氧化物陶瓷用Ag-CuO基钎料及工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陶瓷材料表现出许多良好的高温性能,并能在恶劣条件下保持良好的环境稳定性。然而,大型或复杂组件的使用受到加工成本的影响,这就需要制造小的元件,并将其连接在一起。在高温和氧化环境条件下,接头性能会受到很大的影响。最近,一种被称为反应空气钎焊(RAB)的新技术,在陶瓷连接方面显示了巨大潜力。与传统的活性金属钎焊不同,它采用的是一种高温下形成液相的氧化物-金属钎料,并且钎焊过程不需要真空或惰性气氛保护。
     本文采用Ag、CuO、Ti粉配制Ag-CuO系和Ag-CuO-Ti系粉末钎料,分别对氧化铝陶瓷和氧化锆陶瓷进行反应空气钎焊试验。通过DSC、铺展性能试验、金相分析、扫描电子显微镜、能谱分析、X射线衍射及四点弯曲试验,分别对钎料的熔化特征、铺展性能和接头的显微硬度、微观结构、界面物相组成、接头强度等进行了测定和分析。本文研究成果如下:
     1)在Ag-CuO系钎料中加入少量Ti,提高了钎料的铺展性能,当Ti加入量为0.5mol%时效果较好。采用RAB钎焊技术,当钎焊温度为1100℃,保温时间为10min时,Ag-8CuO-0.5Ti钎料的铺展性能、界面硬度过渡情况和接头强度等综合性能最好。
     2)钎焊过程中,钎料中各组分向陶瓷基体扩散,氧化铝陶瓷基体内的Al元素和氧化锆陶瓷中的Zr元素也向钎料内扩散和溶解。在Ag-CuO系钎料中添加少量的Ti,氧化铝陶瓷接头中黑色过渡层在界面处堆积减少,钎料大量渗入氧化铝陶瓷母材。
     3) Ag-CuO系钎料与氧化铝陶瓷发生界面反应,反应产物为CuAlO2和CuAl2O4,与氧化锆陶瓷未发生界面反应;Ag-CuO-Ti钎料与氧化铝陶瓷和氧化锆陶瓷均发生了界面反应,反应的产物分别为CuAl2O4、TiO2和ZrTiO4,TiO2。
     4)在试验范围内,Ag-CuO系钎料中CuO为8mol%时氧化铝和氧化锆钎焊接头的四点弯曲强度分别达到最大值206.11MPa、454.58MPa。Ag-8CuO中加入0.5mol%提高了接头强度。在1100℃保温10min,Ag-8CuO-0.5Ti钎料与氧化铝陶瓷和氧化锆陶瓷钎焊接头的四点弯曲强度最高,分别为212.36MPa、503.44MPa,约为陶瓷母材强度的66%、84%,陶瓷钎焊接头的断裂形式均为脆性断裂。
Ceramic materials exhibit many desirable high temperature performances and also provide environmental stability in harsh conditions. However, the applications of large or complex components is limited by the processing cost, and manufacturing smaller components and joining them together is a desire. The properties of joints will be greatly affected by high temperature and oxidation environment. A recently- developed technique for joining these components, referred to as reactive air brazing (RAB), has shown vast potential for these applications. Different from the traditional active metal brazing, RAB uses a liquid-phase oxide-metal melt at high temperature and the process does not require a vacuum or inert atmosphere.
     In this paper, the Ag-CuO system and the Ag-CuO-Ti system filler metals are prepared by Ag, CuO, Ti powder, and these filler metals are carried out with RAB on alumina and zirconia substrate respectively. The melting characteristics and spread abilities of the filler metals, microhardness, microstructure, interface phases composition and strength of the joints were measured or analyzed through different scanning calorimetry, spreading tests, optical microscopic structure inspection, SEM and energy spectrum analysis, X-ray diffraction analysis and four-point bending tests.
     The research results are as follows:
     1) Small amount of Ti adding to the Ag-CuO system filler metals improved the spreading properties of the filler metals, and the effect of adding 0.5mol%Ti is best. The comprehensive performance of spreading properties, interface microhardness transition and joint strength of Ag-8CuO-0.5Ti filler metal are best at 1100℃and holding 10min.
     2) In the process of brazing, the filler metal elments diffuses to the ceramic substrates. The Al element in alumina ceramic substrates and the Zr element in zirconia ceramic substrates also diffuse to the filler metals. Adding a small amount of Ti to Ag-CuO system filler metals, the black transition layer accumulation reduced in the interface of alumina ceramic, and a large number of brazes infiltrated alumina ceramic materials.
     3) The interfaces of Ag-CuO/Al2O3 occured interfacial reactions, the reaction products were CuAlO2 and CuAl2O4, but no interfacial reactions at the interface of the Ag-CuO/ZrO2. Both the interfaces of Ag-CuO-Ti/Al2O3 and Ag-CuO-Ti/ZrO2 occured interfacial reactions, reaction products were CuAl2O4, TiO2 and ZrTiO4, TiO2 respectively.
     4) In the test range, the four-point bending strength of alumina and zirconia were best at the Ag-8CuO of the Ag-CuO system filler metals, respectively reached 206.11MPa, 454.58MPa. Adding 0.5mol%Ti to Ag-8CuO increased the joint strength. The four-point bending strength of alu mina ceramic joints and zirconia ceramic joints brazed by Ag-8CuO-0.5Ti filler metal were the highest at 1100℃and holding for 10min, respectively reached 212.36MPa, 503.44MPa, about 66%, 84% of the ceramic materials strength, and the fracture mode of ceramic joints were brittle fracture.
引文
1曲远方.现代陶瓷材料及技术.上海:华东理工大学出版社, 2008
    2刘会杰,冯吉才.陶瓷与金属的连接方法及应用.焊接, 1999, 43 (6): 5~9
    3李卓然,顾伟,冯吉才.陶瓷与金属连接的研究现状.第十二次全国焊接学术会议论文集, 2008, (3): 55~60.
    4张学军.航空钎焊技术.北京:航空工业出版社, 2008
    5张玉龙,马建平.实用陶瓷材料手册.北京:化学工业出版社, 2006
    6辛格哈尔,肯德尔,韩敏芳,等.高温固体氧化物燃料电池.北京:科学出版社, 2007
    7吴爱萍,邹贵生,任家烈.先进结构陶瓷的发展及其钎焊连接技术的进展.材料科学与工程, 2002, (1): 104~106
    8张多太.粘接技术在炮射导弹上的应用.粘接. 1999, (l): 30~31
    9于克杰,焦良.粘接技术在飞机应急修理中的应用.粘接. 1999, (4): 39~40
    10陈康华,包崇玺.激光焊接条件下SiCw/606Al铝基复合材料界面反应研究.材料工程. 1999, (3): 38~44
    11王玲玲,丁毅,马立群.金属和陶瓷的钎焊技术及新发展.焊接技术, 2007, 36 (5): 1~3
    12任耀文.真空钎焊工艺.北京:机械工业出版社, 1993
    13方芳,陈铮,楼宏青,等.陶瓷部分瞬间液相连接的研究进展.材料科学与工程, 1999, (l): 70~74
    14邹家生,翟建广,初雅杰,等. Ti箔厚度对Si3N4/Ti/Cu/Ti/Si3N4部分瞬间液相连接界面结构及强度的影响.焊接学报, 2003, 24(6): 19~22
    15张启运,庄鸿寿.钎焊手册.北京:机械工业出版社, 2008
    16任家烈,吴爱萍,邹贵生.先进材料的连接.北京:机械工业出版社, 2006
    17邹贵生,任家烈,吴爱萍. Al及其合金作钎料或中间层连接陶瓷-金属.材料导报, 1999, 13(2): 16~18
    18张勇,何志勇,冯涤.金属与陶瓷连接用中间层材料.钢铁研究学报, 2007, 19(2): 1~4
    19朱定一,王永兰,金志浩.含Ti钎料与Al2O3界面反应的机理及热力学计算.兵器材料科学与工程, 1998, 21(2): 22~26
    20李子曦,秦明礼,曲选辉. Ag70-Cu28-Ti2活性钎料真空钎焊.真空电子技术. AlN-Cu的研究2008, (1): 40~44
    21刘岩,黄政仁,刘学建,等.活性钎焊法连接碳化硅陶瓷的连接强度和微观结构.无机材料学报, 2009, 24(2): 297~300
    22 W. B. Hanson, K. I. Ironside, J. A. Fernie. Active metal brazing of zirconia. Acta Mater., 2000, (48): 4673~4676
    23蒋成禹,吴铭方. Ti基钎料真空钎焊Ti-6Al-4V.焊接技术. 2002, (2): 19~20
    24高陇桥.当前陶瓷-金属封接及相关技术的新进展.真空电子技术. 2000, (4): 4~7
    25 O. Kozlova, R. Voytovych, M. F. Devismes. Wetting and brazing of stainless steels by copper-silver eutectic. Materials Science and Engineering, 2008, (495): 96~101
    26 K. M. Erskine. Brazing perovskite ceramics with silver/copper oxide braze alloys. Journal of Materials Science, 2002, (37): 1705~1709
    27 A. H. Elsawy, M. F. Fahmy. Brazing of Si3N4 ceramic to copper. Journal of Materials Processing Technology, 1998, (77): 226~272
    28张丽霞. SiO2陶瓷与TC4钛合金的钎焊研究.材料工程, 2008 (9): 13~16
    29 S. J. Li, Y. Zhou, H. P. Duan, et al. Joining of SiC ceramic to Ni-based superalloy with functionally gradient material fillers and a tungsten intermediate layer. Journal of Materials Science, 2003 , (38): 4065~4070
    30 Abhijit Kar, Sudipta Mandal, K. Venkateswarlu, Ajoy Kumar Ray. Characterization of interface of Al2O3-304 stainless steel braze joint. Materials Characterization, 2007, (58): 555~562
    31刘军红,孙康宁,尹衍升,等.双层陶瓷复合材料与金属在空气中的钎焊.焊接学报, 2001, 22(6): 33~36
    32刘军红.复相Al2O3基陶瓷/钢大气中直接钎焊连接界面的微观组织结构.焊接学报, 2003, 24(6): 26~28
    33李先芬,徐道荣,刘宁. Ti(C, N)基金属陶瓷与45号钢火焰钎焊试验研究.硬质合金, 2003, 20(2): 95~96
    34方洪渊,王洪彦,陆松涛,等. PTC陶瓷材料与铝钎焊技术的研究.焊接, 1995, (9): 4~7
    35董雪,赵秀娟,陈春焕,等.钎料成分对陶瓷/钎缝界面结合及组织的影响.新技术新工艺, 2007, (8): 79~82
    36 C. C. Schüler, A. Stuck, N. Beck. Direct silver bonding-an alternative for substrates in powersemiconductor packaging. Mater. Sci., 2000, (11): 389
    37 K. M. Erskine, A. M. Meier, S. M. Pilgrim. Brazing perovskite ceramics with silver/copper oxide braze alloys. Mater. Sci., 2002, (37): 1705
    38 E.J. Pavlina, A. M. Meier, P. Monteleone, et al. Development of silver-metal oxide reactive air braze alloy for electroding PZT ceramics. J. Mater Sci., 2007, (42): 705~713
    39 K. S. Weil, J. Y. Kim, J. S. Hardy. Reactive air brazing: a novel method of sealing SOFCs and other solid-state electrochemical devices. Electrochemical and Solid-State Letters, 2005, 8 (2): A133~A136
    40 K. S. Weil, J. Y. Kim, J. S. Hardy. Interfatial analysis of (La0.6Sr0.4) (Co0.2Fe0.8)O3- substrates wetted by Ag-CuO. Joumal of Materals Seienee. 2005, (40): 2341~2348
    41 K. S. Weil, J. Y. Kim, J. S. Hardy, The effect of CuO content on the wetting behavior and mechanical properties of a Ag-CuO braze for ceramic joining. Joumal of Materals Seienee. 2005, 88 (9): 2521~2527
    42 J. T. Darsell, K. S. Weil. Effect of Pd additions on the invariant reactions in the Ag-CuOx system. JPEDAV, 2006 (27): 92~101
    43 J. Y. Kim, J. S. Hardy, K. S. Weil. Ag–Al based air braze for high temperature electrochemical devices. International Journal of Hydrogen Energy, 2007, (32): 3754~3762.
    44 J. Y. Kim, J. S. Hardy, K. S. Weil. Dual-atmosphere tolerance of Ag–CuO-based air braze. International Journal of Hydrogen Energy, 2007, (32): 3655~3663
    45 K. S. Weil, J. Y. Kim, J. S. Hardy. The effect of TiO2 on the wetting behavior of silver-copper oxide braze filler metals. Scripta Materialia, 2006, (54): 1071~1075
    46中华人民共和国机械电子工业部. GB 1136-89钎料铺展性及填缝性试验方法.北京:中国标准出版社, 1989
    47中国国家标准化管理委员会. GB/T656922006精细陶瓷弯曲强度实验方法.北京:中国标准出版社, 2006
    48赵越等.钎焊技术及应用.北京:化学工业出版社, 2004
    49 Z. B. Shao, K. R. Liu, L. Q. Liu, et al. Equilibrium phase diagrams in the systems PbO–Ag and CuO–Ag. J. Am. Ceram. Soc., 1993, 76 (10): 2663~2664
    50 H. Nishiura, R. O. Suzuki, K. Ono. Experimental phase diagram in the Ag–Cu2O–CuO system. J. Am. Ceram. Soc., 1998, 81(8): 2181~2187
    51 J. T. Darsell, K. S. Weil. Experimental determination of phase equilibria in the silver–copper oxide system at high temperature. Scripta Materialia, 2007, (56): 1111~1114
    52周玉.材料分析方法.机械工业出版社, 2004
    53中国机械工程学会焊接学会.焊接手册(第一卷).北京:机械工业出版社, 1992
    54方洪渊,冯吉才.材料连接过程中的界面行为.哈尔滨:哈尔滨工业大学出版社, 2005
    55 J. W. Cahn. Critical point wetting. Chem. Phys., 1977, (66): 36~67.
    56 L. Esposito, A. Bellosi, S. Guicciardi, et al. Solid state bonding of A12O3 with Cu, Ni and Fe:characteristics and properties. J. Mater. Sci., 1998, (33): 1827~1836.
    57张延东,李慧远,张利民,等. TiO2-ZrO2复合氧化物的制备与表征.硅酸盐通报, 2008, 27(5): 894~898
    58 Y. Nakao, K. Nishimoto, K. Saida. Improvement in bonding strength of Si3N3-Mo joint by controlling reaetion layer thick-ness. Transaetions of the Japan Welding Soeiety, 1990, 21(2): 63
    59王申,李淑华,谭惠民.陶瓷/金属的钎焊.热加工工艺, 2002, (6): 52~53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700