聚苯胺及其衍生物薄膜的制备和湿敏性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要以苯胺、苯胺衍生物和氧化物为基材,制备聚合物、共聚物及复合物功能材料,使用扫描电镜、红外光谱、紫外光谱及热重等分析手段对产品进行了表征,并进一步对其湿度敏感性质进行了研究。
     分别以盐酸、磷酸、酒石酸和硫酸作为掺杂剂,在幻灯片基底上合成具有一维结构的聚邻苯二胺微/纳米材料。不同酸掺杂条件,磷酸掺杂的聚邻苯二胺具有响应快、恢复性好和稳定性高的湿敏性能研究。
     磷酸掺杂的邻苯二胺/苯胺共聚物,反应物添加比率的不同对热稳定性、形貌及湿敏性有一定的影响。樟脑磺酸掺杂的邻苯二胺/苯胺共聚物的有较好的湿敏稳定性和重复特性。反应物添加比率的不同、反应时间的不同及掺杂盐酸浓度的不同,对间苯二胺/苯胺共聚物生成的纳米粒子形状具有一定的影响。
     当邻甲苯胺/苯胺比率为1:1时,邻甲苯胺/苯胺共聚物有较好的湿敏性质。这是因为水分子的进入增加了共聚物和极化的水分子之间的相互作用引起电子的电荷沿着聚合物骨架离域。在聚邻甲苯胺/TiO2复合物的制备过程中,TiO2的加入增加了聚邻甲基苯胺的比表面积并增大了复合物内部孔隙度,提高了薄膜的湿敏性能,,更加有利于在湿敏传感器中的应用。在共聚物的合成与制备中,我们使用原位氧化聚合法在电极表面制备出均匀的聚合物膜,克服了传统的旋涂制膜法中的不足,为制备微型电子器件开辟了道路。
     为了研究聚苯胺的导电机理,在现场外加电压下,利用红外和拉曼光谱对聚苯胺进行研究,结果显示,应用外电压使光谱的强度和峰位有所改变。电压在0-75 V能产生大的平均跳跃能,可以使电荷在导电区域间的跳跃;在75-175 V,是焦耳热的影响而使聚苯胺的电导率降低。
With the development of the modern industry and the increasing of people’s living, the measurement and control accuracy of humidity put forward the higher demands. Therefore, it is increasing becoming importance to exploiture the high-performance, long-life humidity sensors. Compared with inorganic materials, macromolecule humidity materials own to easy preparation and processing. Furthermore, different physical and chemical properties material can be gaind through the molecular structure modified. It is received more attention due to abundance source of materials, wide range of relative humidity, small hysteretic of humidity and fast response.
     As the most investigated conducting polymers, polyaniline (PANI) and its derivtives have attacted considerable attention due to their special doping mechanism, high environmental stability, ease of processability and low cost, and the application in many fields.
     PANI has been obtained by chemical and electrochemical methods. However, it has many poor properites, for example, low molecular weight, poor solubility in common organic solvents and poor processing which limits their application. Two groups of the polymer have prepared and shown the special properties to enhance the electrical, chemical and physical properties such as copolymer, composite, dual-layerand mixture.
     Based on the above background, in order to improve the processability and stability of PANI, we chose aniline, aniline derivatives and oxides as the precursor to prepare the functional materials of polymer, copolymer and composite by using a simple method. Study the humidity sensing characteristics of these materials. We prepared the polymer films, copolymer films and polymer/inorganic composites by insitu polymerization on the slide on the gold-plated sensor electrodes.
     1. We prepared poly(o-phenylenediamine) based on self-assembled belt, board, block and strip nanostuctures by using a chemical oxidative polymerization of o-phenylenediamine (oPD) doped with hydrochloric acid, phosphatic acid, tartrate acid and sulfuric acid dopant on the lantern slide substrate. Study the humidity sensing characteristics of the materials doped with different acid. We found PoPD doped with phosphatic acid have the fast humidity and response reproducibility.
     2. We synthesis the oPD/An copolymer with the same method doped with phosphatic acid. Study the effect of the thermal stability, morphology and humidity sensing characteristics with the changing of the oPD/An molar ratios. We found that the copolymer has good thermal stability, conductivity and repose-recovery with the oPD/An molar ratios of 80:20. At the same time, we found that the copolymer has the fast sensitivity and reponse-recovery doped with D-camphor-10-sulfonic acid (CSA) dopant.
     3. We prepared m-phenylenediamine(mPD)/An copolymer by in-situ polymerization. By changing the molar ratios of reactants, reaction time, and concentration of hydrochloric acid, the morphology of nanoparitcles can be changed. We make a further humidity study on the copolymer.
     4. We synthesis the o-toluidine/An copolymer doped with hydrochloric acid. We found that the copolymer has good repose-recovery with the o-toluidine /An molar ratios of 1:1. This attribute to the interaction of copolymer and water molecules which may cause the electron charge delocalization along the polymer backbone.
     5. We prepare poly(o-toludine)/TiO2 composite doped with hydrochloric acid. We found that the increasing surface area as increased with the content of TiO2. This composite maybe used in the applications of sensors. The method of in-situ oxidative polymerization overcomes the shortcoming of the membrane by using traditional spin-coaitng.
     6. We study the mechanism of the PANI by using the FT-IR and Raman spectra with external voltage. Application of external voltage reduced the intensity in FTIR spectra and resulted in the shift of band situation.We concluded that external voltage could produce large average hopping energy, which allowed the charge transfer by hopping between the conducting domains during 0–75 V. The deprotonation of PANI was caused by Joule heating effect, resulting in the decreasing conductivity from 75 to 175V.
引文
[1].刘迎春,叶湘滨.现代新型传感器原理与应用[M].北京:国防工业出版社,1998.
    [2]. Dunmore F W. An electrometer and its application to radio meteorography. J Res Nat Bur Std, 1938, 20: 723-744.
    [3]. Lars Stombom,第六届全国湿度与水份学术交流会议论文集,1996,28.
    [4].孙良彦,国外湿度传感器发展动态[J].传感器技术,1996, (2):1-4.
    [5].刘崇进,沈家瑞,朱荫兰,仪表技术与传感器,1997, 12:l-4.
    [6].邱碧秀,电子陶瓷材料,北京,世界图书出版公司,1990,81-153.
    [7].高桥清,小长井诚编著,秦起佑,蒋冰,徐同举等译校,传感器电子学,宇航出版社,北京,1987,177-191.
    [8]. Nitta T, Terada Z, Hayakawa S. Humidity-sensitive electrical conduction of MgCr2O4-TiO2 porous ceramics. J Am Ceram Soc, 1979, 63:295-300.
    [9]. Sun H,Wu M,Li P,Yao X. Porosity control of humidity-sensitive ceramics and theoretical model of humidity-sensitive characteristics. Sens Actuatators, 1989,19:61-70.
    [10]. Roy Morrison S表面物理化学,赵壁英等译,北京大学出版社,1985,53-80.
    [11]. Shimizu Y,Arai H,Seiyama T. Theoretical studies on the impedance-humidity characteristics of ceramic humidity sensors. Sens Actuatators, 1985, 7:11-22.
    [12].赵显武,鲍凤歧半导体陶瓷湿敏机理的探讨,内蒙古大学学报(自然科学版) 1994, 25:6.
    [13]. Sakai Y, Sadaoka Y, Matsuguchi M. Humidity sensors based on polymer thin films. Sens Actuatators B, 1996, 35:85-90.
    [14]. Matsuguchi M, Sadaoka Y, Nuwa Y,etc. Capacitive-type humidity sensors using polymerized vinyl carboxylate. J Electrochem Soc, 1996, 141:641-618.
    [15]. Sakai Y, Sadaoka Y. Humidity sensor durable at high humidity using simultaneously crosslinked and quaternized poly (chloromethyl styrene). Sens Actuatators B, 1995, 25:689-691.
    [16]. Sakai Y, Rao V L, Sadaoka Y, etc. Humidity sensor composed of a microporous film of polyethylene-graft-poly-(2-acryyylamido-2-methyl-propane sulfonate). Polym Bull, 1987, 501-506.
    [17].董永贵,传感技术与系统清华大学出版社北京2006
    [18]. Du X, Ying Z, Jiang Y, Liu Z, Yang T, Xie G, Synthesis and evaluation of a new polysiloxane as SAWsensor coatings for DMMP detection. Sens Actuatators B, 2008, 134:409–413.
    [19]. Penza M, Cassano G, Segi A, Lo Sterzo C, Russo M V. SAW chemical sensing using poly-ynes and organometallic polymer films. Sens Actuatators B, 2001, 81:88-98.
    [20]. Gale M T, Kunz R E, Zappe H P. Polymer andⅢ-Ⅴtransducer platforms for integrated optical sensors. Opt Eng, 1995, 34:2396-2406.
    [21]. Ren Y T, Mormile P, Petti L, Cross G H. Optical waveguide humidity sensor with symmetric multilayer configuration, Sens Actuatators B, 2001,75:76-82.
    [22]. Joo J, Epstein A J. Electromagnetic radiation shielding by intrinsically conducting polymers. Appl Phys Lett, 1994, 65:2278–2280.
    [23]. MacDiarmid A G, Mu S L, Sinaturu N L D , Wu M, Electrochemical characteristics of `polyaniline' cathodes and anodes in aqueous electrolytes. Mol Cryst Liq Cryst, 1985, 121:187–190.
    [24]. Chen S A , Fang Y. Polyaniline schottky barrier: effect of doping on rectification and photovoltaic characteristics. Synth Met, 1993, 60:215–222.
    [25]. Herod T E, Schlenoff J B. Doping-induced strain in polyaniline: stretchoelectrochemistry. Chem Mater, 1993, 5:951–955.
    [26]. Campos M, Casalbore-Miceli G, Camaioni N, Chiodelli G.. Electrical properties studies in poly(thionaphtheneindole) as a function of relative humidity. Synth Met,1995, 73:131-134.
    [27]. Casalbore-Miceli G, Camaioni N, Yang M J, Zhen M, Zhan XW, D'Aprano A. Charge transport meehanism in Pressed Pellets of Polymer Proton conduetors. Solid State Ionics,1997, 100:217-224.
    [28]. Zhan X W, Yang M J, Wan M X.,Eleetrical properties and speetroscopic studies of HClO4-doped Poly(p-diethylbenzene). Synth Met, 1998, 94:249-253.
    [29]. Lubentsov B Z, Timofeeva ON, Khidekel M L. Condueting Polymer interactionWith gasous substances 95.PANI-H2O, PANI-NH3. Synth Met, 1991, 45:235-240.
    [30]. Haba Y, Segal E, Narkis M, Titelman GI, Siegmann A., Polymerization of aniline in the presence of DBSA in an aqueous dispersion. Synth Met, 1999, 106:59-66.
    [31]. Ray A, Asturias GE, Kershner DL, Richter AF, MacDiarmid AG, Epstein AJ. Polyaniline:Doping, structure and derivatives. Synth Met, 1989, 29:141-150.
    [32]. Neoh K G, Kang E T, Tan K L. Spectroscopic studies of protonation, oxidation and light irradiation of polyaniline solutions. Polymer, 1992, 33:2292-2298.
    [33]. Epstein A J, Grinder J, Zou M F, et al. Insulator-to-metal transition in polyaniline. Synth Met, 1987, 18:303-309.
    [34]. Stafstr?m S, Bredas J L, Epstein A J, Woo H S, Tanner B D, Huang W S, MacDiarmid A G. Polaron lattice in highly conducting polyaniline: Theoretical and optical studies .Phys Rev Lett, 1987, 59:1464-1467.
    [35]. Ginder J M, Epstein,A J MacDiarmid A G., Electronic phenomena in polyaniline. Synth Met, 1989, 29:395-400.
    [36]. Nechtschein M, Genond F, Menardo C, etal. On the nature of the conducting state of polyaniline. Synth Met, 1989, 29: 211-218.
    [37]. Jain S , Chakane S, Samui AB, Krishnamurthy VN, Bhoraskar SV. Humidity sensing with weak acid-doped polyaniline and its composites. Sens Actuatators B, 2003, 96:124–129.
    [38]. Kulkarni M V, Viswanath A K, Khanna PK. Synthesis and humidity sensing properties of conducting poly(N-methyl aniline) doped with different acids. Sens Actuatators B, 2006, 115:140–149.
    [39]. Kulkarni M V, Viswanath A K. Sulphonic Acids Doped Poly(N-ethyl aniline): A Material for Humidity Sensing Application. Polym Eng Sci, 2007, 47:1621-1629.
    [40]. Alix A, Lemoine V, Nechtschein M, Travers J P, Menardo C. Water absorption study in polyaniline. Synth Met, 1989,29:457-462.
    [41]. Matveeva ES. Residual water as a factor influencing the electrical properties of polyaniline: the role of hydrogen bonding of the polymer with solvent molecules in the formation of a conductive polymeric network, Synth Met, 1996, 79:127-139.
    [42]. Jain S, Chakane S, Samui A B, Krishnamurthy V N, Bhoraskar S V, Functionally graded polymeric structure as humidity sensor, in: Proceedings of the 9th National Seminar on Physics and Technology of Sensors (NSPTS-9), C40, 4–6 March, Pune, 2002, 1.
    [43]. Ogura K, Saino T, Nakayama M, Shiigi H. The humidity dependence of the electrical conductivity of a soluble polyaniline–poly(vinyl alcohol ) composite film. J Mater Chem, 1997, 7:2363–2366.
    [44]. McGovern S T, Spinks G M, Wallace G G. Micro-humidity sensors based on a processable polyaniline blend Sens Actuatators B 2005, 107:657–665.
    [45]. Pinto N J, Shah P D, Kahol P K, McCormick B J. Conducting state of polyaniline films: Dependence on moisture Phys Rev B, 1996, 53:10690-10 694.
    [46]. Kulkarni M V, Viswanath A K, Khanna PK.Synthesis and humidity sensing properties of conducting poly(N-methyl aniline) doped with different acids Sens Actuatators B: Chemical, 2006, 115:140-149.
    [47]. Kulkarni M V, Athawale A A. Poly(2,3-dimethylaniline) as a competent material for humidity sensor. J Appl Poly Sci, 2001, 81:1382-1387.
    [48]. Milind V. Kulkarni, Annamraju Kasi Viswanath, P. K. Khanna, Synthesis and characterization of poly(N-methyl aniline) doped with sulphonic acids: Their application as humidity sensors. J Appl Polym Sci 2006,99: 812-820.
    [49]. Tamaki J, Niimi J, Ogura S, Konishi S. Effect of micro-gap electrode on sensing properties to dilute chlorine gas of indium oxide thin film microsensors. Sens Actuatators B: Chemical, 2006, 117:353-358.
    [50]. Tamaki J, Miyaji A, Makinodan J, Ogura S, Konishi S. Effect of micro-gap electrode on detection of dilute NO 2 using WO3 thin film microsensors. Sens Actuatators B: Chemical, 2005, 108:202-206.
    [51]. Matsuguchi M, Yoshida M, Kuroiwa T, Ogura T. Depression of a capacitive-type humidity sensor’s drift by introducing a cross-linked structure in the sensing polymer. Sens Actuatators B: Chemical, 2004, 102:97-101.
    [52]. Matsuguchi M, Uno T, Yamanaka A, Kuroiwa T, Ogura T, Sakai Y. Improvements in the long-term stability of a LiCl dew-point sensor using cross-linked porous poly(vinyl alcohol) film. Sens Actuatators B: Chemical, 2004, 97:74-80.
    [53]. Matsuguch M, Kuroiwa T, Miyagishi T, Suzuki S, Ogura T, Sakai Y .Stability and reliability of capacitive-type relative humidity sensors using crosslinked polyimide films. Sens Actuatators B: Chemical, 1998, 52:53-57.
    [54]. Parvatikar N, Jain S, Khasim S, Revansiddappa M, Bhoraskar S V, Ambika Prasad M V N. Electrical and humidity sensing properties of polyaniline/WO3 composites Sens Actuatators B: Chemical, 2006, 114:599-603.
    [55]. Nohria R, Khillan R K, Su Y, Dikshit R, Lvov Y, Varahramyan K. Humidity sensor based on ultrathin polyaniline film deposited using layer-by-layer nano-assembly. Sens Actuatators B: Chemical, 2006, 114:218-222.
    [56]. Singla ML, Awasthi S, Srivastava A. Humidity sensing, using polyaniline/Mn3O4 composite doped with organic/inorganic acids. Sens Actuatators B, 2007, 127:580-585.
    [57]. Patil D, Seo Y K, Hwang Y K, Changb J S, Patil P. Humidity sensitive poly(2,5-dimethoxyaniline)/WO3 composites. Sensors and Actuators B 2008, 132:116–124.
    [58]. MacDiarmid A G.“Synthetic Metals”: A novel role for organic polymers. Angew Chem Int Ed, 2001, 40:2581-2590.
    [59]. Dimitrakopoulos C D, Malenfant P R L. Organic Thin Film Transistors for Large Area Electronics, Adv Mater, 2002, 14:99-117.
    [60]. Virji S, Kaner R B, Weiller B H. Hydrazine Detection by Polyaniline Using Fluorinated Alcohol Additives, Chem Mater, 2005, 17:1256-1260.
    [61]. Cataldo F. On the polymerization of P-phenylenediamine. Eur Polym J, 1996, 32:43-50.
    [62]. Sivakkumar S R, Saraswathi R. Application of poly(o-phenylenediamine) in rechargeable cells J Appl Electrochem 2004, 34:1147-1152.
    [63]. Yano J, Yamasaki S. Three-color electrochromism of an aramid film containing polyaniline and poly(o-phenylenediamine). Synth Met, 1999, 102:1157.
    [64]. Garjonyte R, Malinauskas A. Glucose biosensor based on glucose oxidase immobilized in electropolymerized polypyrrole and poly(o-phenylenediamine) films on a Prussian Blue-modified electrode. Sens Actuators B, 2000, 63:122-128.
    [65]. Cai L T, Chen H Y. Electrocatalytic reduction of hydrogen peroxide at platinum microparticles dispersed in a poly(o-phenylenediamine) film. Sens Actuators B, 1999, 55:14-18.
    [66]. Elia L F D, Ortiz R L, Marquez O P, Marquez J,Martinez Y. Electrochemical deposition of poly(o-phenylenediamine) films on type 304 stainless steel J Electrochem Soc, 2001, 148:297-300.
    [67]. Ohnuki Y, Matsuda H, Ohsaka T, Oyama N. Electrochemical preparation of a ladder polymer containing phenazine rings. J Eletroanal Chem, 1987, 219:117-124.
    [68]. Dai H, Wu Q, Sun S, Shiu K., Electrochemical quartz crystal microbalance studies on theelectropolymerization processes of ortho-phenylenediamine in sulfuric acid solutions. J Electroanal Chem, 1998, 456:47-59.
    [69]. Proke? J, Stejskal J, K?ivka L, TobolkováE, Aniline-phenylenediamine copolymers .Synth Met, 1999, 102:1205-1206.
    [70]. Ogura K, Shiigi H, Nakayama M, Fujii A., Thermogravimetric mass and infrared spectroscopic properties and humidity sensitivity of polyaniline derivatives polyvinyl alcohol composites J Electrochem Soc,, 1998, 145:3351-3357.
    [71]. Sun X, Dong S , Wang E. Large scale, templateless, surfactantless route to rapid synthesis of uniform poly(o-phenylenediamine) nanobelts. Chem Commun, 2004, 1182-1183.
    [72]. Sun X, Dong S, Wang E. Formation of o-Phenylenediamine Oligomers and their Self-Assembly into One-Dimensional Structures in Aqueous Medium. Macromol Rapid Commun, 2005, 26:1504-1508.
    [73]. Han J, Song G, Guo R. Synthesis of poly(o-phenylenediamine) hollow spheres and nanofibers using different oxidizing agents European Polymer Journal 2007, 43:4229-4235.
    [74]. Lu X , Mao H , Chao D , Zhao X , Zhang W, Wei Y. Preparation and characterization of poly(o-phenylenediamine)microrods using ferric chloride as an oxidant Materials Letters 2007, 61:1400-1403.
    [75]. Ogura K, Shiigi H, Nakayama M. A new humidity sensor using the compositefilm derived from poly(o-phenylenediamine) and poly(vinyl alcohol). J. Electrochem Soc 1996, 143:2925-2930.
    [76]. Jiang HQ, Sun X P, Huang M H, Wang Y L, Li D, Dong S J. Rapid Self-Assembly of Oligo(o-phenylenediamine) into One-Dimensional Structures through a Facile Reprecipitation Route. Langmuir 2006, 22:3358-3361.
    [77]. Ono T, Kawakami K, Goto M, Furusaki S, Catalytic oxidation of o-phenylenediamine by cytochrome c encapsulated in reversed micelles. J Mol Catal B, 2001, 11:955-959.
    [78]. Yeh Y C, Tseng T Y. Analysis of the d.c. and a.c. properties of K O-doped porous Ba Sr TiO ceramic humidity sensor20.5 0.5 3 . J Mater Sci 1989, 24:2739-2745.
    [79]. Traversa E, Bearzotti A, Miyayama M, Yanagida H. Study of the conduction mechanism of La 2C uO4 -ZnO heterocontacts at different relative humidities. Sens Actuators B, 1995, 25:714-718.
    [80]. Traversa E, Gnappi G, Montenero A, Gusmano G. Ceramic thin films by sol-gel processing as novel materials for integrated humidity sensors. Sens Actuators B, 1996, 31:59-70.
    [81]. Li X G, Huang M R, Jin Y, Yang Y L. Soluble copolymers via oxidative polymerization of pyrimidylamine and anisidine. Polymer 2001, 42: 3427-3435.
    [82]. Li X G, Huang M R, Zhu L H, Yang Y L. Synthesis and air separation of soluble terpolymers from Aniline, Toluidine, and Xylidine. J Appl Polym Sci, 2001, 82:790-798.
    [83]. Huang M R, Li X G, Yang Y L, Wang X-S, Yan D. Oxidative copolymers of aniline with o-toluidine: Their structure and thermal properties. J Appl Polym Sci, 2001, 81:1838-1847.
    [84]. Li X G, Huang, M-R, Gu G F, Qiu W, Lu J Y. Actual air separation through poly(aniline-co-toluidine)/ethylcellulose blend thin-film composite membranes.J Appl Polym Sci, 2000, 75:458-463.
    [85]. Li X G, Huang M R, Yang, Y L. Synthesis and Characterization of Poly(aniline-co-xylidine)s .Polym J , 2000, 32:348-353.
    [86]. Li X G, Kresse I, Springer J, Nissen J, Yang Y L. Morphology and gas permselectivity of blend membranes of polyvinylpyridine with ethylcellulose Polym, 2001, 42:6859-6869.
    [87]. An H, Seki M, Sato K, Kadoi K, Yosomiya R. Electrochemical polymerization of methyl-substituted quinolines. Polym, 1989, 30:1076-1078.
    [88]. Chan H S O, Ng S C, Hor T S A, Sun J, Tan K L, Tan B T G. Poly(m-phenylenediamine): Synthesis and characterization by X-ray photoelectron spectroscopy .Eur Polym J, 1991, 27:1303-1308.
    [89]. Singh R, Narula A K, Tandon R P, Rao S U M, Panwar V S, Mansingh A, Chandra S. Growth kinetics of polypyrrole, poly (N-methyl pyrrole) and their copolymer, poly (N-methyl pyrrole-pyrrole) : effect of annealing on conductivity and surface structure. Synth Met, 1996, 79:1-6.
    [90]. Deshmukh R D, Liu Y, Composto R J. Two-Dimensional Confinement of Nanorods in Block Copolymer Domains. Nano Lett, 2007, 7:3662–3668.
    [91]. Wu S Z, Zeng F, Li F X, Zhu Y L. Ammonia sensitivity of polyaniline films via emulsion polymerization. Eur Polym J, 2000, 36:679-683.
    [92]. Mazeikiene R, Malinauskas A. Doping of polyaniline by some redox active organic anions .Eur Polym J, 2000, 36:1347-1353.
    [93]. El-Rahman H A A. Preparation and characterization of conducting copolymer films from 5-aminoquinoline and aniline. J Appl Electrochem, 1997, 27:1061-1068.
    [94]. An H, Seki M, Sato K, Kadoi K, Yosomiya R. Electrochemical polymerization of methyl-substituted quinolines .Polym, 1989,30:1076-1078.
    [95]. An H, Seki M, Yosomiya R. Electrochemical polymerization of benzo[b]thiophene and electrical properties of poly(benzo[b]thiophene) Makromol Rapid Comm, 1987, 8:325-329.
    [96]. Tang H, Kitani A, Maitani S, Munemura H, Shiotani M. Electropolymerization of aniline modified by para-phenylenediamine .Electrochim Acta, 1995, 40: 849-857.
    [97]. Mazeikiene R, Malinauskas A. Electrochemical copolymerization of aniline with m-phenylenediamine. Synth Met, 1998, 92:259-263.
    [98]. Tu X, Xie Q, Xiang C, Zhang Y, Yao S. Scanning Electrochemical Microscopy in Combination with Piezoelectric Quartz Crystal Impedance Analysis for Studying the Growth and Electrochemistry as Well as Microetching of Poly(o-phenylenediamine) Thin Films.J Phys Chem B, 2005, 109:4053-4063.
    [99]. Malinauskas A, Bron M, Holze R., Electrochemical and Raman spectroscopic studies of electrosynthesized copolymers and bilayer structures of polyaniline and poly(o-phenylenediamine). Synth Met, 1998, 92:127-137.
    [100]. Kulkarni M V, Wiswanath A K, Marimuthu R, Seth T. Synthesis and Characterization of Polyaniline Doped with Organic Acids. J Polym Sci Pol Chem, 2004, 42:2043–2049.
    [101]. Zhang L, Wan M. Chiral polyaniline nanotubes synthesized via a self-assembly process, Thin Solid Films, 2005, 477:24-31.
    [102]. Huang J, Virji S, Weiller B H, Kaner R B. Polyaniline Nanofibers: Facile Synthesis and Chemical Sensors. J Am Chem Soc, 2003, 125:314-315.
    [103]. Qi B, Lu W, Mattes B R. Strain and Energy Efficiency of Polyaniline Fiber Electrochemical Actuators in Aqueous Electrolytes. J Phys Chem B, 2004, 108: 6222-6227.
    [104]. Ginic-Markovic M, Matisons J G, Cervini R, Simon G P, Fredericks P M. Synthesis of New Polyaniline/Nanotube Composites Using Ultrasonically Initiated Emulsion Polymerization. Chem Mater, 2006, 18:6258-6265.
    [105]. Harada M, Adachi M. Surfactant-Mediated Fabrication of Silica Nanotubes. Adv Mater, 2000, 12:839-841.
    [106]. Adachi M, Harada T, Harada M. Formation Processes of Silica Nanotubes through a Surfactant-Assisted Templating Mechanism in Laurylamine Hydrochloride/Tetraethoxysilane System. Langmuir, 2000, 16:2376-2384.
    [107]. Peng X, Wickham J, Alivisatos A P., Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth:“Focusing”of Size Distributions. J Am Chem Soc, 1998, 120: 5343- 5344.
    [108]. Li XG, Huang MR, Duan W, Yang YL. Novel Multifunctional Polymers from Aromatic Diamines by Oxidative Polymerizations. Chem Rev, 2002, 102:2925-3030.
    [109]. Li XG, Huang MR, Yang YL. Synthesis and characterization of o-phenylenediamine and xylidine copolymers. Polym, 2001, 42:4099-4107.
    [110]. Huang M R, Li X G, Yang Y L. Oxidative polymerization of o-phenylenediamine and pyrimidylamine. Polym Degrad Stab, 2000, 71:31-38.
    [111]. Chevalier J W, Bergeron J Y, Dao L H. Synthesis, Characterization, and Properties of Poly(N-alkylanilines). Macromolecules, 1992, 25: 3325-3331,
    [112]. Anna D G, Sondes T, Giancarlo R, Marco S, Holger A, Stefan K, Brigitte V. Macromol. Chem Phys, 2007, 208:76.
    [113]. Geng L, Huang X, Zhao Y, Li P, Wang S, Zhang S, Wu S, H2S sensitivity study of polypyrrole/WO3 materials, Solid State Electron. 2006, 50:723–726.
    [114]. Tai H, Jiang Y, Xie G, Yu J, Chen X. Fabrication and gas sensitivity of polyaniline-titanium dioxide nanocomposite thin film. Sens Actuator B 125 (2007) 607–614.
    [115]. Parvatikar N, Jain S, C. Kanamadi M, Chougule B K, Bhoraskar S V , Ambika Prasad M V N. Humidity sensing and electrical properties of polyaniline/cobalt oxide composites. J Appl Polym Sci 2007, 103:653-658.
    [116]. Parvatikar N, Jain S, Bhoraskar S V, Ambika Prasad M VN. Spectroscopic and electrical properties of polyaniline/CeO2 composites and their application as humidity sensor. J Appl Polym Sci 2006, 102:5533-5537.
    [117]. Suri K, Annapoorani S, Sarkar A K, Tandon R P. Gas and humidity sensors based on iron oxide–polypyrrole nanocomposites. Sens Actuator B 2002, 81:277-282.
    [118]. Su P G, Huang L N. Humidity sensors based on TiO2 nanoparticles/polypyrrolecomposite thin films. Sens Actuator B 2007, 123:501-507.
    [119]. Liu H Q, Kameoka J, Czaplewski D A, Craighead H G., Polymeric Nanowire Chemical Sensor. Nano Lett, 2004, 4:671-675.
    [120]. Lu W, Smela E, Adams P, Zuccarello G, Mattes B R. Development of solid-in-hollow electrochemical linear actuators using highly conductive polyaniline. Chem Mater,2004, 16: 1615-1621.
    [121]. Anderson M R, Mattes B R, Reiss H, Kaner R B. Conjugated Polymer Films for Gas Separations. Science, 1991, 252: 1412-1415.
    [122]. Pal A J, ?sterbacka R, K?llman K M, Stubb H. High-frequency response of polymeric light-emitting diodes. Appl Phys Lett, 1997, 70: 2022-2024.
    [123]. Mirmohseni A, Solhjo R., Preparation and characterization of aqueous polyaniline battery using a modified polyaniline electrode. Eur Polym J, 2003, 39: 219-223.
    [124]. Ginder J M, Epstein A J. Role of ring torsion angle in polyaniline: electronic structure and defect states. Phys Rev B, 1990, 41:10674-10685.
    [125]. Chang S S, Wu C G. Effects of Polymerization Media on the Nanoscale Conductivity and Current-Voltage Characteristics of Chemically Synthesized Polyaniline Films. J Phys Chem B, 2005, 109:18275-18282.
    [126]. Madathil R, Ponrathnam S, Byrne H J. Evidence of a redox equilibrium assisted chain propagation mode for aniline polymerization: in situ spectral investigation in dodecylbenzene sufonic acid based system. Polym 2004, 45:5465-5471.
    [127]. Sreedhar B, Sairam M, Chattopadhyay D K, Mitra P P, Rao D V M. Thermal and XPS studies on polyaniline salts prepared by inverted emulsion polymerization. J Appl Polym Sci, 2006, 101:499-508.
    [128]. Chaudhuri D, Kumar A, Sarma D D, Hernández M G, Joshi J P, Bhat S V. Magnetic study of an amorphous conducting polyaniline. Appl Phys Lett, 2003, 82:1733-1735.
    [129]. Vilkman M, Kosonen H, Nyk?nen A, Ruokolainen J, Torkkeli M, Serimaa R, Ikkala O. Electrical conductivity transitions and self-assembly in comb-shaped complexes of polyaniline based on crystallization and melting of the supramolecular side chains. Macromolecules, 2005, 38:7793-7797.
    [130].álvarez A V, Sordo J A, Scuseria G E. Doping of polyaniline by acid-base chemistry:density functional calculations with periodic boundary conditions. J Am Chem Soc, 2005, 127:11318-11327.
    [131]. Cheng Y C, Wang X, Cheng J B, Sun L, Xu W Q, Zhao B. Structure and phase transition in self-assembled films of an anti-ferroelectric liquid crystal studied by two-dimensional correlation FTIR spectroscopy. Spectrochim Acta A, 2005, 61:905-911.
    [132]. Abele B, Sheng P, Coutts M D, Arie Y. Structural and electrical properties of granular metal films. Adv Phys ,1975, 24:407-461.
    [133]. Joo J, Long S M, Pouget J P, Oh E J, MacDiarmid A G. Charge transport of the mesoscopic metallic state in partially crystalline polyanilines. Phys Rev B, 1998, 57:9567-9580.
    [134]. Wang Z H, Scherr E M, Macdiarmid A G, Epstein A J. Transport and EPR studies of polyaniline: A quasi-one-dimensional conductor with three-dimensional‘‘metallic’’states. Phys Rev B, 1992, 45:4190-4202.
    [135]. Krinichnyi V I, Chemerisov S D, Lebedev Ya S. EPR and charge-transport studies of polyaniline Phys Rev B 1997, 55:16233-16244.
    [136]. Wang Z H, Li C, Scherr E M, MacDiarmid A G, Epstein A J. Three dimensionality of‘‘metallic’’states in conducting polymers: Polyaniline .Phys Rev Lett 1991, 66:1745-1748.
    [137]. Cheng Y C, Xu W Q, Sun L, Wang X, Zhao B. Chem Temperature-Dependent FTIR Spectroscopy Phase Transition Process of Thin Films of Anti-Ferroelectric Liquid Crystal. J Chinese Univ 2005, 26:931-934.
    [138]. Wang X, Sun L, Zhao B, Xu W Q, Xue Q B, Yang K Z, Zhang Q Z, Qzaki Y. An infrared study of Langmuir–Blodgett films of side-chain chiral liquid crystalline polysiloxane. Thin Solid Films 2006, 497:347-354.
    [139]. Sarkar J, Chowdhury J, Talapatra G B. Adsorption of 4-Methyl-4H-1,2,4-triazole-3-thiol Molecules on Silver Nanocolloids: FT-IR, Raman, and Surface-Enhanced Raman Scattering Study Aided by Density Functional Theory. J Phys Chem C, 2007, 111:10049-10061.
    [140]. Deutsch D S, Siani A, Fanson P T, Hirata H, Matsumoto S, Williams C T, Amiridis M D. FT-IR Investigation of the Thermal Decomposition of Poly(amidoamine) Dendrimers and Dendrimer?Metal Nanocomposites Supported on Al2O3 and ZrO2. J Phys Chem C, 2007, 111:4246-4255.
    [141]. Finocchio E, Busca G, Forzatti P, Groppi G, Beretta A. State of Supported Rhodium Nanoparticles for Methane Catalytic Partial Oxidation (CPO): FT-IR Studies. Langmuir, 2007, 23:10419-10428.
    [142]. Boyer M I, Quillard S, Louarn G, Froyer G, Lefrant S. Vibrational Study of the FeCl3-Doped Dimer of Polyaniline, A Good Model Compound of Emeraldine Salt. J Phys Chem B 2000, 104:8952-8961.
    [143]. Furukawa Y. Electronic Absorption and Vibrational Spectroscopies of Conjugated Conducting Polymers. J Phys Chem, 1996, 100:15644-15653.
    [144]. Fanchini G, Unalan H E, Chhowalla M. Voltage-Induced Dependence of Raman-Active Modes in Single-Wall Carbon Nanotube Thin Films .Nano Lett, 2007, 7 :1129-1133.
    [145]. Cannone F, Collini M, D’Alfonso L, Baldini G, Chirico G, Tallarida G, Pallavicini P. Voltage Regulation of Fluorescence Emission of Single Dyes Bound to Gold Nanoparticles .Nano Lett 2007, 7:1070-1075.
    [146]. Agronin A G, Rosenwaks Y, Rosenman G I. Piezoelectric Coefficient Measurements in Ferroelectric Single Crystals Using High Voltage Atomic Force Microscopy. Nano Lett 2003, 3:169-171.
    [147]. Premvardhan L L, Hogiu S W, Peteanu L A, Yaron D J, Wang P C, Wang W, MacDiarmid A G. Conformational effects on optical charge transfer in the emeraldine base form of polyaniline from electroabsorption measurements and semiempirical calculations. J Chem Phys, 2001, 115:4359-4366.
    [148]. ?eděnkováI, Proke? J, TrchováM, Stejskal J. Conformational transition in polyaniline films– Spectroscopic and conductivity studies of ageing. Polym Degrad Stabil, 2008, 93:428-435.
    [149]. Lu X H, Ng H Y, Xu J W, He C. Electrical conductivity of polyaniline–dodecylbenzene sulphonic acid complex: thermal degradation and its mechanism. Synth Met 2002, 128:167-178.
    [150]. Huang K, Meng X H, Wan M X. Polyaniline Hollow Microspheres Constructed with Their Own Self-Assembled Nanofibers. J Appl Polym Sci, 2006, 100:3050-3054.
    [151]. Pandey S S, Gerard M J, Sharma A L, Malhotra B D. Thermal analysis of chemically synthesized polyemeraldine base. J Appl Polym Sci, 2000, 75:149-155.
    [152]. Boyer, M. I.; Quillard, S.; Louarn, G..; Froyer, G.; Lefrant, S. Vibrational Study of the FeCl3-Doped Dimer of Polyaniline; A Good Model Compound of Emeraldine Salt.J. Phys. Chem. B 2000, 104: 8952-8961.
    [153]. Fanchini, G.; Unalan, H. E.; Chhowalla, M. Voltage-Induced Dependence of Raman-Active Modes in Single-Wall Carbon Nanotube Thin Films. Nano. Lett. 2007, 7: 1129-1133.
    [154]. Cochet, M.; Louarn, G.; Quillard, S.; Boyer, M. I.; Buisson, J. P.; Lefrant, S. Theoretical and experimental vibrational study of polyaniline in base forms: non-planar analysis. Part I. J. Raman. Spectrosc. 2000, 31: 1029-1039.
    [155]. Long, Y. Z.; Chen, Z. J.; Ma, Y. J.; Zhang, Z.; Jin, A. Z.; Gu, C. Z.; Zhang, L. J.; Wei, Z. X.; Wan, M. X. Electrical conductivity of hollow polyaniline microspheres synthesized by a self-assembly method.Appl. Phys. Lett. 2004, 84: 2205-2207.
    [156]. Pereira da Silva, J. E.; de Faria, D. L. A.; Cordoba de Torresi, S. I.; Temperini, M. L. A. Influence of Thermal Treatment on Doped Polyaniline Studied by Resonance Raman Spectroscopy.Macromolecules 2000, 33: 3077-3083.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700