不同类型氨基酸网络参量与蛋白质折叠的关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质是生命系统中重要的生物大分子,它在生物体的繁衍、新陈代谢、生长发育等一切生命活动中发挥着重要的生物学功能。研究蛋白质结构的形成机制具有重要的理论和现实意义。自由能曲面理论为蛋白质折叠机理的研究提供了很好的理论框架,被广泛应用于蛋白质折叠热力学和动力学机制的研究。然而,能量函数和能量曲面的构建又存在一些困难。大量的实验和理论研究表明,蛋白质的折叠速率和机制在很大程度上是由天然态的拓扑结构所决定的,而不是完全取决于原子之间的精细的相互作用。因而,探究蛋白质拓扑结构和折叠机制之间的内在联系,通过蛋白质拓扑特征的分析获取折叠动力学信息,是一个很有意义的研究内容。
     在本论文中,基于残基物理化学性质的差异性,分别构建了蛋白质氨基酸网、疏水网、亲水网、亲水-疏水网,进而计算了各网络的匹配系数和聚集系数,计算表明除了亲水-疏水网,其它类型的氨基酸网络的匹配系数均为正值。通过考察这两个参量与折叠速率之间的关系,发现疏水网的匹配系数与折叠速率之间有着非常明显的线性正相关关系。这说明了疏水残基之间相互作用的协同性对于蛋白质的快速折叠是有利的,可以促使蛋白质在非常短的时间内折叠成特定的三维空间结构。同时,亲水网的聚集系数与折叠速率有明显的线性负相关关系,表明疏水残基间三角结构的形成不利于蛋白质快速折叠。另外,我们还构建了相应的长程网络以观察各网络中长程残基间的相互作用对蛋白质折叠过程的影响,发现长程网络的平均聚集系数与折叠速率呈现出明显的负相关关系,说明序列上长距离残基之间接触的形成不利于快速折叠。
     论文的研究结果表明,蛋白质的天然拓扑结构中蕴含了非常丰富的生物学信息,通过复杂网络的方法可以有效地提取并分析这些信息,进而有助于我们更进一步理解和揭示蛋白质折叠机理。
Proteins play an important role in the life system, and perform significant biological functions in all of the life activities, such as multiplication, metabolism, growth and development of life-forms. It is theoretically and practically significant to study the mechanism of protein folding. The theory of free energy surface has provided the theoretical framework to study protein folding mechanism, which has been widely used in the research of thermodynamics and kinetics of protein folding. However, there are still some troubles in constructing of the energy surface. Many experimental and theoretical studies have showed that the folding rate and mechanism of proteins are largely determined by their native structure topology, instead of the detail interactions between atoms. Therefore, it is meaningful to explore the relationship between protein structural topology and its corresponding folding mechanism, and then to obtain the information about folding dynamics through the analysis of protein topological features.
     In this dissertation, according to the different physicochemical properties of different residues, we have constructed amino-acid network, hydrophobic amino acid network, hydrophilic amino acid network, and hydrophobic-hydrophilic amino acid network. Then, the assortative coefficient and clustering coefficient of these networks were calculated, respectively. It is found that the assortative coefficient of all these types of amino-acid network is positive except hydrophobic-Hydrophilic amino acid network. It is also found that there is clearly a linear positive correlation between the assortative coefficient of the hydrophobic amino acid network and the folding rate of the corresponding protein, which indicates that the cooperative interactions of the hydrophobic residues can promote the process of protein folding. Moreover, the results also show that the clustering coefficient of the hydrophobic network has an obviously linear negative correlation with the folding rate, which implies that the forming of the triangle structure in the protein was unfavorable for protein folding. In addition, we also constructed long-distance-in-sequence networks to study the influence of the interactions between long-distance residues in sequence on protein folding. It is found that the forming of the contacts between distant residues in sequence will delay the process of protein folding.
     The above results show that the native topologic structure of proteins contains plenty of biological information, and it can be effectively obtained and analyzed by the introduction of complex network. The studies in this dissertation help us to further understand protein folding mechanisms.
引文
1. A. Abbott. And now for the proteome.... Nature. 2001, 409(6822): 747.
    2. S. Fields, Proteomics. Proteomics in genomeland. Science. 2001, 291 (5507): 1221-1224.
    3.邹承鲁.生物学在召唤.上海科技教育出版社. 1999: 1-20.
    4. C. B. Anfinsen. Principles that govern the folding of protein chains. Science. 1973, 181(96): 223-230.
    5. D. Baker. A surprising simplicity to protein folding. Nature. 2000, 405(6782): 39-42.
    6. D. S. Riddle, V. P. Grantcharova, J. V. Santiago, E. Alm, I. Ruczinski and D. Baker. Experiment and theory highlight role of native state topology in sh3 folding. Nat Struct Biol. 1999, 6(11): 1016-1024.
    7. F. L. Heppner, C. Musahl, I. Arrighi, M. A. Klein, T. Rulicke, B. Oesch, R. M. Zinkernagel, U. Kalinke and A. Aguzzi. Prevention of scrapie pathogenesis by transgenic expression of anti-prion protein antibodies. Science. 2001, 294(5540): 178-182.
    8. R. Day and V. Daggett. All-atom simulations of protein folding and unfolding. Adv Protein Chem. 2003, 66: 373-403.
    9. Y. Duan and P. A. Kollman. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science. 1998, 282(5389): 740-744.
    10. E. Papaleo, P. Mereghetti, P. Fantucci, R. Grandori and L. De Gioia. Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: the myoglobin case. J Mol Graph Model. 2009, 27(8): 889-899.
    11. A. Bhattacherjee and P. Biswas. Statistical theory of protein sequence design by random mutation. J Phys Chem B. 2009,113(16): 5520-5527.
    12. Y. Zhang. Progress and challenges in protein structure prediction. Curr Opin Struct Biol . 2008,18(3): 342-348.
    13. P. S. Kim and R. L. Baldwin. Intermediates in the folding reactions of small proteins. Annu Rev Biochem. 1990, 59: 631-660.
    14. D. B. Wetlaufer. Nucleation, rapid folding, and globular intrachain regions in proteins. Proc Natl Acad Sci U S A. 1973, 70(3): 697-701.
    15. K. A. Dill. Theory for the folding and stability of globular proteins. Biochemistry-Us. 1985,24(6): 1501-1509.
    16. D. Bashford, F. E. Cohen, M. Karplus, I. D. Kuntz and D. L. Weaver. Diffusion-collision model for the folding kinetics of myoglobin. Proteins. 1988, 4(3): 211-227.
    17. V. R. Agashe, M. C. Shastry and J. B. Udgaonkar. Initial hydrophobic collapse in the folding of barstar. Nature. 1995, 377(6551): 754-757.
    18. A. R. Fersht. Nucleation mechanisms in protein folding. Curr Opin Struct Biol. 1997, 7(1): 3-9.
    19. M. Cieplak, S. Filipek, H. Janovjak and K. A. Krzysko. Pulling single bacteriorhodopsin out of a membrane: comparison of simulation and experiment. Biochim Biophys Acta. 2006, 1758(4): 537-544.
    20. M. Karplus and D. L. Weaver. Protein folding dynamics: the diffusion-collision model and experimental data. Protein Sci. 1994,3(4): 650-668.
    21. V. Daggett and A. Fersht. The present view of the mechanism of protein folding. Nat Rev Mol Cell Biol. 2003,4(6): 497-502.
    22. S. A. Islam, M. Karplus and D. L. Weaver. Application of the diffusion-collision model to the folding of three-helix bundle proteins. J Mol Biol. 2002, 318(1): 199-215.
    23. R. L. Baldwin. How does protein folding get started? Trends Biochem Sci. 1989, 14 (7): 291-294..
    24. M. Karplus and A. Sali. Theoretical studies of protein folding and unfolding. Curr Opin Struct Biol. 1995,5(1): 58-73.
    25. R. J. Ellis and S. M. van der Vies. Molecular chaperones. Annu Rev Biochem. 1991, 60: 321-347.
    26. J. A. McCammon, B. R. Gelin and M. Karplus. Dynamics of folded proteins. Nature. 1977, 267(5612): 585-590.
    27. B. Prathab, V. Subramanian and T. M. Aminabhavi. Molecular dynamics simulations to investigate polymer-polymer and polymer-metal oxide interactions. Polymer. 2007, 48: 409-416.
    28. R. C. Picu and A. Rakshit. Dynamics of free chains in polymer nanocomposites. J Chem Phys. 2007, 126(14): 144909.
    29. W. Q. Lu and J. D. Ding. Dynamic monte carlo simulation of polymerization of amphiphilic macromers in a selective solvent and associated chemical gelation. Macromolecules. 2006, 39: 7433-7440.
    30. S. Ji and J. Ding. Nonequilibrium monte carlo simulation of lattice block copolymer chainssubject to oscillatory shear flow. J Chem Phys. 2005, 122(16): 164901.
    31. Y. Duan and P. A. Kollman. Computational protein foldingfrom lattice to all-atom.IBM Syst J. 2001, 40(2): 297-309.
    32. S. H. Northrup, M. R. Pear, J. A. McCammon and M. Karplus. Molecular dynamics of ferrocytochrome c. Nature. 1980, 286(5770): 304-305.
    33. W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell , and P. A. Kollman. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. Journal of the American Chemical Society. 1995, 117 (19): 5179-5197.
    34. R. E. B. Bernard R. Brooks, Barry D. Olafson, David J. States, S. Swaminathan, Martin Karplus,. CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. Journal of Computational Chemistry. 1983, 4 (2): 187-217.
    35. R. D. C. I. Matthew Clark, Nicole Van Opdenbosch. Validation of the general purpose tripos 5.2 force field. Journal of Computational Chemistry. 1989, 10 (8): 982-1012.
    36. W. R. P. Scott, P. H. Hunenberger, I. G. Tironi, A. E. Mark, S. R. Billeter, J. Fennen, A. E. Torda, T. Huber, P. Kruger , and W. F. van Gunsteren. The GROMOS Biomolecular Simulation Program Package. The Journal of Physical Chemistry A. 1999, 103 (19): 3596-3607.
    37. T. Schlick. Time-trimming tricks for dynamic simulations: splitting force updates to reduce computational work. Structure. 2001, 9(4): R45-R53.
    38. Y. Levy and O. M. Becker. Conformational polymorphism of wild-type and mutant prion proteins: energy landscape analysis. Proteins. 2002, 47(4): 458-468.
    39. Y. Sugita, and Y. Okamoto. Replica-exchange molecular dynamics method for protein folding. Chemical Physics Letters. 1999, 314 (1-2): 141-151.
    40. X. Wu, and S. Wang. Self-Guided Molecular Dynamics Simulation for Efficient Conformational Search. The Journal of Physical Chemistry B. 1998, 102 (37): 7238-7250.
    41. J. Schlitter, M. Engels and P. Kruger. Targeted molecular dynamics: a new approach for searching pathways of conformational transitions. J Mol Graph. 1994, 12(2): 84-89.
    42. W. Wriggers and K. Schulten. Investigating a back door mechanism of actin phosphate release by steered molecular dynamics. Proteins. 1999, 35(2): 262-273.
    43. E. Alm and D. Baker. Prediction of protein-folding mechanisms from free-energy landscapesderived from native structures. Proc Natl Acad Sci U S A. 1999, 96(20): 11305-11310.
    44. A. Sikorski and J. Skolnick. Monte carlo simulation of equilibrium globular protein folding: alpha-helical bundles with long loops. Proc Natl Acad Sci U S A. 1989, 86(8): 2668-2672.
    45. E. Alm and D. Baker. Matching theory and experiment in protein folding. Curr Opin Struct Biol. 1999, 9(2): 189-196.
    46. D. E. Kim, H. Gu and D. Baker. The sequences of small proteins are not extensively optimized for rapid folding by natural selection. Proc. Natl Acad. Sci. USA. 1998,1(95): 4982-4986.
    47. D. S. Riddle, J. V. Santiago, S. T. Bray-Hall, N. Doshi, V. P. Grantcharova, Q. Yi and D. Baker. Functional rapidly folding proteins from simplified amino acid sequences. Nat Struct Biol. 1997, 4(10): 805-809.
    48. D. Perl, C. Welker, T. Schindler, K. Schroder, M. A. Marahiel, R. Jaenicke and F. X. Schmid. Conservation of rapid two-state folding in mesophilic, thermophilic and hyperthermophilic cold shock proteins. Nat Struct Biol. 1998, 5(3): 229-235.
    49. V. I. Abkevich, A. M. Gutin and E. I. Shakhnovich. Specific nucleus as the transition state for protein folding: evidence from the lattice model. Biochemistry-Us. 1994, 33(33): 10026-10036.
    50. C. Micheletti, J. R. Banavar, A. Maritan and F. Seno. Protein structures and optimal folding from a geometrical variational principle. Phys. Rev. Lett. 1999,3(82):3372-3375..
    51. J. N. Onuchic, H. Nymeyer, A. E. Garcia, J. Chahine and N. D. Socci. The energy landscape theory of protein folding: insights into folding mechanisms and scenarios. Adv Protein Chem. 2000, 53: 87-152.
    52. J. E. Shea, J. N. Onuchic and C. R. Brooks. Exploring the origins of topological frustration: design of a minimally frustrated model of fragment b of protein a. Proc Natl Acad Sci U S A. 1999, 96(22): 12512-12517.
    53. M. Faloutsos, P. Faloutsos and C. Faloutsos. On power-law relationships of the internet topology. Comput. Common. Rev. 1999, 29(251).
    54. D. A. Fell and A. Wagner. The small world of metabolism. Nat Biotechnol. 2000, 18(11): 1121-1122.
    55. B. Vogelstein, D. Lane and A. J. Levine. Surfing the p53 network.. Nature. 2000,408(6810): 307-310.
    56. R. J. Williams, E. L. Berlow, J. A. Dunne, A. L. Barabasi and N. D. Martinez. Two degrees ofseparation in complex food webs. Proc Natl Acad Sci U S A. 2002, 99(20): 12913-12916.
    57. J. M. Montoya and R. V. Sol. Small world patterns in food webs. J Theor Biol . 2002, 214(3): 405-412.
    58. R. Albert, H. Jeong and A. -L. Babarasi. The diameter of the world-wide web. Nature. 1999, 130(401).
    59. H. Jeong, S. P. Mason, A. L. Barabasi and Z. N. Oltvai. Lethality and centrality in protein networks. Nature. 2001, 411(6833): 41-42.
    60. M. E. Newman, D. J. Watts and S. H. Strogatz. Random graph models of social networks. Proc Natl Acad Sci U S A. 2002, 99(Suppl 1): 2566-2572.
    61. M. E. Newman. Properties of highly clustered networks. Phys Rev E Stat Nonlin Soft Matter Phys. 2003, 68(2 Pt 2): 26121.
    62. D. J. Watts, P. S. Dodds and M. E. Newman. Identity and search in social networks. Science. 2002, 296(5571): 1302-1305.
    63. R. Albert, and A.-L. Barabai. Statistical mechanics of complex networks. Reviews of Modern Physics. 2002, 74 (1): 47.s
    64. i M. Faloutsos, P. Faloutsos , and C. Faloutsos, in Proceedings of the conference on Applications, technologies, architectures, and protocols for computer communication (ACM, Cambridge, Massachusetts, United States, 1999).
    65. L. A. Amaral, A. Scala, M. Barthelemy and H. E. Stanley. Classes of small-world networks. Proc Natl Acad Sci U S A. 2000, 97(21): 11149-11152.
    66. M. E. Newman. Scientific collaboration networks. I. Network construction and fundamental results. Phys Rev E Stat Nonlin Soft Matter Phys. 2001, 64(1 Pt 2): 16131.
    67. F. Liljeros, C. R. Edling, L. A. Amaral, H. E. Stanley and Y. Aberg. The web of human sexual contacts. Nature. 2001, 411(6840): 907-908.
    68. H. Jeong, S. P. Mason, A. L. Barabasi and Z. N. Oltvai. Lethality and centrality in protein networks. Nature. 2001, 411(6833): 41-42.
    69. K. I. Goh, E. Oh, B. Kahng and D. Kim. Betweenness centrality correlation in social networks. Phys Rev E Stat Nonlin Soft Matter Phys. 2003, 67(1 Pt 2): 17101.
    70. M. Girvan and M. E. Newman. Community structure in social and biological networks. Proc Natl Acad Sci U S A. 2002, 99(12): 7821-7826.
    71. K. Borner, J. T. Maru and R. L. Goldstone. The simultaneous evolution of author and paper networks. Proc Natl Acad Sci U S A. 2004, 101(Suppl 1): 5266-5273.
    72. M. E. Newman. Scientific collaboration networks. Ii. Shortest paths, weighted networks, and centrality. Phys Rev E Stat Nonlin Soft Matter Phys. 2001, 64(1 Pt 2): 16132.
    73. M. Vendruscolo, N. V. Dokholyan, E. Paci and M. Karplus. Small-world view of the amino acids that play a key role in protein folding. Phys Rev E Stat Nonlin Soft Matter Phys. 2002, 65(6 Pt 1): 61910.
    74. N. V. Dokholyan, L. Li, F. Ding and E. I. Shakhnovich. Topological determinants of protein folding. Proc Natl Acad Sci U S A. 2002, 99(13): 8637-8641.
    75. A. R. Atilgan, P. Akan and C. Baysal. Small-world communication of residues and significance for protein dynamics. Biophys J. 2004, 86(1 Pt 1): 85-91.
    76. G. Amitai, A. Shemesh, E. Sitbon, M. Shklar, D. Netanely, I. Venger and S. Pietrokovski. Network analysis of protein structures identifies functional residues. J Mol Biol. 2004, 344(4): 1135-1146.
    77. D. J. Jacobs, A. J. Rader, L. A. Kuhn, and M. F. Thorpe. Protein flexibility predictions using graph theory. Proteins-Structure Function and Genetics. 2001, 44 (2): 150-165.
    78. H. W. Hethcote. The mathematics of infectious diseases. SIAM Review. 2000, 42: 599-653
    79. C. Moore and M. E. Newman. Epidemics and percolation in small-world networks. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000, 61(5 Pt B): 5678-5682.
    80. R. Pastor-Satorras and A. Vespignani. Epidemic spreading in scale-free networks. Phys Rev Lett, 2001, 86(14): 3200-3203.
    81. M. Barthelemy, A. Barrat, R. Pastor-Satorras and A. Vespignani. Dynamical patterns of epidemic outbreaks in complex heterogeneous networks. J Theor Biol. 2005, 235(2): 275-288.
    82. R. Pastor-Satorras and A. Vespignani. Immunization of complex networks. Phys Rev E Stat Nonlin Soft Matter Phys. 2002, 65(3 Pt 2A): 36104.
    83. R. Cohen, S. Havlin and D. ben-Avraham. Efficient immunization of populations and computers. Phys. Rev. Lett. 2003, 91:247901.
    84. M. Kretzschmar, Y. T. H. P. van Duynhoven and A. J. Severijnen. Modeling prevention strategies for gonorrhea and chlamydia using stochastic network simulations. Am. J. Epidemiol. 1996, 114: 306-317.
    85. J. Muller, B. Schonfisch and M. Kirkilionis. Ring vaccination. J Math Biol. 2000, 41(2): 143-171.
    86. H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A. L. Barabasi. The large-scale organization of metabolic networks. Nature. 2000, 407 (6804): 651-654.
    87. D. A. Fell and A. Wagner. The small world of metabolism. Nat Biotechnol. 2000, 18(11): 1121-1122.
    88. J. Stelling, S. Klamt, K. Bettenbrock, S. Schuster and E. D. Gilles. Metabolic network structure determines key aspects of functionality and regulation. Nature. 2002, 420(6912): 190-193.
    89. T. Ito, T. Chiba, R. Ozawa, M. Yoshida, M. Hattori and Y. Sakaki. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci U S A, 2001, 98(8): 4569-4574.
    90. I. Farkas, H. Jeong, T. Vicsek, A. L. Barabasi, and Z. N. Oltvai. The topology of the transcription regulatory network in the yeast, Saccharomyces cerevisiae. Physica a-Statistical Mechanics and Its Applications. 2003, 318 (3-4): 601-612.
    91. J. H. Steele. Community Food Webs - Data and Theory - Cohen,Je, Briand,F, Newman,Cm. Science. 1991, 251 (4994): 686-687.
    92. D. Baird, and R. E. Ulanowicz. The Seasonal Dynamics of the Chesapeake Bay Ecosystem. Ecological Monographs. 1989, 59 (4): 329-364.
    93. J. M. Montoya and R. V. Sol. Small world patterns in food webs. J Theor Biol. 2002,214(3): 405-412.
    94. J. Camacho, R. Guimera and A. L. Nunes. Robust patterns in food web structure. Phys Rev Lett. 2002, 88(22): 228102.
    95. J. A. Dunne, R. J. Williams and N. D. Martinez. Food-web structure and network theory: the role of connectance and size. Proc Natl Acad Sci U S A. 2002, 99(20): 12917-12922.
    96. P. Jordano, J. Bascompte, and J. M. Olesen. Invariant properties in coevolutionary networks of plant-animal interactions. Ecology Letters. 2003, 6 (1): 69-81.
    97. J. G. White, E. Southgate, J. N. Thomson, and S. Brenner. The Structure of the Nervous-System of the Nematode Caenorhabditis-Elegans. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences. 1986, 314 (1165): 1-340.
    98. O. Sporns. Networks analysis, complexity, and brain function. Complex. 2002, 8 (1): 56-60.
    99. J. Li, J. Wang and W. Wang. Identifying folding nucleus based on residue contact networks ofproteins. Proteins. 2008, 71(4): 1899-1907.
    100. L H. Greene and V A. Higman, Uncovering network systems within protein structures. J Mol Biol, 2003, 334(4): 781-791.
    101. S. Kundu. Amino acids network within protein. Physica A, 2005, 346(1-2): 104-109.
    102. G. Bagler and S. Sinha. Assortative mixing in protein contact networks and protein folding kinetics. Bioinformatics. 2007, 23(14): 1760-1767.
    103. M. E. Newman. Assortative mixing in networks. Phys Rev Lett: 2002, 89(20): 208701.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700