p型ZnO的高压制备及其性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文创新地采用高温高压技术,选择Sb为受主掺杂元素,开展了p型ZnO的制备和性能的研究工作。在5.0GPa,1450℃条件下制备出性质较好的p型ZnO/Sb样品,其电阻率为1.254×10-1Ωcm,载流子浓度为1.023×1019cm-3,迁移率为4.852cm2V-1s-1;通过样品的XRD和XPS测试以及退火前后的SEM和EDX结果对比发现,样品中的Sb元素以两种形式存在,即存在于晶界位置的单质Sb和存在于(Zn、Sb、O)三元化合物中的Sb元素,样品p型的导电类型与晶界位置的单质Sb直接相关。
     同时,为了满足光电子器件的要求,本论文还利用高压技术,开展了本征ZnO的制备工作。在5.0GPa,800℃条件下,制备出纤锌矿结构的透明ZnO陶瓷,打破了无添加剂条件下六方结构氧化物难以形成透明陶瓷的限制。而且,高压制备的ZnO透明陶瓷具有很好的n型电学性质和光学性质,其载流子浓度为8.36×1018cm-3,电阻率为0.57?cm,迁移率为23cm2V-1s-1;在3.37eV处呈现很强的自由激子发光。
ZnO is a direct band gap semiconductor, which has band gap of 3.37eV at room temperature, and the binding energy of exciton as high as 60meV. Owing to so many advantages, ZnO has been considered as the ideal semiconductor material to manufacture the short-wavelength optoelectronic devices (such as UV light-emitting diodes, laser), and preparation of high-performance p-type ZnO has become the key problem of its application. According to the present research, the difficulties of preparation of p-type ZnO mainly come from the following two reasons: first, intrinsic defects (such as oxygen vacancies (Vo), interstitial zinc (Zni) or impurities H) caused self-compensation effect; second, the solid solution of doped elements in ZnO is low and has a deep acceptor level. For the first problem, by improving the crystal quality to reduce self-compensation effect; For the second problem, because pressure can change the thermodynamic equilibrium state of system, so it is considered as an effective mean in raising the solid solution of accepter .
     Based on the above considerations, we applied high pressure and temperature (HPHT) technology in preparation of p-type ZnO and hope to enhance the acceptor doping concentration to obtain p-type ZnO with stability, low resistivity, high carrier concentration. However, test results show that the p-type electrical properties of sample is not from the doping, but from the interface state which is formed in grain boundary
     In addition, to meet the requirements of ZnO-based light-emitting devices, we also applied HPHT technology in preparation of intrinsic n type ZnO, as a result, produced the transparent ZnO ceramic materials with better electrical and optical properties at certain pressure and temperature conditions.
     The details and conclusions are as follows:
     1、The transparent ZnO ceramics with the structure of wurtzite has been prepared at 5.0GPa and 800℃for the first time, breaking the restriction that the oxide with the hexagonal structure is difficult to be prepared to the transparent ceramics without the additive. Moreover, the ZnO transparent ceramics prepared by the high pressure technology has the excellent electrical and optical properties. Its carrier concentration was 8.36×1018cm-3, the resistivity was 0.57?.cm and the mobile was 23cm2V-1s-1. The stronger free exciton emission was presented at 3.37eV.
     2、P-type ZnO has been prepared by the high pressure technology with the pressure of 5.0GPa, temperature range from 800-1450℃and the atomic ratio(Sb atomic/total atomic) of initial sample vary from 1.4% to 8.7% . The sample with better properties was prepared at the conditions of 5.0GPa and 1450℃, its resistivity was 1.254×10-1(Ωcm), carrier concentration was 1.023×1019(cm-3) and the mobile was 4.852(cm2V-1s-1).
     3、P-type conduction mechanism of ZnO/Sb sample was discussed. The changes of SEM and EDX of sample before and after annealing and the results of XRD and XPS showed that Sb element exists in two forms, one exists in the grain boundary as metal Sb; the other exists in the (Zn, Sb, O) ternary compounds and the p-type conductivity of the samples comes from band bending formed by elemental Sb in grain boundaries.
     4、The decomposition phenomenon of Sb2O3 was found accidentally at high pressure condition, a series of experiments were carried out to discuss the relationship between decomposition behavior and pressure (temperature), and gave the relevant thermodynamic mechanism
引文
[1] OHTOMO A, KAWASAKI M, SAKURAI Y, et al. Room temperature ultraviolet laser emission from ZnO nanocrystal thin films grown by laser MBE[J]. Materials Science and Engineering B, 1998, 54: 24-28.
    [2] Z K TANG, G K L WONG AND P YU. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films[J]. Appl. Phys. Lett, 1998, 72, 25.
    [3] D M BAGNALL, Y F CHEN, Z ZHU, et al. Optically pumped lasing of ZnO at room temperature[J]. Appl. Phys. Lett, 1997, 70, 17.
    [4] KLINGSHIRN. The Luminescence of ZnO under Oneand Two-Quantum Excitation[J]. Phys. Status Solid, 1975, 71:547-556.
    [5] J M HVAM. Temperature-Induced Wavelength Shift of Electron-Beam-Pumped Lasers from CdSe, CdS and ZnO[J]. Phys. Rev. B, 1971, 4: 4459-4464.
    [6] JERRY KRAMER. Blue-green luminescence in ZnO: Excitation by 20-eV kinetic energy gas-phase positive ions[J]. J. Appl. Phys., 1976, 47: 1719-1720.
    [7] VANHEUSDEN K, SEAGER C H, WARREN W L, et al. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors[J]. Appl. Phys. Lett., 1996 68(3): 403-405.
    [8]宋词,杭寅,徐军。氧化锌晶体的研究进展[J]。人工晶体学报,2004,33:81-87
    [9] B W THOMAS and D WALSH. Metal-insulator-semiconductor electroluminescent diodes in single-crystal zinc oxide [J]. Electron. Lett., 1976, 9: 362-363.
    [10] C REYNOLDS, D C LOOK AND B JOGAI. Optically Pumped Ultraviolet Lasing From ZnO[J]. Solid. State. Commun., 1996, 99: 873.
    [11] Y SEGAWA, A OHTOMO, M KAWASAKI, H. KOINUMA, et al. Growth of ZnO Thin Film by Laser MBE: Lasing of Exciton at Room Temperature[J]. Phys. Stat. Sol. (b), 1997, 202: 669.
    [12] R F SERVICE. Will UV laser beat the blues? [J]. Science, 1997, 276: 895.
    [13] H CAO, Y G ZHAO, H C ONG, et al. Ultraviolet lasing in resonators formed byscattering in semiconductor polycrystalline films [J]. Appl. Phys. Lett., 1998, 73: 3656.
    [14] H CAO, Y LING, J Y XU, et al. Photon statistics of random lasers with resonant feedback[J]. Phys. Rev. Lett., 2001, 86: 4524.
    [15] H CAO, Y G ZHAO, S T HO, et al. Random Laser Action in Semiconductor Power[J]. Phys. Rev. Lett., 1999, 82: 2278.
    [16] H CAO, J Y XU, E W SEELIG, et al. Microlaser made of disordered media[J]. Appl. Phys. Lett., 2000, 76 : 2997.
    [17] A F KOHAN, G CEDER, D MORGAN, et al. Chris G. First-principles study of native point defects in ZnO[J]. Phys. Rev. B, 2000, 61: 15019-15027.
    [18] S B ZHANG, S H WEI, ALEX ZUNGER. Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO[J]. Phys. Rev. B, 2001, 63: 075205-075211.
    [19] G D MAHAN. Intrinsic defects in ZnO varistors[J]. J. Appl. Phys., 1983, 54: 3825-3833.
    [20] C AGASHE, O KLUTH, J HüPKES, et al. Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films[J]. J. Appl. Phys., 2004, 95: 1911-1918.
    [21] PARK C H, ZHANG S B and WEI S H. Origin of the impurity perspective p-type doping difficulty in ZnO[J]. Phys. Rev. B, 2002, 66: 073202-07204.
    [22] M G WARDLE, J P GOSS AND P. R. BRIDDON. Theory of Li in ZnO: A limitation for Li-based p-type doping [J]. Phys. Rev. B, 2005, 71: 155205.
    [23] S S LIN, J G LU, Z Z YE, et al. p-type behavior in Na-doped ZnO films and ZnO homojunctio light-emitting diodes[J]. Solid State Communications, 2008, 148: 25-28.
    [24] LOOK D C, REYNOLDS D C , LITTON C W, et al. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy[J]. Appl. Phys. Lett., 2002, 81:1830-1832.
    [25] J G LU, Y Z ZHANG, Z Z YE, et al. Control of p- and n-type conductivities in Li-doped ZnO thin films[J]. Appl. Phys. Lett., 2006, 89: 112113-112115
    [26] Y J ZENG, Z Z YE, J G LU, et al. Identification of acceptor states in Li-doped p-type ZnO thin films[J]. Appl. Phys. Lett., 2006, 89: 042106-042108
    [27] FONS P, YAMADA A, IWATA K, et al. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms[J]. 2003, 199: 190.
    [28] G H KIM, D L KIM, B D AHN, et al. Investigation on doping behavior of copper in ZnO thin film[J]. Microelectronics Journal, 2009, 40: 272–275.
    [29] FU Z X , LIN B X, LIAO G H. Chin. Phys. Lett., 1999, 16: 753-756.
    [30] C H PARK, S B ZHANG AND S H WEI. Origin of p-type doping difficulty in The impurity perspective ZnO: The impurity perspective[J]. Phys. Rev. B, 2002, 66: 073202-07204.
    [31] MATSUSHITA T, YASUSHI, KOIWAI, et al. Growth of p-type zinc oxide films by chemical vapor deposition[J]. Jpn. J.Appl.Phys., 1997, 36: 1453-1455.
    [32] Z G JI, C G YANG, K LIU, et al. Fabrication and characterization of p-type ZnO films by pyrolysis of zinc-acetate–ammonia solution[J]. Journal of Crystal Growth, 2003, 253: 239-242.
    [33] J G. LU AND S FUJITA. Hydrogen-assisted nitrogen-acceptor doping in ZnO[J]. physica status solidi (a), 2008, 205: 1975-1977.
    [34] D C LOOK, D C REYNOLDS, C W LITTON, et al. Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy[J]. Appl. Phys. Lett., 2002, 81: 1830-1832.
    [35] SANDIP GANGIL, A NAKAMURA AND Y ICHIKAWA. P-type nitrogen-doped ZnO thin films on sapphire (112ˉ0) substrates by remote-plasma-enhanced metalorganic chemical vapor deposition[J]. Journal of Crystal Growth, 2007, 298: 486–490.
    [36] X L GUO, H TABATA AND T KAWAI. p-Type conduction in transparent semiconductor ZnO thin films induced by electron cyclotron resonance N2O plasma[J]. Optical Material, 2002, 19:229-233.
    [37] Y YAN., S. B ZHANG. Control of Doping by Impurity Chemical Potentials: Predictions for p-Type ZnO[J]. Phys. Rev. lett., 2001, 86: 5723-5726.
    [38] H W LIANG, Y M LU, D Z SHEN, et al. P-type ZnO thin films prepared by plasma molecular beam epitaxy using radical NO[J]. phys. stat. sol. (a), 2005, 202:1060–1065.
    [39] W Z XU, Z Z YE, T ZHOU, et al. Journal of Crystal Growth, (2004), 265:133-136
    [40] TERESA M, BARNES, KYLE OLSON, et al. On the formation and stability of p-type conductivity in nitrogen-doped zinc oxide[J]. Appl. Phys. Lett., 2005, 86, 112112.
    [41] D C LOOK, B CLAFLIN, YA I ALIVOV et al. The future of ZnO light emitters[J]. Phys. Stat. Sol. (a), 2004, 201: 2203–2212.
    [42] Z Y XIAO. PhD thesis, Changchun Insistute of Optics Fine mechanics and Physics, Chinese Academy of Sciences, 2006, Changchun.
    [43] YOUNG-DON KO, JIHOUN JUNG, KYU-HYUN BANG, et al. Characteristics of ZnO/Si prepared by Zn3P2 diffusion[J]. Applied Surface Science, 2002, 202, 266.
    [44] HYUN BANG, DEUK-KYU HWANG, MIN-CHUL PARK, et al. Formation of p-type ZnO film on InP substrate by phosphor doping[J]. Applied Surface Science, 2003, 210, 177.
    [45] F X XIU, Z YANG, L J MANDALAPU, et al. Donor and acceptor competitions in phosphorus-doped ZnO[J]. Appl. Phys. Lett., 2006, 88, 152116.
    [46] BANG KYU-HYUN, HWANG DEUK-KYU, PARK MIN-CHUL, et al. Formation of p-type ZnO film on InP substrate by phosphor doping , Applied Surface Science, 2003, 210, 177.
    [47] JIN-HO YANG, HYUN-SIK KIM, JAE-HONG LIM, DAE-K UE HWANG, Jin-Yong Oh and Secong-Ju Park, Electrochem. Soc., 2006, 153, 242.
    [48] T AOKI, Y HATANAKA AND D C LOOK. ZnO diode fabricated by excimer-laser doping[J]. Appl. Phys. Lett., 2000, 76, 3257.
    [49] K K KIM, H S KIM, D K HWANG, et al. Realization of p-type ZnO thin films via phosphorus doping and thermal activation of the dopant[J]. Appl. Phys. Lett., 2003, 83: 63-65
    [50] P Wang, Nuo Fu Chen and Z G Yin. P-doped p-type ZnO films deposited on Si substrate by radio-frequency magnetron sputtering[J]. Appl. Phys. Lett., 2006, 88, 152102.
    [51] D K HWANG, H S KIM, J H LIM, et al. Study of the photoluminescence ofphosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering [J]. Appl. Phys. Lett., 2005, 86, 151917.
    [52] RYU Y R, ZHU S, LOOK D C, et al. Synthesis of p-type ZnO films [J]. J. Cryst. Growth, 2000, 216: 330-334
    [53] RYU Y R, LEE T S, WHITE H W, et al. Properties of arsenic-doped p-type ZnO grown by hybrid beam deposition [J]. Appl. Phys. Lett., 2003, 83: 87-89.
    [54] PENG WANG, NUOFU CHEN, ZHIGANG YIN, et al. As-doped p-type ZnO films by sputtering and thermal diffusion process [J]. J. Appl. Phys., 2006, 100, 043704.
    [55] HONG SEONG KANG, GUN HEE KIM, DONG LIM KIM, et al. Investigation on the p-type formation mechanism of arsenic doped p-type ZnO thin film [J]. Appl. Phys. Lett., 2006, 89: 181103-181106.
    [56] L J MANDALAPU,Z YANG,F X XIU, et al. p-type behavior from Sb-doped ZnO heterojunction photodiodes [J]. Appl. Phys. Lett., 2006, 88: 092103.
    [57] F X XIU, Z YANG, L J MANDALAPU, et al. Photoluminescence study of Sb-doped p-type ZnO films by molecular-beam epitaxy [J]. Appl. Phys. Lett., 2005, 87: 252102-252104
    [58] YAMAMOTO T. Codoping for the fabrication of p-type ZnO[J]. Thin Solid Films, 2002, 420-421: 100-106
    [59] TETSUYA YAMAMOTO AND HIROSHI KATAYAMA-YOSHIDA. Solution Using a Codoping Method to Unipolarity for the Fabrication of p-Type ZnO [J]. Jpn. J. Appl. Phys., 1999, 38: 166-169.
    [60] J G LU, Z Z YE, F ZHUGE, et al. p-type conduction in N–Al co-doped ZnO thin films[J]. Appl. Phys. Lett., 2004, 85: 8134-8135.
    [61] J G LU, L P ZHU, Z Z YE, et al. p-type ZnO films by codoping of nitrogen and aluminum and ZnO-based p–n homojunctions [J]. J. Cryst. Growth, 2005, 274: 425–429.
    [62] F ZHUGE, L P ZHU, Z Z YE, et al. ZnO p-n homojunctions and ohmic contacts to Al–N-co-doped p-type ZnO [J]. Appl. Phys. Lett., 2005, 87: 092103-092106.
    [63] M JOSEPH, H TABATA AND ANNETTE DIEZ p-Type Electrical Conduction in ZnOThin Films by Ga and N Codoping[J]. Jpn. J. Appl. Phys., 1999, 38: 1205-1207.
    [64] A KRTSCHIL, A DADGAR, A DIEZ, et al. Electrical Characterization of Defect States in Local Conductivity Domains in ZnO:N,As Layers [J]. Materials Research Society.
    [65] X H WANG, B YAO, Z Z ZHANG, et al. The mechanism of formation and properties of Li-doped p-type ZnO grown by a two-step heat treatment Semicond [J]. Sci. Technol. 2006, 21: 494–497.
    [66] X H WANG, B YAO, Z P WEI, et al. Acceptor formation mechanisms determination from electrical and optical properties of p-type ZnO doped with lithium and nitrogen [J]. J. Phys. D: Appl. Phys. 2006, 39: 4568–4571.
    [67] J G LU, Y Z ZHANG, Z Z YE, et al. Low-resistivity, stable p-type ZnO thin films realized using a Li-N dual-acceptor doping method [J]. Appl. Phys. Lett, 2006, 88: 222114-222116.
    [68] T AOKI, Y HATANAKA AND D C LOOK. ZnO diode fabricated by excimer-laser doping [J]. Appl. Phys. Lett., 2000, 76: 3257-3258.
    [69] X L GUO, J H CHOI, H TABATA, et al. Fabrication and Optoelectronic Properties of a Transparent ZnO Homostructural Light-Emitting Diode[J]. Jpn. J. Appl. Phys., 2001, 40: 177-180
    [70] ATSUSHI TSUKAZAKI, AKIRA OHTOMO, TAKEYOSHI ONUMA, et al. The 3rd international workshop on ZnO and related materials[c], October 5-8, 2004, Sendai, Japan
    [71] ATSUSHI TSUKAZAKI, AKIRA OHTOMO, TAKEYOSHI ONUMA, et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO[J]. Nature Materials, 2005, 4: 42–46.
    [72] ATSUSHI TSUKAZAKI, MASASHI KUBOTA, AKIRA OHTOMO, et al.Blue Light-Emitting Diode Based on ZnO[J]. Japanese Journal of Applied Physics, 2005, 44: 643– 645.
    [73] S J JIAO, Z Z ZHANG, Y M LU, et al. ZnO p-n junction light-emitting diodes fabricated on sapphire substrates[J]. Appl. Phys. Lett., 2006, 88: 031911-0319113.
    [74] W LIU, S L GU, J D YE, et al. Blue-yellow ZnO homostructural light-emitting diode realized by metalorganic chemical vapor deposition technique[J]. Appl. Phys. Lett., 2006, 88: 092101-092103.
    [75] W Z XU, Z Z YE, Y J ZENG, et al. ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition[J]. Appl. Phys. Lett., 2006, 88: 173506 -173508.
    [76] G T DU, W F LIU, J M BIAN, et al. Room temperature defect related electroluminescence from ZnO homojunctions grown by ultrasonic spray pyrolysis[J]. Appl. Phys. Lett., 2006, 89: 052113-052115.
    [77] YUNGRYEL RYU, TAE-SEOK LEE, JORGE A LUBGUBAN, et al. Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes[J]. Appl. Phys. Lett., 2006, 88: 241108.
    [78] Y R RYU, J A LUBGUBAN, T S LEE, et al. Excitonic ultraviolet lasing in ZnO-based light emitting devices[J]. Appl. Phys. Lett., 2007, 90: 131115.
    [79] JAE-HONG LIM, CHANG-KU KANG, KYOUNG-KOOK KIM, et al. UV Electroluminescence Emission from ZnO Light-Emitting Diodes Grown by High-Temperature Radiofrequency Sputtering[J]. Adv. Mater., 2006, 18: 2720–2724.
    [80] COBLE R L.Transparent Alumina and Method of Preparation.US Patent: 3026210[P].1962-03-10.
    [81] BECHER P F.Am Ceram Soc Bull,1977,56(11):1 Ol5-1 O7.
    [82] JEAN C. HUIE, RICHARD GENTILMAN. Proc. of SPIE 6216: 621601
    [83] N KURAMOTO.Transactions of Components,1989, 9(4): 386
    [84] ICHINOSE N.New Ceramic,1992(5):95
    [85]周艳平,王岱峰,奚益明,等.透明氮化铝陶瓷的制备[J].无机材料学报,1999,14(4):674-678.
    [86]吉亚明,蒋丹宇,冯涛,等.透明陶瓷材料现状与发展科学通报[J]. 2004,19(2):275-282.
    [87]刘军芳,傅正义,张东明,等.透明陶瓷的制备技术及其透光因素的研究[J].硅酸盐通报, 2003, 22(3): 6.
    [88] KINGERY W. Introduction to ceramics [M]. 2th ed.NewYork: 1976, 634.
    [89]许顺生.金属X射线学[M].上海:上海科学技术出版社,2007.
    [90] W T Lim and C H Lee. Highly oriented ZnO thin films deposited on Ru/Si substrates [J]. Thin solid films, 1999, 353: 12-15.
    [91] A. SANS. High Pressure Research An International Journal [J]. 2004, 24: 119-127.
    [92] CARBALLDA-GALICIADM, CASTANDO-PERZ R, JIMENEZ-SANDOVALO, et al. Thin Solid Films, 2000,371(3): 105-108.
    [93] LIU M, KITAI A H AND MASCHER P. Point defects and luminescence centres in zinc oxide and zinc oxide doped with manganese[J]. Journal of Luminescence, 1992, 54: 35- 42.
    [94] S CHOOPUN, R D VISPUTE, W NOCH, et al. Oxygen pressure-tuned epitaxy and optoelectronic properties of laser-deposited ZnO films on sapphire [J]. Appl. Phys.Lett.,1999, 75: 3947-3950.
    [95] E M WONG and P C SEARSON. ZnO quantum particle thin films fabricated by electrophoretic deposition[J]. Appl. Phys. Lett., 1999, 74: 2939-2941.
    [96] H J KO, Y F CHEN, Z ZHU, et al. Photoluminescence properties of ZnO epilayers grown on CaF2 (111) by plasma assisted molecular beam epitaxy[J]. Appl. Phys. Lett., 2000, 76: 1905-1908.
    [97] S B ZHANG, S H WEI and A ZUNGER. Intrinsic n-type versus p-type doping asymmetry and the defect physics of ZnO [J]. Phys. Rev. B, 2001, 63: 075205-075209.
    [98] CHRIS G, VAN DE WALLE. Hydrogen as a Cause of Doping in Zinc Oxide [J]. Phys. Rev. Lett, 2000, 85: 1012-1015.
    [99] M A THOMAS and J B CUI. Investigations of acceptor related photoluminescence from electrodeposited Ag-doped ZnO [J]. Journal of applied physics,2009, 105: 093533-093536.
    [100] YANG ZHANG, ZIYU ZHANG, BIXIA LIN, et al. Effects of Ag Doping on the 19200-19203.
    [101] C Y ZHANG, X M LI , X D GAO , et al. The grain-boundary-related optical andelectrical properties in polycrystalline p-type ZnO films[J]. Chemical Physics Letters, 2006, 420: 448-452.
    [102] J M CARLSSON, B HELLSING, H S DOMINGOS et al. Electronic properties of a grain boundary in Sb-doped ZnO [J]. Journal of Physics:Condensed Matter, 2001, 13: 9937-9943.
    [103] JOHAN M CARLSSON, HELDER S DOMINGOS, PAUL D BRISTOWE, et al. An Interfacial Complex in ZnO and Its Influence on Charge Transport[J]. Phys.Rev.Lett, 2003, 91:165506-165510.
    [104] A KRTSCHIL, A DADGAR, N OLEYNIK, et al. Local p-type conductivity in zinc oxide dual-doped with nitrogen and arsenic [J]. Applied Physics Letters, 2005, 87, 26.
    [105] BIN WANG, JIAHUA MIN, YUE ZHAO, et al. The grain boundary related p-type conductivity in ZnO films prepared by ultrasonic spray pyrolysis [J]. Applied Physics Letters, 2009, 94: 192101-192104.
    [106] ZHAN XIAO HONG, CAO DA HU, LU ZHONG, et al. Possible Existence of Ultra Fast Polarity Diffusion Process of ZnO under High Pressure [J].Chinese journal of high pressure physics, 2008, 22(1).
    [107] L G WANG and ALEX ZUNGER. Cluster-doping approach for wide-gap semiconductors: the case of p-type ZnO [J]. Phys. Rev. Lett, 2003,90: 256401-256405.
    [108] B CLAFLIN, D C LOOKA, S J PARK, et al. Persistent n-type photoconductivity in p-type ZnO [J]. Journal of Crystal Growth, 2006, 287: 16-22.
    [109]黄昆.固体物理学[M].北京:高等教育出版社, 1988.
    [110]吴云龙,刘益环,赵芳红等。ZnO/glass薄膜结构和电学性质研究[J]。武汉理工大学学报,2009,31:22。
    [111]化学物理手册
    [112]刘恩科,朱秉升,罗晋升等。半导体物理学(第六版)[M]。北京:电子工业出版社,2003。
    [113] J M QIN, B YAO, Y YAN et al. Formation of stable and reproducible low resistivity and high carrier concentration p-type ZnO doped at high pressure with Sb[J]. Appl.Phys. Lett., 2009, 95: 0221011-0221013.
    [114] HONGBO WANG, QUAN LI, TIAN CUI, et al. Phase-transition mechanism of h-BN→w-BN from first principles [J]. Solid State Communications, 2009, 149: 843-846.
    [115] SHOUXIN CUI, WENXIA FENG, HAIQUAN HU, et al. First-principles study of high-pressure phase transformations in LaBi[J]. Solid State Communications, 2009, 149: 996-999.
    [116] J M QIN, B YAO, X P JIA. Characterizations of single-phased cubic Mg0.5Zn0.5O prepared at high pressure and high temperature [J]. J. Phys. D, 2008, 41: 15-18.
    [117] G Z REN, T C ZHANG, X C WANG. The reactions of CuO at high pressure and high temperature [J]. Phys. Condens. Matter, 2002, 14: 44-47.
    [118] YAFEI ZHANG, CHUANYI ZANG, HONGAN MA. HPHT synthesis of large single crystal diamond doped with high nitrogen concentration [J]. Diamond & Related Materials, 2008, 17: 209-211.
    [119] YU BORZDOV, YU PAL’YANOV, I KUPRIYANOV. HPHT synthesis of diamond with high nitrogen content from an Fe3N–C system [J]. Diamond & Related Materials, 2002, 11: 1863-1870.
    [120] C. X. WANG, Y. H. YANG, Q. X. LIU, et al. Nucleation Thermodynamics of Cubic Boron Nitride upon High-Pressure and High-Temperature Supercritical Fluid System in Nanoscale [J]. J. Phys. Chem. B, 2004, 108: 728-731
    [121] L J Mandalapu, Z Yang, S Chu et al. Sb-doped p-ZnO/Ga-doped n-ZnO homojunction ultraviolet light emitting diodes [J]. Appl. Phys. Lett, 2008, 92:1521031-1521034.
    [122] U WAHL, J G CORREIA, T MENDONCA, et al. Direct evidence for Sb as a Zn site impurity in ZnO [J]. Applied Physics Letters, 2009, 94: 2619011-2619013.
    [123] J Z ZHAO, H W LIANG, J C SUN, et al. Electroluminescence from n-ZnO/p-ZnO : Sb homojunction light emitting diode on sapphire substrate with metal–organic precursors doped p-type ZnO layer grown by MOCVD technology [J]. J. Phy. D: Appl. Phys, 2008, 41, 1951101-1951104.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700