PLGA-无机盐复合生物材料对牙胚细胞和牙髓干细胞增殖分化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由牙周病、龋齿、外伤或是遗传引起的牙齿缺失给大多数人的生活带来很大的不便。能够取代缺失的牙齿的、具有生物活性的组织工程牙齿将给目前的临床治疗带来新的技术。为了使具有生物活性的组织工程牙齿成为可能,找出适合用于进行组织工程牙齿塑形的生物支架材料,本研究比较了四种生物支架材料即聚乳酸-聚乙醇酸(PLGA)、聚乳酸-聚乙醇酸-磷酸三钙(PLGA/TCP)、聚乳酸-聚乙醇酸-羟基磷灰石(PLGA/HA)、聚乳酸-聚乙醇酸-碳酸钙-羟基磷灰石(PLGA/CDHA)对小鼠磨牙牙胚细胞和人牙髓干细胞增殖分化的影响,主要内容及结论如下:
     1、利用细胞活性MTT检测方法,发现四种生物支架材料对Hela细胞的毒性为零级;对人牙髓干细胞(DPSCs)都有毒性,其中PLGA/CDHA的毒性最大;
     2、牙胚细胞-生物支架材料复合物在小鼠肾囊膜下生长6周,细胞在PLGA/HA中增殖最多,在PLGA中增殖最少;DPSCs-生物支架材料复合物在裸鼠肾囊膜下生长5周,200um孔径PLGA/HA、320um孔径PLGA/CDHA和320um孔径PLGA/TCP的增殖率相当,PLGA增殖率最低的;
     3、检测肾囊膜下生长不同时期的牙胚细胞-生物支架材料复合物和DPSCs-生物支架材料复合物的钙盐沉淀情况,发现PLGA/TCP和PLGA/CDHA的钙盐形成情况较好,PLGA/HA次之,PLGA最差;
     4、细胞吸附性检测发现PLGA/HA吸附性最好,而且6周后吸附了牙胚细胞的复合物PLGA/CDHA和纯PLGA的外部有形成结构不完整的牙齿;
     5、牙胚组织-生物支架材料复合物在小鼠肾囊膜下6周后均能成牙。
     综合所有实验我们得出结论:PLGA/HA和PLGA/TCP有利于细胞增殖,PLGA/TCP和PLGA/CDHA有利于细胞分化,PLGA既不利于细胞增殖也不利于细胞分化。
Tooth loss due to periodontal disease, dental caries, trauma, or a variety of genetic disorders continues to affect most people adversely at some time in the lives. A biological tooth substitute that could replace lost teeth would provide a vital alternative to currently available clinical treatments.To pursue biological tooth and suit to its shape, I compared four different biomaterials,namely PLGA, PLGA/HA, PLGA/TCP, PLGA/CDHA,on the proliferation and differentiation of mouse molar tooth germ cells and postnatal human dental pulp stem cells(DPSCs). The content and results were as follows:
     A. by cell activity (MTT assay),the results showed that to Hela cells all the cell cytotoxicity degree of biomaterials were zero degree.To DPSCs,the four different biomaterials were deleterious,and PLGA/CDHA was the most;
     B.after tooth germ cells-biomaterial composites cultured on the renal sac of mice for six weeks,we found the proliferation of cells inside the PLGA/HA was highest of all,and the PLGA was the lowest;while the DPSCs-biomaterial composites, the proliferation of cells inside the PLGA/HA(200um),PLGA/CDHA(320um),PLGA/TCP(320um)was almost the same, and the PLGA was the lowest;
     C.von kossa staining of tooth germ cells-biomaterials and DPSCs-biomaterials composites cultured for different time displayed a significant amount of mineral in PLGA/TCPand PLGA/CDHA composites;
     D. the adsorption of cells of PLGA/HA was the best of the four biomaterials. And we found half-baked tooth structure in the cells-PLGA/CDHA and cells-PLGA composites cultured on the renal sac of mice for six weeks;
     E. we could find integrated tooth structure in the tooth germ cells-biomaterials composites cultured on the renal sac of mice for six weeks.
     In summary, PLGA/HA and PLGA/TCP were useful for cells to proliferate, PLGA/TCPand PLGA/CDHA are useful for cells to differentiate,while PLGA was not only unuseful for cells to proliferate but also unuseful for cells to differentiate.
引文
1 Shieh SJ, Vacanti JP. State-of-the-art tissue engineering: from tissue engineering to organ building. Surgery, 2005,137:1-7.
    
    2 Nerem RM. Tissue engineering: the hope, the hype, and the future. Tissue Eng, 2006,12:1143-50.
    
    3 Vacanti CA. History of tissue engineering and a glimpse into its future. Tissue Eng, 2006,12:1137-42.
    
    4 Langer R, Vacanti JP. Tissue engineering. Science, 1993,260:920-6.
    
    5 Robert M. Nerem,Athanassios Sambanis. Tissue Engineering: From Biology to Biological Substitutes. Tissue Engineering, 1995,1:3-13.
    
    6 Yilin Cao. The building and development of tissue engineering sciences. Journal of Tissue Engineering and Reconstructive Surgery, 2005,01:5-8.
    
    7 Bonassar LJ, Vacanti CA. Tissue engineering: the first decade and beyond. J Cell Biochem Suppl, 1998,30-31:297-303.
    
    8 Bayne SC. Dental biomaterials: where are we and where are we going?. J Dent Educ, 2005,69:571-85.
    
    9 van der Kooy D, Weiss S. Why stem cells?. Science, 2000,287:1439-41.
    
    10 Gronthos S, Brahim J, Li W, et al. Stem cell properties of human dental pulp stem cells. J Dent Res, 2002,81:531-5.
    
    11 Rolletschek A, Blyszczuk P, Wobus AM. Embryonic stem cell-derived cardiac, neuronal and pancreatic cells as model systems to study toxicological effects. Toxicol Lett, 2004,149:361-9.
    
    12 Reubinoff BE, Pera MF, Fong CY, et al. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol, 2000,18:399-404.
    
    13 Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science, 1998,282:1145-7.
    
    14 Cowan CA, Klimanskaya I, McMahon J, et al. Derivation of embryonic stem-cell lines from human blastocysts. N Engl J Med, 2004,350:1353-6.
    15 Yamashita J, Itoh H, Hiroshima M, et al. Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature, 2000,408:92-6.
    
    16 Kaufman DS, Hanson ET, Lewis RL, et al. Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A, 2001,98:10716-21.
    
    17 zur Nieden NI, Kempka G, Ahr HJ. In vitro differentiation of embryonic stem cells into mineralized osteoblasts. Differentiation, 2003,71:18-27.
    
    18 Zandstra PW, Bauwens C, Yin T, et al. Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Eng, 2003,9:767-78.
    
    19 Harper JM, Krishnan C, Darman JS, et al. Axonal growth of embryonic stem cell-derived motoneurons in vitro and in motoneuron-injured adult rats. Proc Natl Acad Sci U S A , 2004,101:7123-8.
    
    20 Coraux C, Hilmi C, Rouleau M, et al. Reconstituted skin from murine embryonic stem cells. Curr Biol, 2003,13:849-53.
    
    21 Wang Z, Ge J, Huang B, et al. Differentiation of embryonic stem cells into corneal epithelium. Sci China C Life Sci, 2005,48:471-80.
    
    22 Javazon EH, Colter DC, Schwarz EJ, et al. Rat marrow stromal cells are more sensitive to plating density and expand more rapidly from single-cell-derived colonies than human marrow stromal cells. Stem Cells, 2001,19:219-25.
    
    23 Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science, 1997,276:71-4.
    
    24 Liechty KW, MacKenzie TC, Shaaban AF, et al. Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med, 2000,6:1282-6.
    
    25 Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science, 1999,284:143-7.
    
    26 Krause DS, Theise ND, Collector MI, et al. Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell, 2001,105:369-77.
    
    27 Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature, 2001,410:701-5.
    
    28 Kopen GC, Prockop DJ, Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A, 1999,96:10711-6.
    
    29 Sanchez-Ramos J, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol, 2000,164:247-56.
    
    30 Hu B, Unda F, Bopp-Kuchler S, et al. Bone marrow cells can give rise to ameloblast-like cells. J Dent Res, 2006,85:416-21.
    
    31 Alonso L, Fuchs E. Stem cells of the skin epithelium. Proc Natl Acad Sci U S A, 2003,100 Suppl 1:11830-5.
    
    32 Widera D, Grimm WD, Moebius JM, et al. Highly efficient neural differentiation of human somatic stem cells, isolated by minimally invasive periodontal surgery. Stem Cells Dev, 2007,16:447-60.
    
    33 Liang L, Bickenbach JR. Somatic epidermal stem cells can produce multiple cell lineages during development. Stem Cells, 2002,20:21-31.
    
    34 Li J, Greco V, Guasch G, et al. Mice cloned from skin cells. Proc Natl Acad Sci U S A, 2007,104:2738-43.
    
    35 Zhang W, Walboomers XF, Wolke JG, et al. Differentiation ability of rat postnatal dental pulp cells in vitro. Tissue Eng, 2005,11:357-68.
    
    36 Gronthos S, Mankani M, Brahim J, et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A, 2000,97:13625-30.
    
    37 Miura M, Gronthos S, Zhao M, et al. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A, 2003,100:5807-12.
    
    38 Hung IH, Yu K, Lavine KJ, et al. FGF9 regulates early hypertrophic chondrocyte differentiation and skeletal vascularization in the developing stylopod. Dev Biol, 2007,307:300-13.
    
    39 Abe G, Ide H, Tamura K. Function of FGF signaling in the developmental process of the median fin fold in zebrafish. Dev Biol, 2007,304:355-66.
    
    40 Riley BM, Mansilla MA, Ma J, et al. Impaired FGF signaling contributes to cleft lip and palate. Proc Natl Acad Sci U S A, 2007,104:4512-7.
    
    41 Jenner JM, van Eijk F, Saris DB, et al. Effect of Transforming Growth Factor-Beta and Growth Differentiation Factor-5 on Proliferation and Matrix Production by Human Bone Marrow Stromal Cells Cultured on Braided Poly Lactic-Co-Glycolic Acid Scaffolds for Ligament Tissue Engineering. Tissue Eng, 2007.
    
    42 Chai Y, Ito Y, Han J. TGF-beta signaling and its functional significance in regulating the fate of cranial neural crest cells. Crit Rev Oral Biol Med, 2003,14:78-88.
    
    43 Ripamonti U, Reddi AH. Tissue engineering, morphogenesis, and regeneration of the periodontal tissues by bone morphogenetic proteins. Crit Rev Oral Biol Med, 1997,8:154-63.
    
    44 Nie H, Soh BW, Fu YC, et al. Three-dimensional fibrous PLGA/HAp composite scaffold for BMP-2 delivery. Biotechnol Bioeng, 2008,99:223-34.
    
    45 Hou LT, Liu CM, Liu BY, et al. Tissue engineering bone formation in novel recombinant human bone morphogenic protein 2-atelocollagen composite scaffolds. J Periodontol, 2007,78:335-43.
    
    46 Stupp SI, Braun PV. Molecular manipulation of microstructures: biomaterials, ceramics, and semiconductors. Science, 1997,277:1242-8.
    
    47 Mano JF, Silva GA, Azevedo HS, et al. Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface, 2007,4:999-1030.
    
    48 Kim BS, Baez CE, Atala A. Biomaterials for tissue engineering. World J Urol, 2000,18:2-9.
    
    49 Kasemo B, Lausmaa J. Surface science aspects on inorganic biomaterials. CRC Crit Rev Biocomp, 1986,2:335-380.
    
    50 Lin Songbai, Cai Kaiyong,Yao Kangde. Advances in Research on Surface Engineering of Biomaterials for Tissue Engineering. Progress in Chemistry, 2001,13:56-64.
    
    51 Lin JC, Chen YF, Chen CY. Surface characterization and platelet adhesion studies of plasma polymerized phosphite and its copolymers with dimethylsulfate. Biomaterials, 1999,20:1439-47.
    
    52 Livingston T, Ducheyne P, Garino J. In vivo evaluation of a bioactive scaffold for bone tissue engineering. J Biomed Mater Res, 2002,62:1-13.
    
    53 Ren GH, Pei GX, Gu LQ, et al. [Biocompatibility of adult human osteoblasts with coral-derived hydroxyapatite in vitro]. Di Yi Jun Yi Da Xue Xue Bao, 2002,22:974-8.
    
    54 Boo JS, Yamada Y, Okazaki Y, et al. Tissue-engineered bone using mesenchymal stem cells and a biodegradable scaffold. J Craniofac Surg, 2002,13:231-9; discussion 240-3.
    55 Stone KR, Steadman JR, Rodkey WG, et al. Regeneration of meniscal cartilage with use of a collagen scaffold. Analysis of preliminary data. J Bone Joint Surg Am, 1997,79:1770-7.
    
    56 Aigner J, Tegeler J, Hutzler P, et al. Cartilage tissue engineering with novel nonwoven structured biomaterial based on hyaluronic acid benzyl ester. J Biomed Mater Res, 1998,42:172-81.
    
    57 Lahiji A, Sohrabi A, Hungerford DS, et al. Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J Biomed Mater Res, 2000,51:586-95.
    
    58 Nettles DL, Elder SH, Gilbert JA. Potential use of chitosan as a cell scaffold material for cartilage tissue engineering. Tissue Eng, 2002,8:1009-16.
    
    59 Takagi M, Fukui Y, Wakitani S, et al. Effect of poly DL-lactic-co-glycolic acid mesh on a three-dimensional culture of chondrocytes. J Biosci Bioeng, 2004,98:477-81.
    
    60 Sander EA, Alb AM, Nauman EA, et al. Solvent effects on the microstructure and properties of 75/25 poly(D,L-lactide-co-glycolide) tissue scaffolds. J Biomed Mater Res A, 2004,70:506-13.
    
    61 Young CS, Abukawa H, Asrican R, et al. Tissue-engineered hybrid tooth and bone. Tissue Eng, 2005,11:1599-610.
    
    62 Graziano A, d'Aquino R, Cusella-De Angelis MG, et al. Concave pit-containing scaffold surfaces improve stem cell-derived osteoblast performance and lead to significant bone tissue formation. PLoS ONE, 2007,2:e496.
    
    63 Verheyen CC, de Wijn JR, van Blitterswijk CA, et al. Hydroxylapatite/poly(L-lactide) composites: an animal study on push-out strengths and interface histology. J Biomed Mater Res, 1993,27:433-44.
    
    64 Verheyen CC, de Wijn JR, van Blitterswijk CA, et al. Evaluation of hydroxylapatite/poly(L-lactide) composites: mechanical behavior. J Biomed Mater Res, 1992,26:1277-96.
    
    65 Kikuchi M, Suetsugu Y, Tanaka J, et al. Preparation and mechanical properties of calcium phosphate/copoly-L-lactide composites. J Mater Sci Mater Med, 1997,8:361-4.
    
    66 Liu Q, de Wijn JR, Bakker D, et al. Polyacids as bonding agents in hydroxyapatite polyester-ether (Polyactive 30/70) composites. J Mater Sci Mater Med, 1998,9:23-30.
    
    67 Hench LL. Biomaterials. Science, 1980,208:826-31.
    68 Sun X, Xi T. [Third-generation biomedical materials and regenerative medicine]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2006,20:189-93.
    
    69 Hench LL, Polak JM. Third-generation biomedical materials. Science, 2002,295:1014-7.
    
    70 Strain AJ, Neuberger JM. A bioartificial liver-state of the art. Science, 2002,295:1005-9.
    
    71 Qin S, Pan J, Wu K. [Research on endothelialization of artificial vascular grafts]. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, 2005,22:629-32.
    
    72 Hashi CK, Zhu Y, Yang GY, et al. Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proc Natl Acad Sci U S A, 2007,104:11915-20.
    
    73 Kim MS, Seo KS, Khang G, et al. Preparation of poly(ethylene glycol)-block-poly(caprolactone) copolymers and their applications as thermo-sensitive materials. J Biomed Mater Res A, 2004,70:154-8.
    
    74 Kim MS, Hong KD, Shin HW, et al. Preparation of porcine small intestinal submucosa sponge and their application as a wound dressing in full-thickness skin defect of rat. Int J Biol Macromol, 2005,36:54-60.
    
    75 Kitamoto D. [Naturally engineered glycolipid biosurfactants leading to distinctive self-assembling properties]. Yakugaku Zasshi, 2008,128:695-706.
    
    76 Park SN, Jang HJ, Choi YS, et al. Preparation and characterization of biodegradable anti-adhesive membrane for peritoneal wound healing. J Mater Sci Mater Med, 2007,18:475-82.
    
    77 Slavkin HC, Beierle J, Bavetta LA. Odontogenesis: cell-cell interactions in vitro. Nature, 1968,217:269-70.
    
    78 Orams HJ, Sim FR, Reade PC. An in vivo and in vitro study of dissociated tooth germs of rats. Arch Oral Biol, 1974,19:285-91.
    
    79 HAY MF. The development in vivo and in vitro of the lower incisor and molars of the mouse. Arch Oral Biol, 1961,3:86-109.
    
    80 Yamada M, Bringas P Jr, Grodin M, et al. Chemically-defined organ culture of embryonic mouse tooth organs: morphogenesis, dentinogenesis and amelogenesis. J Biol Buccale, 1980,8:127-39.
    
    81 Thesleff I, Vaahtokari A, Partanen AM. Regulation of organogenesis. Common molecular mechanisms regulating the development of teeth and other organs. Int J Dev Biol, 1995,39:35-50.
    
    82 Thesleff I, Mikkola M. The role of growth factors in tooth development. Int Rev Cytol, 2002,217:93-135.
    
    83 Thomas BL, Tucker AS, Ferguson C, et al. Molecular control of odontogenic patterning: positional dependent initiation and morphogenesis. Eur J Oral Sci, 1998,106 Suppl 1:44-7.
    
    84 Duailibi MT, Duailibi SE, Young CS, et al. Bioengineered teeth from cultured rat tooth bud cells. J Dent Res, 2004,83:523-8.
    
    85 Young CS, Terada S, Vacanti JP, et al. Tissue engineering of complex tooth structures on biodegradable polymer scaffolds. J Dent Res, 2002,81:695-700.
    
    86 Signaling loops in the recoprocal epithelial-mesenchymal interactions of mammalian tooth development. Molecular Basis of Epithelial Appendage Morphogenesis, 1998:265-282.
    
    87 Smith AJ. Tooth tissue engineering and regeneration--a translational vision!. J Dent Res, 2004,83:517.
    
    88 Yen AH, Sharpe PT. Regeneration of teeth using stem cell-based tissue engineering. Expert Opin Biol Ther, 2006,6:9-16.
    
    89 Miller-Jensen K, Janes KA, Brugge JS, et al. Common effector processing mediates cell-specific responses to stimuli. Nature, 2007,448:604-8.
    
    90 Sonoyama W, Liu Y, Fang D, et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS ONE, 2006,1 :e79.
    
    91 Song Y, Zhang Z, Yu X, et al. Application of lentivirus-mediated RNAi in studying gene function in mammalian tooth development. Dev Dyn, 2006,235:1334-44.
    
    92 Nakao K, Morita R, Saji Y, et al. The development of a bioengineered organ germ method. Nat Methods, 2007,4:227-30.
    
    93 Chen YP, Maas R. Signaling loops in the recoprocal epithelial-mesenchymal interactions of mammalian tooth development. In: Chuong, C-M, ed. Molecular Basis of Epithelial Appendage Morphogenesis. Austin, TX:R.G. Landes,1998. 265-282.
    
    94 Lumsden AG. Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ. Development, 1988,103 Suppl:155-69.
    
    95 Mina M, Kollar EJ. The induction of odontogenesis in non-dental mesenchyme combined with early murine mandibular arch epithelium. Arch Oral Biol, 1987,32:123-7.
    96 ISO10993-1:2003. biological evaluation of medical devices-Part1:Evaluation and testing .
    
    97 ISO10993-5:1999. biological evaluation of medical devices-Part5:Tests for in vitro cytotoxicity.
    
    98 Gerstenfeld LC, Chipman SD, Glowacki J, et al. Expression of differentiated function by mineralizing cultures of chicken osteoblasts. Dev Biol, 1987,122:49-60.
    
    99 Breen EC, Ignotz RA, McCabe L, et al. TGF beta alters growth and differentiation related gene expression in proliferating osteoblasts in vitro, preventing development of the mature bone phenotype. J Cell Physiol, 1994,160:323-35.
    
    100 Ueno K, Katayama T, Miyamoto T, et al. Interleukin-4 enhances in vitro mineralization in human osteoblast-like cells. Biochem Biophys Res Commun, 1992,189:1521-6.
    
    101 Chung CH, Golub EE, Forbes E, et al. Mechanism of action of beta-glycerophosphate on bone cell mineralization. Calcif Tissue Int, 1992,51:305-11.
    
    102 Bellows CG, Aubin JE, Heersche JN. Physiological concentrations of glucocorticoids stimulate formation of bone nodules from isolated rat calvaria cells in vitro. Endocrinology, 1987,121:1985-92.
    
    103 Bhargava U, Bar-Lev M, Bellows CG, et al. Ultrastructural analysis of bone nodules formed in vitro by isolated fetal rat calvaria cells. Bone, 1988,9:155-63.
    
    104 Hao J, Narayanan K, Ramachandran A, et al. Odontoblast cells immortalized by telomerase produce mineralized dentin-like tissue both in vitro and in vivo. J Biol Chem, 2002,277:19976-81.
    
    105 Boskey AL, Camacho NP, Mendelsohn R, et al. FT-IR microscopic mappings of early mineralization in chick limb bud mesenchymal cell cultures. Calcif Tissue Int, 1992,51:443-8.
    
    106 Ecarot-Charrier B, Shepard N, Charette G, et al. Mineralization in osteoblast cultures: a light and electron microscopic study. Bone, 1988,9:147-54.
    
    107 Marsh ME, Munne AM, Vogel JJ, et al. Mineralization of bone-like extracellular matrix in the absence of functional osteoblasts. J Bone Miner Res, 1995,10:1635-43.
    
    108 Boskey AL, Doty SB, Stiner D, et al. Viable cells are a requirement for in vitro cartilage calcification. Calcif Tissue Int, 1996,58:177-85.
    
    109 Van Nooten G, Somers P, Cornelissen M, et al. Acellular porcine and kangaroo aortic valve scaffolds show more intense immune-mediated calcification than cross-linked Toronto SPV valves in the sheep model. Interact Cardiovasc Thorac Surg, 2006,5:544-9.
    
    110 Koch TG, Heerkens T, Thomsen PD, et al. Isolation of mesenchymal stem cells from equine umbilical cord blood. BMC Biotechnol, 2007,7:26.
    
    111 Yamamoto H, Kim EJ, Cho SW, et al. Analysis of tooth formation by reaggregated dental mesenchyme from mouse embryo. J Electron Microsc (Tokyo), 2003,52:559-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700