β-锂霞石/铜复合材料显微组织和热物理性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用真空热压烧结工艺成功制备了不同体积分数β-锂霞石为增强体的铜基复合材料,并对烧结态的复合材料我们进行了退火处理和热挤压处理。利用X射线衍射(XRD)、金相显微镜(OM)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)等方法对β-锂霞石/铜复合材料进行了物相、表面形貌、断口形貌和界面特征分析;利用热膨胀分析和热传导测量设备对β-锂霞石/铜复合材料的烧结态、退火态和热挤压态分别进行了热物理性能测试和分析。
     采用真空热压烧结法成功制备了β-锂霞石分布均匀的铜基复合材料。新发现在真空退火的过程中β-锂霞石发生了分解消失。
     β-锂霞石颗粒在复合材料中在大范围内分布均匀,但是微观分布有团聚现象。随着β-锂霞石体积分数的增加,团聚现象更加明显。复合材料中β-锂霞石与铜的界面结合能力很差;β-锂霞石与铜的界面清晰,没有发生界面反应。
     复合材料的致密性随着β-锂霞石体积分数的增加而降低,当体积分数达到50%时,复合材料的致密性只有89%。
     随着β-锂霞石体积分数的增加,复合材料的线平均热膨胀系数降低。复合材料的热错配应力对热膨胀系数有很大的关系。在升温过程中,当增强体压应力松弛和拉应力产生时,复合材料的热膨胀系数小于按混合法则计算的结果,当增强体中拉应力松弛时,复合材料的热膨胀系数大于按混合法则计算的结果。
     退火处理和热挤压可以降低β-锂霞石/铜复合材料的热膨胀系数。这主要是因为退火处理改善了复合材料中热残余应力分布状态和使复合材料的界面结合更加良好。
     热导率随着β-锂霞石颗粒体积分数的增加而减小;热挤压可以提高复合材料的热导率。
β-Eucryptite(Euc) particles reinforced copper matrix composites, with the different volume fraction , were fabricated by vacuum heating-press sintering. The micro-structure of Euc/Cu composites was studied by optical microscope, scanning electron microscope and transmission electron microscope. The compactness of Euc/Cu composites was analyzed by means of analytical balance. The thermal physical properties of Euc/Cu composites were analyzed by means of thermal dilatometer, thermal conductivity tester, also with their influencing factors discussed.
     Analyses indicate that there is not interfacial reaction at Euc/copper interface. After the composites were annealed 4 hour at 1000℃, the surfaced Euc of the composites was disappear.
     In the macroscopic state, the dispersed Euc in the copper matrix is uniformity. In the microscopic state, there was the aggregation phenomenon of Euc particles in the composites. With the volume of Euc increasing, the aggregation phenomenon of Euc particles in the composites was more evidently. There are obverse holes around the Euc particles.
     With the Euc volume increasing, the densification of the composites is decreasing. When the volume fraction increased to 50%, the densification of the composites decreased to 89%.
     With the Euc volume increasing, the average coefficient of thermal expansion of the composites is decreasing. When the volume fraction increased to 50%, the CTE of the composites decreased to 10.5×10~(-6)℃~(-1).
     The studies of thermal expansion behaviors of the composites show that the residual stress relaxation affects greatly the coefficient of thermal expansion of the composite.
     The annealing process can decrease the coefficient of thermal expansion of composite, the main reason is that the vacuum anneal can change the stress state and improve the interface binding strength.
     The thermal conductivity of the composite decreased with the volume of the Euc increasing .The thermal extrusion can make the composites so dense that the thermal conductivity of composites decreased.
引文
1 Z. S. Hou, G. X. Lu. Principle of Metallography. Shanghai: Shanghai Scientific & Techincal Press. 1990, 236~237
    2 Kelly A, Nicholson R B. Strengthening Methods in Crystal. NewYork: Wiley Press. 1971.9~12
    3 J. J. Wu, Q. Lei, Y. Zhang.弥散强化铜基复合材料制备工艺. Powder Metallurgy Technology. 1999, 17(3): 195~200
    4 Y. S. Xu, J. K. Sun. Al2O3P弥散强化铜基复合材料研究. Materials Science and Engineering. 2001, 19(3): 57~60
    5 Y. M. Jia, B. J. Ding.制备弥散强化铜的新工艺. Rare Metal Materials and Engineering. 2000, 29(2): 141~142
    6 SH X Wang.铜和铜合金在电子工业中的新趋向. Copper Working. 1992, (3): 6~9
    7 W X Wang, S Yuan, W F Song. Al2O3/Cu复合材料的研究进展. Special Casting& Nonferrous Alloys. 1998, (5): 50~51
    8 L. S. Wang.宝钢铬锆铜结晶器铜板的研制. Metallurgical Equipments, 1999, 12(6): 34
    9 S. Q. Shun, L. Mao. Al2O3-Cu和C-Cu复合材料研究进展. Journal of Hebei University of Science and Technology. 2001, 22(1): 7~11
    10五十岚廉.引线框架材料.日本金属学会会报. 1989, (1): 63~66
    11 L. Xu, S. H. Liang, Z. K. Fan.高强度高导电率Cu-Al2O3复合材料的制备. Hot Working Technology. 2002, (1): 39~40
    12 Z. M. Yin, P. Q. Gao, M. P. Wang. China Inventive Patent. 99101884.9, 1999
    13 H. Q. Wen.高速列车用新型铜合金接触线. Materials Review. 1998, 1(2): 25~27
    14 I. S. Batra,G. K. Dey. Microstructure and Properties of a Cu2Cr2Zr Alloy. Journal of Nuclear Materials. 2000, (299): 91~100
    15 X. H. Zhang, Y. N. Li.高强度、高导电性Cu/Ag合金的研究进展. Precious Metals. 2001, 3(1): 47
    16 A.S.M, Translated by Group Translating Metals Handbook. MetalsHandbook. Beijing, Mechanical Industry Press. 1992, 133~135
    17 H. Q. Wen, F. Wu.纯铜渗铝工艺及渗剂. Heat Treatment of Metals. 1995(2): 36~37
    18酒井昌宏,渡边治,渡边媵也.电析法による炭素纤维/铜复合材の引张强度.日本金属学会志. 1979, 43(3): 181~189
    19 N. J. Grant. High Conductivity Copper and Aluminum Alloys. Los Angeles: Academic Press. 1984.103~105
    20新见义郎,岩津修. Cu基ODS合金の开发动向.金属, 1992(5):28~35
    21 B. SH. Peng. WC对弥散强化铜的性能的影响. Journal of Shaoyang Institute of Technology. 2004, 1(1): 11~12
    22 Y. G. Xiong, ZH. Q. Deng, X ZH Ling. TiB2颗粒增强铜基复合材料的研究.中南工业大学学报. 2001, 32(3): 294~297
    23 Y. Zhang,Y. CH. Zhou. Ti3SiC2弥散强化铜:一种新的弥散强化铜合金[J]. Acta Metallurgic Sinica. 2000, 6(6): 662~666
    24高闰丰,梅炳初,朱教群等.弥散强化铜复合材料的研究现状与展望.稀有金属快报. 2005, 8(24): 1~7
    25 Rajendra , U. Vaidya, K.K. Chawla. Thermal Expansion of Metal-matrix Composites. Composites Science and Technology. 1994, (50): 13~22
    26 M. James, Whitney. Modified Three-phase Model for Determining the elastic constants of a short fiber composite. Composites. 1998, (16): 714~730
    27 P. Yin, D. D. L. Chung. Titanium Diboride Copper-Matrix Composites, Journal of materials science. 1997, (32): 1703~1709
    28 J. Tian, K. Shobo. Hot-pressed AlN-Cu Metal Matrix Composites and their Thermal Properties. Journal of materials science. 2004, (39): 1309~1313
    29 S. Leminux, S. Elomari. Thermal Expansion of Istropic Durlcan Metal-Matrix Composites. J. Mater. Sci. 1998, (33): 4381~4387
    30 L. Geng, S. Ochiai, C. K. Yao. Study on Temperautre Dependence of Thermal Expansion Behavior of SiCw/Al Composite by Internal Stress Analysis. J. Mater. Sci. Lett..1998, (17): 1933~1935
    31 A.W.A. El-Shennawi, E.M.A. Hamzawy, G.A. Khater. Crystallization of Some Aluminosilicate Glasses. Ceramics International. 2001, (27): 725~730
    32 Wafa I. Abdel-Fattah & R.Abdellah, Lithia Porcelains as Promising BreederCandidates—I. Preparation and Characterization ofβ-Eucryptite andβ-Spodumene Porcelain, Ceramics International. 1997, (23): 463~469
    33 D. G. Xiong, X. Zhao, J. X. Jiang. The Effect of Binder Amount and Heat Treatment on Coefficient of Thermal Expansion in High-volume Fraction Particulate Aluminum-matrix Composites. 13th International Conference on Composite Materials, Beijing, 2001: 495
    34 T. Takako, H. Hiroshi, and T. Minoru. Thermal Expansion Behavior of Particulate-filled Composite. Mater. Sci. Eng. A. 1991,(A131): 133~143
    35 M. James. Whitney. Modified Three-phase Model for Determining the Elastic Constants of a Short Fiber Composite. Composites. 1998, (16): 714~730
    36 Y. L. Shen. Thermal Expansion of Metal-ceramic Composites: a three-Dimensional Analysis. Mater. Sci and Eng. A. 1998, (252): 269~275
    37 Q. Tai, A. Mocellin. Review: High Temperature Deformation of Al2O3-Based Ceramic Particle or Whisker Composites. Ceramics International. 1999, (25): 395~408
    38 T. W.克莱因, P. J.威瑟斯.金属基复合材料导论.冶金工业出版社. 1996: 263~267
    39 H. Hatta , M. Taya. Thermal conductivity of coated filler composite. J. Appl. Phys. 1986, (59): 1851~1860
    40 Z. Zhou, J. M. Tao, In situ reactive synthesis of Al/Al2O3 composites using silica glass, Acta Material Composites Sinica. 2004, 21(5): 74~78
    41 K. K. Gan, M. Y. Gu., Mechanical Alloying Process and Mechanical Properties of Cu-SiCp Composite. Materials Science and Technology. 2006, 22(8): 960-964
    42 J. Roth, L. Kosec. Internal Oxidation of a Ag-1.3at.%Se Alloy. Part I: Composition and Appearance of Oxidation Products. 2004, 62(3-4): 273~291
    43董树荣,张孝彬.纳米碳管增强铜基复合材料的滑动磨损特性研究.摩擦学学报. 1999, 19(1):1~6
    44王黎东.锂霞石颗粒和硼酸铝晶须混杂增强铝复合材料组织和性能.哈尔滨工业大学博士论文, 2003: 90~98

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700