
    [9]Robinson W R, Gestel J N, Kordnyi T I, et al. Phosphorus promotion of Ni(Co)-containing Mo-freecatalysts in quinoline hydrodenitrogenation[J]. J. Catal,1996,161(2):539-550
    [10]Phillips D C, Sawhill S J, Self R. Synthesis, characterization and hydrodesulfurization properties of silica-supported molybdenum phosphide catalysts[J]. J Catal,2002,207(2): 266-273
    [11]Oyama S T. Novel catalysts for advanced hydroprocessing:Transition metal phosphides [J]. J Catal,2003,216(1-2):343-352
    [12]Shi Y H, Li D D. Low Sulfur Trend of Fuel Oils [J]. Petrol. Ref. Engine.,1999,29(8):16-22
    [13]刘磊,吴新民.加氢脱硫催化剂载体和活性组分的研究进展[J].工业催化,2008,16(8):1-7.
    [14]Wang H M. Synthesis of Bulk and Supported Molybdenum Carbide by a Single-step Thermal Carburization Method [J]. Chem. Mater.,2007,19(7):1801-1807.
    [15]周志军,田晓飞,王萍,等.镍钨系列氮化物催化剂的加氢脱硫催化性能[J].石油化工高等学校学报,2003,16(4):20-23.
    [16]王远强,陈思浩.Ni2P/Ti02的制备、表征及其加氢脱硫反应性能[J].上海化工,2006,31(11):10-12.
    [17]吴新民,吴杰,龚良发.纳米介孔硅铝分子筛的合成及其加氢脱硫性能[J].石油学报(石油加工),2007,23(1):92-95.
    [18]Iwama Y. Effect of Co Addition for Carburizing Process of Ti-oxide/SiO2 into TiC/SiO2[J]. Appl. Catal., A:Gen.,2007,323:104-109.
    [19]Vit Z. Iridium Sulfide and Ir Promoted Mo Based Catalysts [J]. Appl. Catal., A:Gen.,2007, 322:142-151.
    [20]Wang W B, Shi S M, Wang S J, et al. Desulfurization of Gasoline by Electrochemistry Coupled up Chemical Oxidation [J]. Acta Petrolei Sinica (Petroleum Processing Section), 2005,21(5):41-47.
    [21]Yasuaki O, Keiji O. Effects of Support on the Activity of Co-Mo Sulfide Model Catalysts [J]. Appl. Catal., A:Gen.,2002,226(1/2):115-127.
    [22]师希娥,翟尚儒,戴立益,等.纳米硅铝介孔分子筛的合成及其催化裂化性能[J].物理化学学报,2004,20(3):265-270.
    [23]鄢景森,王安杰,李翔,等.负载型磷化钼的原位还原制备及其加氢脱硫反应活性[J].石油学报(石油加工),2006,22(1):15-21.
    [24]葛辉,李学宽,秦张峰,等.油品深度加氢脱硫催化研究进展[J].化工进展,2008,27(10):1490-1497
    [25]李大东,加氢处理工艺与工程[M].北京:中国石化出版社,2004:917-929
    [26]柯明,周爱国,赵振盛,等.FCC汽油烷基化脱硫技术进展[J].化工进展,2006,25(2):357,361
    [27]Song C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel [J]. Catalysis Today,2003,86 (1-4):211-263
    [28]刘淑芝,孙兰兰,张晓丽,等.柴油氧化脱硫技术研究进展[J].化工进展,2007,26(2):212-215,220
    [29]单佳慧,刘晓勤,岳军,等.吸附法深度脱除燃料油中硫化物的研究进展[J].化工进展,2007,26(5):651-656
    [30]韩金玉,吴懿琳,李毅.吸附法深度脱除燃料油中硫化物的研究进展[J].化工进展,2003,22(10):1072-1075
    [31]Hinnemann B, N rskov J K, Topsoe H A. Density functional study of the chemical differences between type Ⅰ and type Ⅱ MoS2-based structures in hydrotreating catalysts. J Phys Chem B,2005,109(6):2245-2253.
    [32]Lauritsen J V, Helveg S, Lagsgaard E. Atomic-scale structures of Co-Mo-S nanoclusters in hydrotreating catalysts. J Catal,2001,197(1):1-5
    [33]Escalona N, Vrinat M, Laurenti D. Rhenium sulfide in hydrotreating. Appl Catal A,2007,322: 113-120
    [34]Vit Z. Iridium sulfide and Ir promoted Mo based catalysts. Appl Catal A,2007,322:142-151
    [35]Aegerter P A, Quigley W W C, Simpson G J, et al. Thiophene hydrodesulfurization over alumina-supported molybdenum carbide and nitride catalysts:adsorption sites, catalytic activities, and nature of the active surface [J]. J. Catal.,1996,164(1):109-121
    [36]Sajkowski D J, Oyama S T. Catalytic hydrotreating by molybdenum carbide and nitride: Unsupported Mo2N and Mo2C/Al2O3 [J]. Appl. Catal. A,1996,134(2):339-349
    [37]Lee J S, Oyama S T, Boudart M. Molybdenum carbide catalysts Ⅰ. Synthesis of unsupported powders [J]. J Catal,1987,106(1):125-133
    [38]Oshikawa K, Nagai M, Omi S. Characterization of molybdenum carbides for methane reforming by TPR, XRD, and XPS [J]. J. Phys. Chem. B,2001,105(38):9124-9131
    [39]Lu J, Hugosson H, Eriksson O, et al. Chemical vapour deposition of molybdenum carbides: aspects of phase stability [J]. Thin Solid Films,2000,370(1-2):203-212
    [40]Iglesia E, Ribeiro F H, Boudart M, et al. Synthesis, characterization, and catalytic properties of clean and oxygen-modified tungsten carbides [J]. Catal. Today,1992,15(2):307-337
    [41]McCrea K R, Logan J W, Tarbuck T L, et al. Thiophene hydrodesulfurization over alumina-supported molybdenum carbide and nitride catalysts:effect of Mo loading and phase [J]. J. Catal.,1997,171:255-267
    [42]Wu Z L, Li C, Wei Zh B, et al. FT-IR spectroscopic studies of thiphene adsorption and reactions on Mo2N/Al2O3 catalysts. J. Phys. Chem. B,2002,106(5):979-987
    [43]Schlatter J C, Oyama S T, Metcalfe J E, et al. Catalytic behavior of selected transition-metal carbides, nitrides, and borides in the hydridenitrogenation of quinoline [J]. Ind. Eng. Chem. Res.,1988,27(9):1648-1653
    [44]Aegerter P A, Quigley W W C, Simpson G J, et al. Thiophene hydrodesulfurization over alumina-supported molybdenum carbide and nitride catalysts:adsorption sites, catalytic activities, and nature of the active surface [J]. J. Catal.,1996,164(1):109-121
    [45]Sajkowski D J, Oyama S T. Catalytic hydrotreating by molybdenum carbide and nitride: Unsupported Mo2N and Mo2C/Al2O3 [J]. Appl. Catal. A,1996,134(2):339-349
    [46]Ramanathan S, Oyama S T. New catalysts for hydroprocessing:Transition-metal carbides and nitrides [J]. J. Phys. Chem.,1995,99(44):16365-16372
    [47]马娜,季生福,吴平易,等.’WxC/SBA-16催化剂的制备、表征及催化加氢脱硫性能[J].物理化学学报,2007,23(8):1189-1194
    [48]聂平英,季生福,胡林华,等.WxC-MCM-48催化剂的合成、表征及加氢脱硫催化性能[J].无机化学学报,2007,23(6):987-993
    [49]Sun F X, Wu W C, Wu z L, t al. Dibenzothiophene hydrodesulfurization activity and surface sites of silica-supported MoP, Ni2P, and Ni-Mo-P catalysts[J]. J Catal,2004,228(2):298-310.
    [50]Wu Z L, Sun F X, Wu W C, et al. On the surface sites of MoP/SiO2 catalyst under sulfiding conditions:IR spectroscopy and catalytic reactivity studies[J]. J Catal,2004,222(1):41-52.
    [51]Phillips D C, Sawhill S J, Self R, et al. Synthesis, characterization and hydrodesulfurization properties of silica-supported molybdenum phosphide catalysts[J]. J Catal,2002,207(2): 266-273
    [52]Naoyuki K, Ki-Hyouk C, Yozo K, et al. Optimization of Silica Content in Alumina-silica Support for NiMo Sulfide to Achieve Deep Desulfurization of Gas Oil[J]. Appl Catal A: 2004,273:287-294.
    [53]Torres-Mancera P, Ramirez J, Cuevas R,et al. Hydrodesulfurization of 4,6-DMDBT on NiMo and CoMo Catalysts Supported on B2O3-Al2O3 [J]. Catal Today,2005, (107-108):551-558.
    [54]宋立民,李伟,张明慧,等.Ni2P/Si02-Al2O3催化剂的制备、表征及其对4,6-二甲基二苯并噻吩加氢脱硫反应的催化性能[J].催化学报,2007,28(2):143-147
    [55]李冬燕,余夕志,陈长林,徐南平,王延儒.Ni2P/Ti02上噻吩加氢脱硫性能研究[J].高校化学工程学报,2006,20(5):825-830
    [56]胡见波,李伟,张明慧,等.负载型纳米TiO2复合载体及其CoMo催化剂的酸性及孔特性的研究[J].燃料化学学报,2003,31(6):564-568
    [57]胡瑞生,付贤智,杨希尧.加氢脱硫催化剂的研究V.TiO2对Co-Mo系HDS催化剂吸附性能的影响[J].分子催化,1991,5(3):263-267
    [58]Lee Y K, Shu Y Y, Oyama S T. Active phase of a nickel phosphide (Ni2P) catalyst supported on KUSY zeolite for the hydrodesulfurization of 4,6-DMDBT[J]. Appl Catal A,2007, (322): 191-204
    [59]Tanev P T, Chibwe M, Pinnavaia T J. Titanium-containing Mesoporous Molecular Sieves for Catalytic Oxidation of Aromatic Compounds [J]. Nature,1994,368(1):321-323.
    [60]陈逢喜,黄茜丹,李全芝.中孔分子筛进展[J].科学通报,1999,44(18):1905-1907.
    [61]Chen X Y, Huang L M, Ding G Z, et al. Characterization and Catalytic Performance of Mesoporous Molecular Sieves Al-MCM-41 Materials [J]. Catal. Lett.,1997,44(1):123-128.
    [62]王雪松,钟雄辉,王志良,等.柴油加氢脱硫催化剂的研究进展[J].当代化工,2006,35(3):197-200.
    [63]Wang L P, Kong A G, Chen B, et al. Direct synthesis, characterization of Cu-SBA-15 and its high catalytic activity in hydroxylation of phenol by H2O2 [J]. J. Mol. Catal. A,2005,230: 143-150
    [64]Zhao D, Feng J, Huo Q, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science,1998,279(5350):548-552
    [65]Zhao D, Huo Q, Feng J, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures [J]. J. Am. Chem. Soc.,1998,120(24):6024-6036
    [66]Corma A. From microporous to mesoporous materials and their use in catalysis [J]. Chem. Rev. Sci. Engr.,1997,97:2373-2419
    [67]Biz S, Occelli M L. Synthesis and characterization of mesostructured materials [J]. Catal. Rev. Sci. Engr.,1998,40(3):329-407
    [68]Brunel D, Blanc A C, Galarneau A, et al. New trends in the design of supported catalysts on mesoporous silicas and their applications in fine chemicals [J]. Catal. Today,2002,73: 139-152
    [69]He X, Antonelli D. Recent advances in synthesis and applications of transition metal containing mesoporous molecular sieves [J]. Angew. Chem. Int. Ed.,2002,41(2):214-229
    [70]On T D, Desplantier-Giscard D, Danumah C, et al. Perspectives in catalytic applications of mesostructured materials [J]. Appl. Catal. A,2003,253:545-602
    [71]Viswanathan B, Jacob B. Alkylation, hydrogenation and oxidation catalyzed by mesoporous materials [J]. Catal. Rev. Sci. Engr.,2005,47(1):1-82
    [72]黄晓凡,季生福,吴平易,等.Ni2P/SBA-15催化剂的结构及加氢脱硫性能[J].物理化学学报,2008,24(10):1773-1779
    [73]Wang A J, Ruan L F, Teng Y, et al. Hydrodesulfurization of dibenzothiophene over siliceous MCM-41-supported nickel phosphide catalysts [J]. J. Catal.,2005,229:314-321
    [74]Yuranov I, Kiwi-Minsker L, Renken A. Structured combustion catalysts based on sintered metal fibre filters[J]. Applied Catalysis,2003,43:217-227
    [75]Victor J M, Campos D, Rosa M, et al. Structured catalysts for partial oxidations[J]. Catal. Today,2001,169:121-129
    [76]Roy S, Heibel A K, Liu W, et al. Design of monolithic catalysts for multiphase reactions[J]. Chemical Engineering Science,2004,59(5):957-966
    [77]Groppi G, Ibashi W, Tronconi E, et al. Structured reactors for kinetic measurements in catalytic combustion[J]. Chemical Engineering Journal,2001,82:57-71
    [78]Wang Y, Hou Y, Qi S. Partial oxidation of methane to syngas autothermally over monolithic catalysts[J]. Journal of Combustion of Science and Technology,2001,7(2):105-109
    [79]Annemarie E W, Beers T A, Nijhuis N, et al. BEA coating of structured supports-performance in acylation[J]. Applied Catalysis A.,2003,243:237-250
    [80]单学蕾,关乃佳,曾翔,陈继新,项寿鹤.不同硅铝比的Cu-ZSM-5/堇青石整体型催化剂的NO分解反应性能[J].催化学报,2001,22(3):242-244
    [81]Avila P, Montes M, Mir'o E E. Monolithic reactors for environmental applications:A review on preparation technologies[J]. Chem. Eng. J.,2005,109:11-36
    [82]周晓奇.加氢脱硫催化剂及其新进展[J].工业催化,2006,14:51-57
    [83]Leyva C. A Comparative Study on the Effect of Promoter Content of Hydrodesulfurization Catalysts at Different Evaluation Scales [J]. Fuel,2007,86(9):1232-1239.
    [84]曹光伟,罗锡辉,刘振华.加氢处理催化剂的制备和表征Ⅰ:MoNiP/Al2O3催化剂的制备及助剂的作用[J].催化学报,2001,22(2):143-147
    [85]徐友明,李文库,何金海.加氢处理催化剂的制备和表征Ⅱ:制备方法对MoNiP/Al2O3催化剂性质的影响[J].催化学报,2001,22(6):575-578
    [86]Groppi G., Tronconi E.. Simulation of Structure Catalytic Reactor with Enhanced Thermal Conductivity for Selective Oxidation Reaction[J]. Catal Today.2001,69(1-4):63-73
    [87]Crezee E., Barendregt A., Kapteijn F., Moulijn J.A.. Carbon Coated Monolithic Catalysts in Selective Oxidation of Cyclohexanone[J]. Catal Today,2001,69(3):283-290
    [88]赵阳,郑亚锋,辛峰.整体式催化剂性能及应用的研究进展[J].化学反应工程与工艺,2004,20(4):357-362
    [89]Badini C, Laurella F. Oxidation of FeCrAl alloy:influence of temperature and atmosphere on scale growth rate and mechanism[J]. Surface and coatings technology,2001,135:291-298
    [90]Donald R, Cahela, Bruce J, et al. Permeability of sintered microfibrous composites for heterogeneous catalysis and other chemical processing opportunities[J]. Catalysis Today,2001, 69:33-39
    [91]帅石金.汽车用金属载体催化剂的试验研究[J].汽车技术,1996,(8):23-27
    [92]单志平.分子筛/不锈钢催化精馏元件制备的研究[D].石油化工科学研究院,1994
    [93]Groppi G, Tronconi E. Design of novel monolith catalyst supports for gas/solid reactions with heat exchange[J]. Chemical Engineering Science,2000,55:2161-2165
    [94]Dautzenberg F M, Mukherjee M. Process intensification using multifunctional reactors[J]. Chemical Engineering Science,2001,56:251-267
    [95]曹荣,陈燕馨,李峥嵘等.甲烷部分氧化制甲醛催化剂MoO3/SiO2及MoO3·MxOy/SiO2的程序升温还原研究[J].分子催化,1996,10(5):368-374
    [96]Nijhuis T A, Kreutzer M T, Romijn A CJ, et al. Monolithic catalysts as efficient three-phase reactors[J]. Chem. Eng. Sci.,2001,56:823-829
    [97]Victor J M, Quinta-Ferreira. Structured catalysts for partial oxidations[J]. Catal. Today,2001, 69:121-129
    [98]Hilmen A H, Bergene E, Lindvag O A, et al. Fischer-Tropsch synthesis on monolithic catalysts of different materials[J]. Catal. Today,2001,69:227-232
    [99]Cimino S, Lisi L, Pirone R, et al. Methane combustion on perovskites-based structured catalysts[J]. Catal. Today,2000,59:19-31
    [100]Magali Ferrandon, Magnus Berg, Emilia Bjornbom. Thermal stability of metal-supported catalysts for reduction of cold-start emissions in a wood-fired domestic boiler[J]. Catal. Today, 1999,53:647-659
    [101]Fu Yilu, Tian Yangchao, Lin Peiyan. A low-temperature IR spectescopic study of selective adsorption of NO and CO on CuO/γ-Al2O3[J]. Catal. Today,1991,132:85-91
    [102]李承烈,李贤均,张国泰.催化剂失活[M].北京:化学工业出版社,1989.158-159.
    [103]黄仲涛,耿建明.工业催化[M].北京:化学工业出版社,2006.211-212
    [104]高中正.实用催化[M].北京:化学工业出版社,1996.315-333.
    [105]陈晓珍,等.催化剂的失活原因分析[J].工业催化,2001,9(5):9-16
    [106]王锐,刘雪彬,陈燕馨,李文钊,徐恒泳.金属-载体相互作用对CH4/CO2重整反应中Rh基催化剂抗积炭性能的影响[J].催化学报,2007,28(10):865-869
    [107]杨光福,徐春明,高金森.催化裂化汽油改质过程中积炭历程及其对烯烃转化的影响[J]石油学报:石油加工,2008,24(1):15-21
    [108]刘建宇,孙万付.失活加氢裂化催化剂的研究[J].工业催化.2003,11(2):12-17
    [109]张喜文,凌凤香,孙万付,李瑞丰.一种失活加氢精制催化剂再生行为的研究[J].当代化工,2005,34(5):336-340
    [110]钟莉,王亚明.分子筛催化剂的再生[J].工业催化,2005,13(2):7-11
    [111]Wei N, Ji Sh F, Wu P Y, et al. Preparation of nickel phosphide/SBA-15/cordierite monolithic catalysts and catalytic activity for hydrodesulfurization of dibenzothiophene[J]. Catal. Today, 2009,(147)s1:s66-s70
    [112]董亮,季生福,吴平易,等.Ni2P/SiO2/堇青石整体式催化剂的制备及加氢脱硫性能[J].无机化学学报,2009,25(9):1651-1656
    [113]Koranyi T I, Vit Z, Poduval D G, et al. SBA-15-supported nickel phosphide hydrotreating catalysts[J]. J Catal,2008,253(1):119-131
    [114]Li S, Lee J S. Molybdenum nitride and carbide prepared from heteropolyacids:1. Preparation and characterization [J]. J. Catal.,1996,162:76-87
    [115]Li S, Lee J S, Hyeon T, et al. Catalytic hydrodenitrogenation of indole over molybdenum nitride and carbides with different structures [J]. Appl. Catal. A.,1999,84(2):1-9
    [116]Oyama S T, Lee Y K. The active site of nickel phosphide catalysts for the hydrodesulfurization of 4,6-DMDBT[J]. J Catal,2008,258:393-400
    [117]Abu I I, Smith K J. The effect of cobalt addition to bulk MoP and Ni2P catalysts for the hydrodesulfurization of 4,6-dimethyldibenzothiophene[J]. J Catal,2006,241:356-366
    [118]Cecilia J A, Infantes M A, Rodriguez C E, et al. A novel method for preparing an active nickel phosphide catalyst for HDS of dibenzothiophene[J]. J Catal,2009,263:4-15
    [119]李彦鹏,刘大鹏,刘晓,等.器外预硫化型MoNiP/y-Al2O3催化剂的二苯并噻吩加氢脱硫活性[J].催化学报,2006,27(7):624-630
    [120]Teng Y, Wang A J, Li X, et al. Preparation of high-performance MoP hydrodesulfurization catalysts via a sulfidation-reduction procedure[J]. J Catal,2009,266:369-379

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700