镁二次电池正极材料制备及电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
跟二次锂电池比起来,二次镁电池具有价格低廉、安全性高的优点,是一种不错的高能量密度电池。这方面的研究主要集中于可实现镁可逆沉积的非水电解液以及可嵌入Mg2+的正极材料。
     在本文章中主要通过高温固相法和熔盐法制备并研究了聚阴离子型MgxMySiO4(M=Fe、Ni,x+y=2)作为二次镁电池的新型正极材料,并对硅酸铁镁材料做了较深入的研究,具体涉及到合成温度(800℃、900℃以及1000℃)、熔盐比例(KCl:MgO=2:1、4:1、6:1和8:1)以及粘结剂(PVDF、PTFE及SBR)对材料电化学性能的影响。另外,本文章通过采用简单的熔盐方法,对硅酸铁镁材料进行了过渡金属锰的掺杂,在KCl熔盐介质中800℃、900℃以及1000℃不同烧结温度下制备了可充镁电池正极材料Mg0.75Mn0.15Fe1.1SiO4。
     将上述所制备材料作为活性物质制作成极片,以0.25 mol/L Mg(AlCl2EtBu)2/THF为电解液,镁条为对电极,组装成CR2016扣式电池。并在C/10下进行充放电实验,发现在900oC下、熔盐比例为4:1时制备的硅酸铁镁由于材料晶型、颗粒粒径比较理想,电化学性能较好。而用PVDF作为粘结剂的上述材料,由于其橡胶性较好,相对于其他所研究的粘结剂而言有比较好的的电化学循环稳定性。
Magnesium batteries may be a candidate of high energy density batteries comparable with lithium batteries due to cheaper raw material costs and less danger of magnesium than lithium. Researches about rechargeable magnesium batteries focus on non-aqueous electrolyte systems, from which magnesium can be reversibly deposited and dissolved, and cathode materials that can reversibly intercalate and de-intercalate magnesium ions.
     In this work, we have prepared novel cathode materials MgxMySiO(4M=Fe、Ni,x+y=2) for rechargeable magnesium battery by high temperature solid-state reaction and molten salt method. The heating temperature (800℃, 900℃and 1000℃), ratio of molten salt (KCl: MgO= 2:1, 4:1, 6:1 and 8:1) as well as binders (PVDF, PTFE and SBR) on the material structure, morphlogy and electrochemical performance have been studied detailedly. Moreover, Mg0.75Mn0.15Fe1.1SiO4 was prepared by doping Mn into MgFeSiO4 using the molten salt method and electrochemical performance was further studied.
     Electrochemical performance of the materials was tested via CR2016 coin cells with magnesium ribbon counter electrode, 0.25 mol/L Mg(AlCl2EtBu)2/THF electrolyte. At a rate of C/10, the cathode material prepared under the temperature of 900℃,and at the ratio of molten salt at 4:1 exhibited good electrochemical performance due to fine crystallite structure and small size. Moreover, the electrode using PVDF as binder had good cycling stability due to the wide expansion thickness.
引文
[1] Aurbach D., Lu Z., Schechter A., et. al., Prototype system for rechargeable magnesium batteries [J]. Nature, 2000, 407: 724-727.
    [2] Besenhard, J.O., Winter M., Advances in battery technology: Rechargeable magnesium batteries and novel negative-electrode materials for lithium ion batteries [J]. Chemphyschem, 2002, 3:155-159.
    [3]袁华堂,吴锋,武绪丽.可充镁电池的研究和发展趋势[J].电池,2002,32(1):14-17.
    [4]彭成红,朱敏.镁电池研究进展[J].电池,2003,33(2):121-123.
    [5] Song G., Atrens A., Wu X.,et. al., Corrosion behavior of AZ21, AZ501 and AZ91 in sodium chloride [J]. Corrosion Sci, 1998, 40 (10):1769-1791.
    [6]袁华堂,刘秀生,曹建胜.二次镁电池有机电解液的研究进展[J].电池,2004,34(2):138-140.
    [7] Jiao L.F., Yuan H.T., Mg intercalation Properties into open-ended vanadium oxide nanotubes [J]. Electrochem. Commun., 2005, 7:431-436.
    [8]焦丽芳,袁华堂.二次镁电池有机电解液Mg(SnPh3)2的研究[J].化学通报,2005(9):714-717.
    [9] Lu Z., Schechter A., Mewhkovich M D., et. al., On the electrochemical behavior of magnesium electrodes in polar aprotic electrolyte solution [J]. Electrochem. Soc., 1999, 466: 203~217.
    [10]李瑛,宋光铃,林海潮,等.金属镁在腐蚀介质中界面结构特征与负差数效应关系研究[J].腐蚀科学与防护技术,1999,11 (4):202-208.
    [11] Aurbach D., Gofer Y., Lu Z., A short review on the comparison between Li battery systems and rechargeable magnesium battery technology [J].J. Power Sources,2001,97-98: 269-273.
    [12] Aurbach D., Msohkovich M., Schechter A., et. a1.,The study of magnesium deposition and dissolution processes in ethereal Grignard salt solutions using simultaneous EQCM-EIS and in situ FTIR spectroscopy measurements [J].Electrochem Solid-State Lett., 1999, 3 (1): 31-34.
    [13] Delmas C., in:Pistoia G (ED.). Lithium batteries, new materials, developments and perspectives [M].Amsterdam: Elseviert, 1994: 457.
    [14] Murphy D.W., Christian P.A., Di-Salvo F.J., Waszczak J.V., Lithium incorporation by vanadium pentoxide [J], Inorg. Chem., 1979 (18): 2800-2803.
    [15] Le D.B., Passerini S., Coustier F., Intercalation of Polyvalent Cations into V2O5 Aerogels [J], Chem. Mater., 1998 (10): 682-684.
    [16] Pereira-Ramos J.P., Messina R., Perichon J., Intercalation of Polyvalent Cations into V2O5 Aerogels [J], J. Electroanal. Chem., 1987, 218: 241-249
    [17] Novak P., Scheifele W., Joho F., Haas O., Electrochemical insertion of magnesium into hydrated vanadium bronzes [J], J. Electrochem. Soc. 1995, 142: 2544-2550.
    [18] Novak P., Scheifele W., Haas O., Magnesium insertion batteries-an alternative to lithium [J], J.Power Sources, 1995, 54: 479-482.
    [19] Spahr M.E., Novák P., Haas O., Nesper R., Electrochemical insertion of lithium, sodium, and magnesium in molybdenum (VI) oxide [J]. J. Power Sources, 1995, 54: 346-351
    [20] Winter M., Besenhard J.O., Spahr M.E., Novak P., Insertion electrode materials for rechargeable lithium batteries [J], Adv. Mater., 1998, 10: 725-763.
    [21] Yuan H.T., Jiao L.F., Cao J.S., et. al., Development of magnesium insertion positive electrode for rechargeable magnesium Batteries [J]. J.Mater.Sci. Technol.2004, 20 (1):41-45.
    [22] Stiefel E. I., Matsumoto K., Eds.Transition metal sulfur chemistry [J].ACS Symposium Series,Washington, DC,1996, 653.
    [23] Stiefe1 E. I., Kirk-Othmer, Encyclopedia of chemical technology (4thed) [M].NewYork:Wiley,1995.
    [24] Bryant R. D., Kloeke F. V. O., Laishley E. J., Regulation of the periplasmic [Fe] hydrogenase by ferrous iorn in Desulfovibrio vulgaris Hildenbomugh [J]. J.App1.Environ. Microbiol., 1993,59:491.
    [25] Chevrel R., Sergent M., Prigent J., Surdemouvelles phases sulfurees ternaries du molybdene [J]. J.Solid State Chem., 1971, 3: 515-519.
    [26] Lerf A., Schollhorn R., Solvation reactions of layered sulfides AxTiS2, AxNbS2 and AxTaS2 [J]. Inorg.Chem., 1977, 16: 2950-2956.
    [27] Lightfoot P., Krok F., Nowinski J.L., Bruce P.G., Structure of the cubic intercalate MgxTiS2 [J]. J. Mater. Chem., 1992, 2 (1): 139-140.
    [28] Bruce P. G., Krok F., Lightfoot P., Nowinski J.L., Gibson V.C., Multivalent cation intercalation [J]. Solid State Ionics, 1992, 53/54/55/56: 351-355.
    [29] Padhi A. K., Nanjundaswamy K. S., Goodenough J. B., Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries [J]. J. Electrochem Soc., 1997, 144 (4): 1188-1194.
    [30] Huang H. , Yin S. C. , Nazar L. F., Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates [J]. Electrochem. Solid State Lett., 2001 , 4 (10) : A170 -A172.
    [31] Yamada A. , Hosoya M. , Chung S. C. , et. al., Olivine-type cathodes: Achievements and problems [J]. J . Power Sources, 2003, 119 (121) : 232 -238.
    [32] Anna S., Andersson, John O. Thomas, et. al., Thermal Stability of LiFePO4-Based Cathodes Electrochem. Solid State Lett. , 2000, 3 (2): 66 -68.
    [33] Takahashi M. , Tobishima S., Takei K., et. al., Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries [J]. Solid State Ionics, 2002, 148 (3/4) : 283 -289.
    [34] Yamada A. , Chung S. C., Hinokuma K. J., Optimized LiFePO4 for Lithium Battery Cathodes [J]. Electrochem. Soc., 2001, 148 (3) : A224 -A229.
    [35] Iltchev N., Chen Y., Okada S., et. al., LiFePO4 storage at room and elevated temperatures [J]. J. Power Sources, 2003, 119/121: 749 -754.
    [36] Shackle, Dale R., Alkali metal ion battery electrode material, American Patent, US 5721070.
    [37] Armand. Lithium insertion electrode materials based on orthosilicate derivatives, American Patent, US 6085015.
    [38] Nyten A., Abouimrane A., Armand M., Gustafsson T., Thomas J.O., Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material [J], Electrochem. Commun., 2005, 7: 156-160.
    [39] Dominko R., Bele M., Gaberscek M., et al., Structure and electrochemical performance of Li2MnSiO4and Li2FeSiO4 as potential Li-battery cathode materials [J], Electrochem. Commun., 2006, 8: 217-222.
    [40] NuLi Y.N., Yang J., Wang J.L., et. al., Electrochemical Intercalation of Mg2+ in Magnesium Manganese Silicate and Its Application as High-Energy Rechargeable Magnesium Battery Cathode [J], J. Phys. Chem. C., 2009, 113:12594-12597.
    [41] Feng Z.Z., Yang J., NuLi Y.N., et al. Sol-gel Synthesis of Mg1.03Mn0.97SiO4 and its electrochemical intercalation behavior [J]. J. Power Sources, 2008, 184: 604-609.
    [42] Gregory T.D., Hofman R.J., and Winterton. R.C., Nonaqueous Electrochemistry of Magnesium Applications to EnergyStorage. J. Electrochem. Soc. 1990, 137 (3): 775- 780.
    [43] Nelson J.M., Evans W. V., The electromotive force in developed in cells containing nonaqueous liquids [J], J. Am Chem Soc., 1917, 39: 82-83.
    [44] Aurbach D., Msohkovich M., Schechter A., eta1., The study of magnesium deposition and dissolution processes in ethereal Grignard salt solutions using simultaneous EQCM-EIS and in situ FTIR spectroscopy measurements [J].Elcetrochem Solid-State Lett., 1999, 3 (1): 31-34.
    [45] Gregory T. D., Hoffman R. J., Winterton R. C., Development of an ambient secondary magnesium battery [J].J. Elcetrochem Soc., 1990, 137(3): 775-780.
    [46] Aurbach D., Suresh G.S., Levi E., Mitelman A., Mizrahi O., Chusid O., Brunelli M., Progress inrechargeable magnesium battery technology [J]. Adv. Mater. 2007, 19: 4260-4267.
    [47] Amir N., Vestfrid Y., Chusid O., Gofer Y., Aurbach D. Progress in nonaqueous magnesium electrochemistry [J]. J. Power Sources, 2007, 174(2): 1234-1240.
    [48]焦丽芳,袁华堂.二次镁电池有机电解液Mg(SnPh3)2的研究[J].化学通报, 2005, 9: 714-715.
    [49]冯真真,努丽燕娜,杨军,有机镁/THF电解液中镁电化学沉积的研究[J].电池工业,2007,12(4):235-240.
    [50] Mizrahi O., Amir N., Pollak E., Chusid O., Marks V., Gottlieb H., Larush L., Zinigrad E., Aurbach D., Electrolyte solutions with a wide electrochemical window for rechargeable magnesium batteries [J]. J. Electrochem. Soc., 2008, 155 (2): A103-A109.
    [51] Hussey C.L., Laher T.M., Electrochemical and Spectroscopic Stusdies of Colbalt in Molten Alumium Chloride-N-Butyl-pyridium Chloride [J], Inorg Chem., 1981, 112: 4201-4206.
    [52] Wilkes J.S., Levisky J.A., Wilson R.A., Hussey C.L., Althy-limidaxolium Chloroaluminate Melts:A New Class of Room Temperature Ionic Liquids for Electrochemistry Spectroscopy and Systhesis [J], lnarg.Chem.,1982, 21: 1263-1268.
    [53] Fuller J., Carlin R.T., Osteryaung R.A., Electrochemical Studies of and Chtominm Chloride Complexes in Basic Alumium Chloride-l-methyl-3-ethylirnidaxolium Chloride Room Temperature Molten Sa1ts [J], J. Electrochem. Soc., 1997, 144: 3881-3385.
    [54] Elaiwi A., Hitchcock P.B., Seddon K. R., Srinivasan N., Tan Y., Welton T., Zora J.A., Hydrogen bonding in imidazolium salts and its implications for ambient-temperature halogenoaluminate(III) ionic liquids [J], J. Chem. Soc., Dalton Transactions, 1995, 3467-471.
    [55] Abbott, A.P., Capper, G., Davies, D.L., Munro, H.L., Rasheed, R.K., Tambyrajah, V., Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains [J], Chem.Comm., 2001,19: 2010-2011.
    [56] Bonhote P., Dias A.P., Papageorgiou, N., Kalyanasundaram, K., Gratzel, M., Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts [J]. Inorg. Chem., 1996, 35: 1168-1178.
    [57] Sakaebe H., Matsumoto H., N-Methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) imide (PP13-TFSI) -novel electrolyte base for Li battery [J]. Electrochem. Commun., 2003, 5: 594-598.
    [58] NuLi Y.N., Yang J.,and Wang J.L., et. al., Electrochemical Magnesium Deposition and Dissolution with High Efficiency in Ionic Liquid [J]. Electrochem. Solid-State Lett. , 2005, 8 (11): 166-169.
    [59] NuLi Y.N. Yang J. and Wu R., Reversible deposition and dissolution of magnesium from BMIMBF4 ionic liquid [J]. Electrochem. Commun. , 2005, 7 (11): 1105-1110.
    [60] Girish G.,Munichandraiah N., Revesribility of Mg/Mg2+ couple in a gel polymer electrolyte [J]. Electrochim. Acta, 1999, 44: 2663-2666.
    [61] Girish G.,Munichandraiah N., Poly (methylmethacrylate) - magnesium triflate gel polymer electrolytefor solid state magnesium battery application [J], Electrochim. Acta, 2002, 47:1013-1022.
    [62] Girish G.,Munichandraiah N., Solid state rechargeable magnesium cell with poly(vinylinedefluoride )- magnesium triflate gel polymer electrolyte [J]. J.Power source, 2001, 102:46-54.
    [63] Nobuko Y., Yakushiji S., Ionic conductance behavior of polymeric electrolytes containing magnesium salts and their application to rechargeable battery [J]. Solid State Ionics, 2002, 152-153: 259-266.
    [64] Nobuko Y., Yakushiji S., rechargeable magnesium batteries with gel polymer electrolyte containing magnesium salts, Electrochim. Acta, 2003, 48: 2317-2322.
    [65] Naoaki K., Shinichi k., Preparation of todorokite-type manganese-based oxide and its application to lithium and magnesium rechargeable battery cathode [J]. J.Power source, 2001, 97-98: 515-517.
    [66] Masayuki M., Takahiro S., Ionic conductance behavior of gel polymer electrolyte containing ionic liquid mixed with magnesium salts [J]. J.Power Sources, 2005, 139: 351-355.
    [67] Ji-Sun O., Jang-Myoun K., Preparation and characterization of gel polymer electrolytes for solid state magnesium battery [J]. Electrochim. Acta, 2004, 50: 903-906.
    [68] Kisza A., Kazmierczak J., Brressen B., Haarberg G.M., Tunold R., Kinetics and mechanism of the magnesium electrode reaction in molten magnesium chloride [J]. J. Appl. Electrochem., 1995, 25: 940-946.
    [69] Kisza A., Kazmierczak J., Borressen B., Haarberg G.M., Tunold R., Kinetics and mechanism of the magnesium electrode reaction in molten MgCl2-NaCl binary mixtures [J]. J. Electrochem. Soc., 1997, 144: 1646-1651.
    [70] Martrnez A.M., Borresen B., Haarberg G.M., Castrillejo Y., Tunold R. Electrodeposition of magnesium from CaCl2-NaCl-KCl-MgCl2 Melts [J]. J. Electrochem. Soc., 2004, 151: C508-C513.
    [71] Borressen B., Haarberg G.M., Tunold R., Electrodeposition of magnesium from halide melts -Charge transfer and diffusion kinetics [J], Electrochim. Acta, 1997, 42: 1613-1622.
    [72] Castrillejo Y., Martnez A.M., Pardo R., Haarberg G.M., Electrochemical behaviour of magnesium ions in the equimolar CaCl2-NaCl mixture at 550°C [J], Electrochim. Acta, 1997, 42: 1869-1876.
    [73] Gofer Y., Chusid O., Gizbar H., Viestfrid Y., Gottlieb H.E., Marks V., Aurbach D. Improved Electrolyte Solutions for Rechargeable Magnesium Batteries [J]. Electrochem. Solid-State Lett., 2006, 9(5): A257-A260.
    [74] Ravet N., Chouinard Y., Magnan J.F., Besner S., Gauthier M., Armand M., Electroactivity of naturaland synthetic triphylite [J], J. Power Sources, 2001, 97-98: 503-507.
    [75] Kim C.W., Lee M.H., Jeong W.T., Lee K.S., Synthesis of olivine LiFePO4 cathode materials by mechanical alloying using iron (III) raw material [J], J. Power Sources, 2005, 146(1-2): 534-538.
    [76] Takahashi M., Tobishima S., Takei K., Sakurai Y., Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries [J], J. Power Sources, 2001, 97-98: 508-511.
    [77]张立德,牟季美著.纳米材料和纳米结构[B],北京:科学出版社, 2002: p135.
    [78]游咏,匡加才.溶胶-凝胶法在材料制备中的研究进展[J],高科技纤维与应用, 2002, 27 (2): 12-15.
    [79]陈庆华,曹自平,孙俊赛,黄瑞安.溶胶-凝胶法在材料复合制备技术中的应用[J],有色金属, 2001, 53 (2): 71-75.
    [80] Hu Y., Doeff M.M., Kostecki R., Fiones R., Electrochemical performance of sol-gel synthesized LiFePO4 in lithium batteries [J], J. Electrochem. Soc., 2004, 151 (8): A1279-A1285.
    [81] Laudise R.A., In:Dryburgh P M ed. Advanced Crystal Growth [B], New York,London, Sydney, Tokyo: Prentice Hall, 1987, 267.
    [82] Yang S., Zavalij Y., Whittingham M.S., Hydrothermal synthesis of lithium iron phosphate cathodes [J], Electrochem. Commun., 2001, 148 (7): A747-A754.
    [83] Yang S., Zavalij Y., Whittingham M. S., Reactivity, stability and electrochemical behavior of lithium iron phosphates [J], Eletrochem. Commun., 2001, 3: 505-508.
    [84] Franger S., Cras F.L., Bourbon C., Rouault H., LiFePO4 synthesis routes for enhanced electrochemical performance [J], J. Electrochem. Solid-state Lett., 2002, 5 (10): A231-A233.
    [85]陈万兵.熔盐法合成镁铝尖晶石[硕士论文].武汉:武汉科技大学. 2007.
    [86]田洋.熔融盐法制备无机功能纳米材料[博士论文].济南:山东大学. 2007.
    [87] Levi M.D., Lancry E., Gizbar H. et. al., Kinetic and thermodynamic studies of Mg2+ and Li+ ion insertion into the Mo6S8 chevrel phase [J]. Electrochem. Soc., 2004, 151 (7): A1044- A1051.
    [88] Levi E., Mitelman A., Aurbach D., et. al., Structural mechanism of the phase transitions in the Mg-Cu-Mo6S8 system probed by ex situ synchrotron X-ray diffraction [J]. Chem. Mater., 2007, 19 (21): 5131-5142.
    [89] Aurbach D., Suresh G.S., Levi E., et. al., Progress in rechargeable magnesium battery technology [J]. Adv. Mater., 2007, 19 (23) : 4260-4267.
    [90] Mitelman A., Levi M.D., Lancry E., et. al., New cathode materials for rechargeable Mg batteries: Fast Mg ion transport and reversible copper extrusion in CuyMo6S8 compounds [J]. Chem. Commun., 2007, (41): 4212-4214.
    [91] Morozov M., Brinkmann C., Grodzicki M., et. al., octahedral cation partitioning in Mg, Fe2+-olivine. M?ssbauer spectroscopic study of synthetic (Mg0.5 Fe2+0.5)2SiO4 (Fa50) [J]. Hyperfine Interact. 2005, 166: 573-578.
    [92]吴字平,万春荣,姜长印等.锂离子二次电池[M].北京:化学工业出版社.2002.307.
    [93]郭炳煜,徐徽,王先友等.锂离子电池[M].湖南:中南大学出版社,2002.359.
    [94]方庆,成艳,谢守韫等.氢镍动力电池用正极粘结剂的研究[J].电源技术,2009,33 (2): 134-137.
    [95]刘伯文,耿海龙,王新东等.粘结剂对锂离子蓄电池性能的影响[J].电源技术,2005,29 (5): 297-300.
    [96]刘芳凌,韩绍昌,陈晗等.掺杂离子价态对LiFePO4电化学性能的影响[J].电源技术,2009,33 (5): 399-405.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700