基于DEV gC基因FQ-PCR方法建立及gC基因疫苗在免疫小鼠体内分布规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文围绕鸭病毒性肠炎病毒(DEV) gC基因检测方法、DEV gC基因疫苗免疫小鼠后在机体的动态分布开展了下列研究:①检测DEV gC基因的实时荧光定量PCR (FQ-PCR)方法的建立。②将DEV gC基因疫苗(pcDNA-DEV-gC)分别以基因枪轰击法(6μg/只、3μg/只、1μg/只),肌肉注射法(200μg/只、100μg/只、50gg/只),肌肉注射阳性脂质体/pcDNA-DEV-gC纳米粒和壳聚糖/pcDNA-DEV-gC纳米粒,口服阳性脂质体/pcDNA-DEV-gC纳米粒和壳聚糖/pcDNA-DEV-gC纳米粒的方法免疫4周龄BALB/c小鼠,免疫后不同时间分别取各组小鼠的免疫部位(皮肤或肌肉)、心脏、肝脏、脾脏、肺脏、肾脏、脑、胸腺、十二指肠、直肠和盲肠等组织器官,用建立的FQ-PCR的方法检测pcDNA-DEV-gC在BALB/C小鼠体内的动态分布。获得如下结果:
     1.建立的FQ-PCR检测方法灵敏度高、特异性强、重复性好,标准曲线扩增效率为100%,核酸模板数与FQ-PCR测定的Ct值相关系数达到1.000,具有很好的线性关系,使用方程Y=-3.321X+45.822能够对未知样品进行精确定量(Y=样品Ct值,X=样品拷贝数的对数值),不仅能够用于研究pcDNA-DEV-gC在小鼠体内的动态分布,而且可以用于DEV的临床快速检测。
     2. pcDNA-DEV-gC在小鼠体内的分布规律:各免疫组免疫小鼠1h即可在各组织器官中检测到pcDNA-DEV-gC,基因枪轰击组和肌肉注射组检测到免疫部位含量最高,其次是肝脏、脾脏和胸腺,肌肉注射脂质体和口服脂质体检测到肝脏和脾脏含量最高,肌肉注射壳聚糖和口服壳聚糖检测到十二指肠和直肠含量最高。到18wk时,各免疫组各个组织器官内仍然能够检测到pcDNA-DEV-gC的存在,但多数组织器官中的含量比免疫1h时降低了约102-104。
     3.不同免疫剂量与分布的关系:不同剂量pcDNA-DEV-gC免疫小鼠各组织中的含量呈现的总体规律为6μg组>3μg组>1μg组,200μg组>100μg组>50μg组。在基因枪轰击三个免疫剂量组中,基因疫苗的剂量与基因疫苗在小鼠组织中的含量呈现较弱的正相关性,各剂量之间差异不显著(P>0.05)。在肌肉注射三个免疫剂量组中,基因疫苗的剂量与基因疫苗在小鼠组织中的含量呈现正相关性,1h-3d差异显著(P<0.05),3d-18wk差异不显著(P>0.05)。
     4.基因枪轰击基因疫苗剂量很小,但在小鼠组织中检测出的含量与肌肉注射相似。脂质体和壳聚糖各有优势,脂质体组检测含量最大的组织是肝脏和脾脏,壳聚糖组检测含量最大的组织是十二指肠和直肠。
In this thesis, research about the method of detecting gC gene of duck enteritis virus (DEV), the dynamic distribution of DEV gC gene vaccine in mice were as follows:①The TaqManTM fluorescent quantitative real-time PCR (FQ-PCR) method for detecting DEV gC gene was developed.②The pcDNA-DEV-gC vaccine was vaccinated into ten groups of BALB/c mice (4 weeks old) by gene gun bombing with three doses (6μg per mouse,3μg per mouse and 1μg per mouse), intramuscularly injection with three doses (200μg per mouse,100μg per mouse and 50μg per mouse), intramuscularly injection with liposomes/chitosan microparticles and oral with liposomes/chitosan microparticles, then injected spot (skin or muscle), hreat, liver, spleen, lung, kidney, brain, thymus, duodemun, rectum and cecum of mice were collected at sampling times and the established FQ-PCR method was used to detect the dynamic distribution of pcDNA-DEV-gC vaccine in tissues of mice. Below the results were show:
     1. the developed FQ-PCR method was a highly specific, sensitive, repeatable and reproducible assay, it displayed a clear linear relationship with a correlation coefficient of 1.000 and high amplification efficiency (100%).By using the following formula, we were able to quantify the amount of unknown samples:Y=-3.321X+ 45.822 (Y=threshold cycle, X=log starting quantity).
     2. The dynamic distribution of DEV gC gene vaccine in mice:DEV gC can be detected in all analyzed tissues at 1 hour postinoculation. the copies was most at the position of injected spot, then liver spleen and thymus in groups of gene gun bombing and intramuscularly injection, the copies was most at the position of liver and spleen in groups of intramuscularly injection with liposomes/chitosan microparticles, the copies was most at the position of duodemun and rectum in groups of oral with liposomes/chitosan microparticles. pcDNA-DEV-gC could still be detected in tissues of different doses groups in 18 weeks postinoculation. But the copies decreased about 102-104copies in the most tissues than it at 1 hour postinoculation.
     3. Different dynamic distribution of DEV gC gene vaccine in mice with the different doses:in the three dose groups of gene gun bombing, there was a weak positive correiation between the immune doses and the copies of the tissues, the difference among the three groups was notsignificant (P>0.05). In the three dose groups of intramuscularly injection, there was a positive correiation between the immune doses and the copies of the tissues, the difference among the three groups was significant from 1 hour to 3 days postinoculation (P<0.05) and notsignificant from 5 days to 18 weeks postinoculation (P>0.05).
     4. The dose of gene gun bombing was very small, but the copies in it were similar with the copies in groups of intramuscularly injection. The liposomes and chitosan microparticles have some advantages, the copies was most at the position of liver and spleen in groups of liposomes, then the copies was most at the position of duodemun and rectum in groups of chitosan microparticles.
引文
[1]Liu, F.,Ma, B.,Zhao, Y., etal. Characterization of the Gene Encoding Glycoprotein C of Duck Enteritis Virus[J].Virus Genes,2008,37(3):328-332.
    [2]徐超,李欣然,信洪一,等.鸭瘟病毒gC基因的克隆及其分子特性分析[J].中国兽医科学,2008,38(12):1038-1044.
    [3]Shen, F.,Cheng, A.,Wang, M., etal. Factors Affecting Synonymous Codon Usage Bias in the gC Gene of DPV Chv Strain[J].African Journal of Microbiology Research,2010,4(5): 343-353.
    [4]Davis-Poynter, N.,Bell, S.,Minson, T., etal. Analysis of the Contributions of Herpes Simplex Virus Type 1 Membrane Proteins to the Induction of Cell-Cell Fusion[J].Journal of Virology, 1994,68(11):7586-7590.
    [5]Browne, H.,Bruun, B.,Minson, T. Plasma Membrane Requirements for Cell Fusion Induced by Herpes Simplex Virus Type 1 Glycoproteins gB, gD, gH and gI[J].Journal of General Virology,2001,82(6):1419-1422.
    [6]Klyachkin, Y. M.,Geraghty, R. J. Mutagenic Analysis of Herpes Simplex Virus Type 1 Glycoprotein L Reveals the Importance of an Arginine-Rich Region for Function[J].Virology, 2008,374(1):23-32.
    [7]Matsumura, T.,Smith, R. H.,O'Callaghan, D. J. DNA Sequence and Transcriptional Analyses of the Region of the Equine Herpesvirus Type 1 Kentucky a Strain Genome Encoding Glycoprotein C[J].Virology,1993,193(2):910-923.
    [8]Nicolson, L.Onions, D. E. The Nucleotide Sequence of the Equine Herpesvirus 4 gC Gene Homologue[J].Virology,1990,179(1):378-387.
    [9]Homa, F.,Glorioso, J.,Levine, M. A Specific 15-bp TATA Box Promoter Element Is Required for Expression of a Herpes Simplex Virus Type 1 Late Gene[J].Genes and Development,1988, 2(1):40.
    [10]Klupp, B. G.,Hengartner, C. J.,Mettenleiter, T. C., etal. Complete, Annotated Sequence of the Pseudorabies Virus Genome[J] Journal of Virology,2004,78(1):424-440.
    [11]Gray, W.,Byrne, B. Characterization of the Simian Varicella Virus Glycoprotein C, Which Is Nonessential for in Vitro Replication[J]. Archives of Virology,2003,148(3):537-545.
    [12]Robbins, A. K.,Watson, R. J.,Whealy, M. E., etal. Characterization of a Pseudorabies Virus Glycoprotein Gene with Homology to Herpes Simplex Virus Type 1 and Type 2 Glycoprotein C[J].Journal of Virology,1986,58(2):339-347.
    [13]Skoff, A. M.,Holland, T. C. The Effect of Cytoplasmic Domain Mutations on Membrane Anchoring and Glycoprotein Processing of Herpes Simplex Virus Type 1 Glycoprotein C[J].Virology,1993,196(2):804-816.
    [14]Flynn, S. J.,Burgett, B. L.,Stein, D. S., etal. The Amino-Terminal One-Third of Pseudorabies Virus Glycoprotein Giii Contains a Functional Attachment Domain, but This Domain Is Not Required for the Efficient Penetration of Vero Cells[J] Journal of Virology,1993,67(5): 2646-2654.
    [15]Flynn, S.,Ryan, P. The Receptor-Binding Domain of Pseudorabies Virus Glycoprotein gC Is Composed of Multiple Discrete Units That Are Functionally Redundant[J].Journal of Virology, 1996,70(3):1355-1364.
    [16]Edward Trybala, T. B., Dorothe Spillmann, Bo Svennerholm,Shannon J. Flynni, and Patrick Ryani. Interaction between Pseudorabies Virus and Heparin/Heparan Sulfate[J]1998,273 (9): 5047-5052.
    [17]Flynn, S. J.,Ryan, P. A Heterologous Heparin-Binding Domain Can Promote Functional Attachment of a Pseudorabies Virus gC Mutant to Cell Surfaces[J].J Virol,1995,69(2): 834-839.
    [18]Robbins, A.,Ryan, J.,Whealy, M.; etal. The Gene Encoding the Giii Envelope Protein of Pseudorabies Virus Vaccine Strain Bartha Contains a Mutation Affecting Protein Localization[J]. J Virol,1989,63(1):250.
    [19]Kirisawa, R.,Hosoi, Y.,Yamaya, R., etal. Isolation of Equine Herpesvirus-1 Lacking Glycoprotein C from a Dead Neonatal Foal in Japan[J].Arch Virol,2005,150(12):2549-2565.
    [20]Whealy, M.,Robbins, A.,Enquist, L. Pseudorabies Virus Glycoprotein Giii Is Required for Efficient Virus Growth in Tissue Culture[J]. Journal of Virology,1988,62(7):2512-2515.
    [21]Mettenleiter, T.,Schreurs,C.,Zuckermann, F., etal. Role of Glycoprotein Giii of Pseudorabies Virus in Virulence[J]. Journal of Virology,1988,62(8):2712-2717.
    [22]Mettenleiter, T. C.,Zsak, L.,Zuckermann, F., etal. Interaction of Glycoprotein Giii with a Cellular Heparinlike Substance Mediates Adsorption of Pseudorabies Virus[J].Journal of Virology,1990,64(1):278-286.
    [23]Zsak, L.,Sugg, N.,Ben-Porat, T., etal. The Giii Glycoprotein of Pseudorabies Virus Is Involved in Two Distinct Steps of Virus Attachment[J]. Journal of Virology,1991,65(8):4317.
    [24]Rue, C.,Ryan, P. A Role for Glycoprotein C in Pseudorabies Virus Entry That Is Independent of Virus Attachment to Heparan Sulfate and Which Involves the Actin Cytoskeleton[J].Virology,2003,307(1):12-21.
    [25]Shukla, D.,Spear, P. G. Herpesviruses and Heparan Sulfate:An Intimate Relationship in Aid of Viral Entry[J].J Clin Invest,2001,108(4):503-510.
    [26]Herold, B. C.,Visalli, R. J.,Susmarski, N., etal. Glycoprotein C-Independent Binding of Herpes Simplex Virus to Cells Requires Cell Surface Heparan Sulphate and Glycoprotein B[J].Journal of General Virology,1994,75:1211-1222.
    [27]Stiles, K.,Milne, R.,Cohen, G., etal. The Herpes Simplex Virus Receptor Nectin-1 Is Down-Regulated after Trans-Interaction with Glycoprotein D[J].Virology,2008,373:98-111.
    [28]Tsvitov, M.,Frampton, A. R., Jr..Shah, W. A., etal. Characterization of Soluble Glycoprotein D-Mediated Herpes Simplex Virus Type 1 Infection[J].Virology,2007,360(2):477-491.
    [29]Trybala, E.,Liljeqvist, J.,Svennerholm, B., etal. Herpes Simplex Virus Types 1 and 2 Differ in Their Interaction with Heparan Sulfate[J]. Journal of Virology,2000,74(19):9106-9114.
    [30]Rux, A. H.,Lou, H.,Lambris, J. D., etal. Kinetic Analysis of Glycoprotein C of Herpes Simplex Virus Types 1 and 2 Binding to Heparin, Heparan Sulfate, and Complement Component C3b[J].Virology,2002,294(2):324-332.
    [31]Grandi, P.,Spear, M.,Breakefield, X. O., etal. Targeting HSV Amplicon Vectors[J].Methods, 2004,33(2):179-186.
    [32]Eisenberg, R. J.,de Leon, M. P.,Friedman, H. M., etal. Complement Component C3b Binds Directly to Purified Glycoprotein C of Herpes Simplex Virus Types 1 and 2[J].Microbial Pathogenesis,1987,3(6):423-435.
    [33]Wolff, J.,Malone, R.,Williams, P.,etal. Direct Gene Transfer into Mouse Muscle in Vivo[J].Science,1990,247(4949):1465.
    [34]Enquist, L.,Keeler Jr, C.,Robbins, A.,etal. An Amino-Terminal Deletion Mutation of Pseudorabies Virus Glycoprotein Giii Affects Protein Localization and Rna Accumulation[J].Journal of Virology,1988,62(10):3565.
    [35]Katayama, S.,Okada, N.,Ohgitani, T.,etal. Influence of Cell Surface Glycoprotein gC Produced by Pseudorabies Virus on Cytopathic Effect[J].The Journal of Veterinary Medical Science,1998,60(8):905-909.
    [36]Rue, C. A.,Ryan, P. Characterization of Pseudorabies Virus Glycoprotein C Attachment to Heparan Sulfate Proteoglycans[J].Journal of General Virology,2002,83(2):301-309.
    [37]Rue, C. A.,Ryan, P. Pseudorabies Virus Glycoprotein C Attachment-Proficient Revertants Isolated through a Simple, Targeted Mutagenesis Scheme[J].Journal of Virological Methods, 2008,151(1):101-106.
    [38]Kingsley, D. H.,Hazel, J. W.,Keeler, C. L., Jr. Identification and Characterization of the Infectious Laryngotracheitis Virus Glycoprotein C Gene[J].Virology,1994,203(2):336-343.
    [39]Veits, J.,Kollner, B.,Teifke, J. P.,etal. Isolation and Characterization of Monoclonal Antibodies against Structural Proteins of Infectious Laryngotracheitis Virus[J].Avian Diseases,2003, 47(2):330-342.
    [40]Okazaki, K.,Honda, E.,Kono, Y. Expression of Bovine Herpesvirus 1 Glycoprotein Giii by a Recombinant Baculovirus in Insect Cells[J].Journal of General Virology,1994,75 (4): 901-904.
    [41]Liman, A.,Engels, M.,Meyer, G., etal. Glycoprotein C of Bovine Herpesvirus 5 (BHV-5) Confers a Distinct Heparin-Binding Phenotype to BHV-1[J].Archives of Virology,2000, 145(10):2047-2059.
    [42]Esteves, P.A.,Dellagostin, O.A.,Pinto, L.S.,etal. Phylogenetic Comparison of the Carboxy-Terminal Region of Glycoprotein C (gC) of Bovine Herpesviruses (BoHV) 1.1,1.2 and 5 from South America (Sa)[J].Virus Research,2008,131(1):16-22.
    [43]Zhang, Y.Jiang, Y.,Geiser, V, etal. Bovine Herpesvirus 1 Immediate-Early Protein (BicpO) Interacts with the Histone Acetyltransferase P300, Which Stimulates Productive Infection and gC Promoter Activity[J].Journal of General Virology,2006,87(7):1843-1851.
    [44]Markowski-Grimsrud, C. J.,Schat, K. A. Cytotoxic T Lymphocyte Responses to Marek's Disease Herpesvirus-Encoded Glycoproteins[J].Veterinary Immunology and Immunopathology,2002,90(3-4):133-144.
    [45]Tischer, B.,Schumacher, D.,Chabanne-Vautherot, D., etal. High-Level Expression of Marek's Disease Virus Glycoprotein C Is Detrimental to Virus Growth in Vitro [J].Journal of Virology, 2005,79(10):5889-5899.
    [46]Jarosinski, K.,Margulis, N.,Kamil, J., etal. Horizontal Transmission of Marek's Disease Virus Requires Us2, the U113 Protein Kinase, and gC[J].Journal of Virology,2007,81(19): 10575-10587.
    [47]Kikuchi, G.,Coligan, J.,Holland, T., etal. Biochemical Characterization of Peptides from Herpes Simplex Virus Glycoprotein gC:Loss of Cnbr Fragments from the Carboxy Terminus of Truncated, Secreted gC Molecules[J]. Journal of Virology,1984,52(3):806.
    [48]Hidaka, Y.,Sakuma, S.,Kumano, Y, etal. Characterization of Glycoprotein C-Negative Mutants of Herpes Simplex Virus Type 1 Isolated from a Patient with Keratitis[J].Archives of Virology,1990,113(3-4):195-207.
    [49]Svennerholm, B.,Jeansson, S.,Vahine, A., etal. Involvement of Glycoprotein C (gC) in Adsorption of Herpes Simplex Virus Type 1 (Hsv-1) to the Cell[J].Archives of Virology,1991, 120(3):273-279.
    [50]Shieh, M. Cell Surface Receptors for Herpes Simplex Virus Are Heparan Sulfate Proteoglycans[J].The Journal of Cell Biology,1992,116(5):1273-1281.
    [51]Toh, Y.Tanaka, S.,Liu, Y.,etal. Molecular Characterization of Naturally Occurring Glycoprotein C-Negative Herpes Simplex Virus Type 1[J].Archives of Virology,1993,129(1): 119-130.
    [52]Sedlackova, L.,Perkins, K. D.,Lengyel, J., etal. Herpes Simplex Virus Type 1 Icp27 Regulates Expression of a Variant, Secreted Form of Glycoprotein C by an Intron Retention Mechanism[J].Journal of Virology,2008,82(15):7443-7455.
    [53]Livingston, J. R.,Sutherland, M. R.,Friedman, H. M., etal. Herpes Simplex Virus Type 1-Encoded Glycoprotein C Contributes to Direct Coagulation Factor X-Virus Binding[J].Biochemical Journal,2006,393(Pt 2):529-535.
    [54]郝春丽,田兆龙,陈同,等.禽用基因疫苗的研究进展[J].上海畜牧兽医通讯,2007,2:11-13.
    [55]Ulmer, J. B.,Donnelly, J. J.,Parker, S. E., etal. Heterologous Protection against Influenza by Injection of DNA Encoding a Viral Protein[J].Science,1993,259(5102):1745-1749.
    [56]Leitner, W. W.,Ying, H.,Restifo, N. P. DNA and RNA-Based Vaccines:Principles, Progress and Prospects[J].Vaccine,1999,18(9-10):765-777.
    [57]刘建文,李月辉,王健春.基因疫苗及其免疫佐剂研究进展[J].中国兽医杂志,2007,43(3):40-42.
    [58]彭国平,李筱筱,陈智.DNA疫苗及其在病毒性传染病中的应用[J].国外医学(流行病学传染病学分册),2005,32(2):93-95,102.
    [59]Manickan, E.,Karem, K. L..Rouse, B. T. DNA Vaccines--a Modern Gimmick or a Boon to Vaccinology?[J].Critical Reviews in Immunology,1997,17(2):139-154.
    [60]Talaat, A. M.,Stemke-Hale, K. Expression Library Immunization:A Road Map for Discovery of Vaccines against Infectious Diseases[J].Infection and Immunity,2005,73(11):7089-7098.
    [61]Qian, C.,Bilbao, R.,Bruna, O., etal. Induction of Sensitivity to Ganciclovir in Human Hepatocellular Carcinoma Cells by Adenovirus-Mediated Gene Transfer of Herpes Simplex Virus Thymidine Kinase[J].Hepatology,1995,22(1):118-123.
    [62]Letellier, C.,Burny, A.,Meulemans, G. Construction of a Pigeonpox Virus Recombinant: Expression of the Newcastle Disease Virus (NDV) Fusion Glycoprotein and Protection of Chickens against NDV Challenge[J].Arch Virol,1991,118(1-2):43-56.
    [63]Xiong, C.,Levis, R.,Shen, P., etal. Sindbis Virus:An Efficient, Broad Host Range Vector for Gene Expression in Animal Cells[J].Science,1989,243(4895):1188-1191.
    [64]Gregoriadis, G.,Saffie, R.,de Souza, J. B. Liposome-Mediated DNA Vaccination[J].FEBS Letters,1997,402(2-3):107-110.
    [65]Irvine, K. R.,Rao, J. B.,Rosenberg, S. A., etal. Cytokine Enhancement of DNA Immunization Leads to Effective Treatment of Established Pulmonary Metastases[J].The Journal of Immunology,1996,156(1):238-245.
    [66]周雪,程安春,汪铭书,等.鸭α-干扰素基因疫苗肌肉注射免疫鸭抗鸭瘟强毒感染的研究[J].四川农业大学学报,2007,25(4):475-479.
    [67]Aderem, A.,Ulevitch, R. J. Toll-Like Receptors in the Induction of the Innate Immune Response[J].Nature,2000,406(6797):782-787.
    [68]Akira, S.,Hemmi, H. Recognition of Pathogen-Associated Molecular Patterns by TLR Family[J].Immunology Letters,2003,85(2):85-95.
    [69]Bauer, S.,Kirschning, C. J.,Hacker, H., etal. Human TLR9 Confers Responsiveness to Bacterial DNA Via Species-Specific CpG Motif Recognition[J].Proc Natl Acad Sci USA, 2001,98(16):9237-9242.
    [70]Patel, B. A.,Gomis, S.,Dar, A., etal. Oligodeoxynucleotides Containing CpG Motifs (CpG-ODN) Predominantly Induce Thl-Type Immune Response in Neonatal Chicks[J].Developmental & Comparative Immunology,2008,32(9):1041-1049.
    [71]Linghua, Z.,Xingshan, T.,Fengzhen, Z. In Vivo Immunostimulatory Effects of CpG ODN in Newborn Piglets[J].Molecular Immunology,2007,44(6):1238-1244.
    [72]Dory, D.,Beven, V.,Torche, A. M., etal. CpG Motif in Atcgat Hexamer Improves DNA-Vaccine Efficiency against Lethal Pseudorabies Virus Infection in Pigs[J].Vaccine,2005, 23(36):4532-4540.
    [73]Le Borgne, S.,Mancini, M.,Le Grand, R., etal. In Vivo Induction of Specific Cytotoxic T Lymphocytes in Mice and Rhesus Macaques Immunized with DNA Vector Encoding an Hiv Epitope Fused with Hepatitis B Surface Antigen[J].Virology,1998,240(2):304-315.
    [74]Watkins, C.,Hopkins, J.,Harkiss, G. Reporter Gene Expression in Dendritic Cells after Gene Gun Administration of Plasmid DNA[J].Vaccine,2005,23(33):4247-4256.
    [75]郭继华,樊明文.编码基因Pac的DNA疫苗经鼻粘膜免疫定菌鼠的研究[J].中华口腔医学杂志,2002,37(006):452-455.
    [76]Babiuk, L. A.,L'Italien, J.,van Drunen Littel-van den Hurk, S., etal. Protection of Cattle from Bovine Herpesvirus Type Ⅰ (BHV-1) Infection by Immunization with Individual Viral Glycoproteins[J].Virology,1987,159(1):57-66.
    [77]Denis, M.,Slaoui, M.,Keil, G., etal. Identification of Different Target Glycoproteins for Bovine Herpes Virus Type 1-Specific Cytotoxic T Lymphocytes Depending on the Method of in Vitro Stimulation[J].Immunology,1993,78(1):7-13.
    [78]Gravier, R.,Dory, D.,Laurentie, M., etal. In Vivo Tissue Distribution-and Kinetics of a Pseudorabies Virus Plasmid DNA Vaccine after Intramuscular Injection in Swine[J].Vaccine, 2007,25(39-40):6930-6938.
    [79]Yoon, H. A.,Aleyas, A. G.,George, J. A., etal. Differential Segregation of Protective Immunity by Encoded Antigen in DNA Vaccine against Pseudorabies Virus[J].Immunology and Cell Biology,2006,84(6):502-511.
    [80]Dory, D.,Fischer, T.,Beven, V, etal. Prime-Boost Immunization Using DNA Vaccine and Recombinant Orf Virus Protects Pigs against Pseudorabies Virus (Herpes Suid 1)[J].Vaccine, 2006,24(37-39):6256-6263.
    [81]Tong, T:,Fan, H.,Tan, Y., etal. C3d Enhanced DNA Vaccination Induced Humoral Immune Response to Glycoprotein C of Pseudorabies Virus[J].Biochemical and Biophysical Research Communication,2006,347(4):845-851.
    [82]Xiao, S.,Chen, H.,Fang, L., etal. Comparison of Immune Responses and Protective Efficacy of Suicidal DNA Vaccine and Conventional DNA Vaccine Encoding Glycoprotein C of Pseudorabies Virus in Mice[J].Vaccine,2004,22(3-4):345-351.
    [83]Holland, P. M.,Abramson, R. D.,Watson, R., etal. Detection of Specific Polymerase Chain Reaction Product by Utilizing the 5'→3'Exonuclease Activity of Thermus Aquaticus DNA Polymerase[J].Proceedings of the National Academy of Sciences of the United States of America,1991,88(16):7276-7280.
    [84]Ozaki, H.,McLaughlin, L. W. The Estimation of Distances between Specific Backbone-Labeled Sites in DNA Using Fluorescence Resonance Energy Transfer[J].Nucleic Acids Research,1992,20(19):5205-5214.
    [85]Gunson, R. N.,Collins, T. C.,Carman, W. F. Practical Experience of High Throughput Real Time PCR in the Routine Diagnostic Virology Setting[J].Journal of Clinical Virology,2006, 35(4):355-367.
    [86]张蓓,沈立松.实时荧光定量PCR的研究进展及其应用[J].国外医学:临床生物化学与检验学分册,2003,24(6):327-329.
    [87]Weidmann, M.,Meyer-Konig, U.,Hufert, F. T. Rapid Detection of Herpes Simplex Virus and Varicella-Zoster Virus Infections by Real-Time PCR[J].Journal of Clinical Microbiology,2003, 41(4):1565-1568.
    [88]Heid, C. A.,Stevens, J.,Livak, K. J., etal. Real Time Quantitative PCR[J].Genome Research, 1996,6(10):986-994.
    [89]Brand, C. J.,Docherty, D. E. Post-Epizootic Surveys of Waterfowl for Duck Plague (Duck Virus Enteritis)[J].Avian Dis,1988,32(4):722-730.
    [90]Deng, M. Y.,Burgess, E. C.,Yuill, T. M. Detection of Duck Plague Virus by Reverse Passive Hemagglutination Test[J].Avian Dis,1984,28(3):616-628.
    [91]Islam, M. R.,Nessa, J.,Halder, K. M. Detection of Duck Plague Virus Antigen in Tissues by Immunoperoxidase Staining[J].Avian Pathol,1993,22(2):389-393.
    [92]Wolf, K.,Burke, C. N.,Quimby, M. C. Duck Viral Enteritis:Microtiter Plate Isolation and Neutralization Test Using the Duck Embryo Fibroblast Cell Line[J].Avian Dis,1974,18(3): 427-434.
    [93]Burgess, E. C.,Ossa, J.,Yuill, T. M. Duck Plague:A Carrier State in Waterfowl[J].Avian Dis, 1979,23(4):940-949.
    [94]Plummer, P. J.,Alefantis, T.,Kaplan, S., etal. Detection of Duck Enteritis Virus by Polymerase Chain Reaction[J].Avian Dis,1998,42(3):554-564.
    [95]Hansen, W. R.,Brown, S. E.,Nashold, S. W., etal. Identification of Duck Plague Virus by Polymerase Chain Reaction[J].Avian Dis,1999,43(1):106-115.
    [96]Mackay, I. M.,Arden, K. E.,Nitsche, A. Real-Time PCR in Virology[J].Nucleic Acids Res, 2002,30(6):1292-1305.
    [97]Yang, F. L.Jia, W. X.,Yue, H., etal. Development of Quantitative Real-Time Polymerase Chain Reaction for Duck Enteritis Virus DNA[J].Avian Dis,2005,49(3):397-400.
    [98]Guo, Y.,Cheng, A.,Wang, M., etal. Development of Taqman MGB Fluorescent Real-Time PCR Assay for the Detection of Anatid Herpesvirus 1[J].Virol J,2009,6(1):71.
    [99]Sambrook, J.,Russell, D. Molecular Cloning:A Laboratory Manual (Third Edition)[M]. Cold Spring Harbor Laboratory Press,2001.
    [100]李民,朴勤.利用恒溶氧—补料分批技术高密度培养大肠杆菌生产重组人骨形成蛋白-2a[J].生物工程学报,1998,14(3):270-276.
    [101]周雪.鸭α-干扰素基因疫苗高密度发酵及免疫鸭抗鸭瘟强毒人工感染的研究[J].四川农业大学硕士学位论文,四川雅安,四川农业大学,2007.
    [102]Dorak, T. Real-Time PCR[M]. Taylor & Francis Group Press,2006.
    [103]宋涌,程安春,汪铭书,等.聚合酶链反应(PCR)检测鸭瘟病毒方法的建立和应用[J].中国兽医杂志,2005,41(2):17-20.
    [104]段泽,程安春,汪铭书.实时荧光定量PCR检测鸭疫里默氏杆菌方法的建立和应用[J].中国兽医杂志,2008,44(2):11-15.
    [105]Yang, M.,Cheng, A.,Wang, M., etal. Development and Application of a One-Step Real-Time Taqman RT-PCR Assay for Detection of Duck Hepatitis Virus Typel [J].J Virol Methods,2008, 153(1):55-60.
    [106]Yang, J. L.,Cheng, A. C.,Wang, M. S., etal. Development of a Fluorescent Quantitative Real-Time Polymerase Chain Reaction Assay for the Detection of Goose Parvovirus in Vivo[J].Virol J,2009,6:142.
    [107]Chen, S.,Cheng, A. C.,Wang, M. S. Morphologic Observations of New Type Gosling Viral Enteritis Virus (NGVEV) Virulent Isolate in Infected Duck Embryo Fibroblasts[J].Avian Dis, 2008,52(1):173-178.
    [108]Deng, S.,Cheng, A.,Wang, M., etal. Serovar-Specific Real-Time Quantitative Detection of Salmonella Enteritidis in the Gastrointestinal Tract of Ducks after Oral Challenge[J].Avian Dis, 2008,52(1):88-93.
    [109]程安春,韩晓英,朱德康,等.间接免疫荧光染色检测石蜡切片中的鸭病毒性肠炎病毒和抗原定位[J].中国兽医学报,2008,28(8):871-875.
    [110]袁明龙,杨永纪.鸭瘟抗体检测方法研究[J].中国预防兽医学报,2001,23(2):140-143.
    [111]马秀丽,宋敏训,李玉峰,等.PCR用于鸭瘟病毒诊断的研究[J].中国预防兽医学报,2005,27(5):408-411.
    [112]Zou, Q.,Sun, K.,Cheng, A., etal. Detection of Anatid Herpesvirus 1 gC Gene by Taqman Fluorescent Quantitative Real-Time PCR with Specific Primers and Probe[J].Virol J,2010, 7(1):37.
    [113]Ulmer J M,Deck R R,De Witt C M, etal. Protective Immunity by Intramuscular Injection of Low Doses of Influenza Virus DNA Vaccines[J]. Vaccine,1994,12(16):1541-1544.
    [114]Dupuis, M.,Denis-Mize, K.,Woo, C., etal. Distribution of DNA Vaccines Determines Their Immunogenicity after Intramuscular Injection in Mice[J].J Immunol,2000,165(5): 2850-2858.
    [115]Oh, Y.-K.,Kim, J.-P.,Hwang, T.-S., etal. Nasal Absorption and Biodistribution of Plasmid DNA:An Alternative Route of DNA Vaccine Delivery[J].Vaccine,2001,19(31):4519-4525.
    [116]Winegar, R. A.,Monforte, J. A.,Suing, K. D., etal. Determination of Tissue Distribution of an Intramuscular Plasmid Vaccine Using PCR and in Situ DNA Hybridization[J].Hum Gene Ther, 1996,7(17):2185-2194.
    [117]Parker, S. E.,Borellini, F.,Wenk, M. L., etal. Plasmid DNA Malaria Vaccine:Tissue Distribution and Safety Studies in Mice and Rabbits[J].Hum Gene Ther,1999,10(5):741-758.
    [118]陈创夫,余兴龙,等.猪瘟基因疫苗在小鼠肌肉中的动态分布表达[J].畜牧兽医学报,2002,33(3):280-284.
    [119]Rainczuk, A.,Smooker, P. M.,Kedzierski, L., etal. The Protective Efficacy of Msp4/5 against Lethal Plasmodium Chabaudi Adami Challenge Is Dependent on the Type of DNA Vaccine Vector and Vaccination Protocol[J].Vaccine,2003,21(21-22):3030-3042.
    [120]王友冰,余兴龙.基因枪技术发展综述[J].现代科学仪器,2003,(3):37-41.
    [121]Danko, I.,Wolff, J. A. Direct Gene Transfer into Muscle[J].Vaccine,1994,12(16):1499-1502.
    [122]Fynan, E. F.,Webster, R. G.,Fuller, D. H., etal. DNA Vaccines:Protective Immunizations by Parenteral, Mucosal, and Gene-Gun Inoculations[J].Proc Natl Acad Sci USA,1993,90(24): 11478-11482.
    [123]Klinman, D.,Takeno, M.,Ichino, M.,etal. DNA Vaccine:Safety and Efficacy Issues[J].Springer Semin Immunopathol,1997,19(2):245-256.
    [124]Rabchevsky, A. G.,Degos, J. D.,Dreyfus, P. A. Peripheral Injections of Freund's Adjuvant in Mice Provoke Leakage of Serum Proteins through the Blood-Brain Barrier without Inducing Reactive Gliosis[J].Brain Res,1999,832(1-2):84-96.
    [125]Cserr, H. F.,DePasquale, M.,Harling-Berg, C. J., etal. Afferent and Efferent Arms of the Humoral Immune Response to Csf-Administered Albumins in a Rat Model with Normal Blood-Brain Barrier Permeability[J].J Neuroimmunol,1992,41(2):195-202.
    [126]Yoshida, A.,Nagata, T.,Uchijima, M., etal. Advantage of Gene Gun-Mediated over Intramuscular Inoculation of Plasmid DNA Vaccine in Reproducible Induction of Specific Immune Responses[J].Vaccine,2000,18(17):1725-1729.
    [127]Gregoriadis, G.,Saffie, R.,de Souza, J. B. Liposome-Mediated DNA Vaccination[J].FEBS Lett, 1997,402(2-3):107-110.
    [128]张馨玉,金华利,杨若耶,等.壳聚糖对口蹄疫DNA疫苗黏膜免疫的影响[J].中国农业大学学报,2005,10(5):21-25.
    [129]Kreuter, J. Nanoparticulate Systems for Brain Delivery of Drugs[J].Adv Drug Deliv Rev,2001, 47(1):65-81.
    [130]Roy, K.,Mao, H. Q.,Huang, S. K., etal. Oral Gene Delivery with Chitosan-DNA Nanoparticles Generates Immunologic Protection in a Murine Model of Peanut Allergy[J].Nat Med,1999, 5(4):387-391.
    [131]Singh, M..Briones, M..Ott. G., etal. Cationic Microparticles:A Potent Delivery System for DNA Vaccines[J].Proc Natl Acad Sci USA,2000,97(2):811-816.
    [132]杨富强,陈光明.DNA疫苗诱导健康小鼠抗—Hbs产生的实验研究[J].中华传染病杂志,2001,19(002):69-72.
    [133]豆文波..猪繁殖与呼吸综合征病毒orf5基因疫苗在小鼠体内动态分布与表达[J].四川农业大学硕士学位论文,四川雅安,四川农业大学,2005.
    [134]Manthorpe, M.,Cornefert-Jensen, F.,Hartikka, J.,等. Gene Therapy by Intramuscular Injection of Plasmid DNA:Studies on Firefly Luciferase Gene Expression in Mice[J].Hum Gene Ther, 1993,4(4):419-431.
    [135]徐海燕.活体转染质粒在小鼠皮肤组织中的表达[J].中国医科大学硕士学位论文,辽宁沈阳,中国医科大学,2004.
    [136]Felgner, P. L.,Gadek, T. R.,Holm, M., etal. Lipofection:A Highly Efficient, Lipid-Mediated DNA-Transfection Procedure[J].Proc Natl Acad Sci USA,1987,84(21):7413-7417.
    [137]魏晓红,梁文权,潘远江.PEG化壳聚糖/DNA自组装复合物的制备.表征和体外Hela细胞转染研究[J].高等学校化学学报,2003,24(11):1993-1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700