直升机尾传动系统的横向振动和扭转振动分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传动系统是直升机的重要组成部分,其振动特性直接影响着整个直升机的性能。尾传动系统是一个多级数、带分支、含非平行轴的齿轮耦合复杂转子系统。由于锥齿轮啮合的作用,每段传动轴的振动已不再是独立的,而是彼此耦合的。直升机尾传动系统日益向高效率、高速度、高精度、高承载能力方向发展,这就有可能使系统进入共振区而发生共振现象。在传动系统设计时,需要掌握结构参数对系统固有特性的影响规律,从而调整参数,使系统在工作中避免共振,保证直升机的稳定性与可靠性。一般来讲,传动系统发生两类振动即横向振动和扭转振动。
     本文首先根据振动学理论和有限元基本原理,分析了直升机尾传动系统的结构特点;建立了直升机尾传动系统的三维实体模型;结合机械动力学等效原理,等效出直升机尾传动系统的动力学模型,包括直升机尾传动系统的弯曲动力学模型、扭转动力学模型,运用ANSYS软件平台建立了直升机尾传动系统的参数化模型。
     其次,分析了直升机尾传动系统的横向振动,包括单段轴、水平轴段以及尾传动系统的固有频率和振型;并在此基础上分析了支承刚度对尾传动系统横向振动的影响以及支承数量对水平轴段的影响,进一步分析了尾传动系统横向振动的谐响应分析。
     最后,分析了尾传动系统的扭转振动,包括扭转动力学模型的建立以及有限元模型的建立;通过等效质量-弹簧系统和ANSYS有限元分别分析了尾传动系统的扭转振动的固有频率和振型。对比两种分析结果,进一步分析了尾传动系统扭转振动的谐响应分析。
Drive system is an important part of helicopter, the vibration characteristics directly impact on the helicopter's performance. Tail drive system is a multi-series, with branches and including non-parallel to the axis of the rotor gear coupled complex system. Due to the role of the bevel gear engaging, each of the shaft vibration is no longer independent, but coupled with each other. The direction of helicopter tail drive is high-efficiency, high-speed, high precision and high load capacity, which may caused the system entering the resonance zone, and may caused of resonance phenomenon. In the design of drive system, which needs to master the influence law of structural parameters of the system inherent characteristics, thus adjust the parameters to avoid the system resonance and to ensure the helicopter stability and reliability. In general, drive system occurrence lateral vibration and torsion vibration.
     This paper based on vibration theory and the basic principles of finite element, analysis of the structure of the helicopter drive characteristics. Build the three-dimensional solid model of the helicopter tail drive system, and combine mechanical dynamics equivalence principle. Equivalent the helicopter tail drive system dynamics model, including the helicopter's tail drive system bending dynamics model, torsion dynamics model. The use of ANSYS software platform for the establishment of a helicopter tail drive system parameterized model.
     Secondly, analysis of lateral vibration of the helicopter tail drive, including the natural frequency and vibration mode of the single shaft, horizontal continuous shaft, the drive system. On the basis of analysis of the supporting stiffness influence of the drive system lateral vibration, as well as the number of supports influence of horizontal continuous shaft. Further analysis the helicopter tail drive system lateral vibration harmonic response.
     Finally, analysis of torsion vibration of the helicopter tail drive system, including build torsion dynamics model and finite element model. Through equivalent mass-spring system and ANSYS finite element, respectively analysis of the helicopter tail drive system's natural frequency and vibration modes of torsion vibration. Contrast two kinds of analysis results. Further analysis of the helicopter tail drive system of torsion vibration harmonic response.
引文
[1]邵忍平.机械系统动力学[M].北京:机械工业出版社,2005,6~7,244~251.
    [2]张晓谷.直升机动力学设计[M].北京:航空工业出版社,1995,3,109.
    [3]航空航天工业部技术研究院.直升机动力学手册[M].北京:航空工业出版社,1991,1,182.
    [4]许兆棠,朱如鹏.直升机尾传动系扭转振动的分析[J].航空学报,2007,28(2),425~431.
    [5]王三民.旋翼激励下新型直升机传动系统多状态响应特性研究[J].航空学报,2005,20(5),882~889.
    [6]覃海鹰,洪蛟.直升机尾桨毂拉扭条的设计与制造[J].直升机技术,2003,01.
    [7]王辉,陈华.直升机发动机控制系统与旋翼/动力传动扭振系统耦合稳定性分析[J].直升机技术,2002,04.
    [8]徐敏.直升机传动系统机械扭振计算与试验联合建模[J].振动、测试与诊断,2004,01,41~45.
    [9]凌爱民,孙东红.直升机旋翼/动力传动链扭振分析与试验[J].直升机技术,2003,01.
    [10] Michael J.Hirschberg. THE AMERICAN HELICOPTER, July 2000.
    [11] CMHG6510D001, CMH Transmission System Dynamic Balancing Procedure For Tail Drive Shafts P/N CZ6500A00631 and P/N CZ6500A00731.
    [12] Li, Ping (Department of Engineering, University of Leicester); Postlethwaite, Ian; Turner, Matthew, Parameter estimation techniques for helicopter dynamic modeling, 2007 American Control Conference, ACC, Jul 9-13 2007, New York, NY, United States.
    [13] A. C. Klee cases, Qi Domanski, Yakovlev, Rotor dynamics, 1987, Soviet Union.
    [14] Joon W L, Mark S D. Optimal sizing of composite power Drive shafting. Journal of American Helicopter Society, 1986, 31(1):75~83.
    [15] A.T.Conlisk. MODERN HELICOPTER AERODYNAMICS. Journal of American Helicopter Society, 1997, 29:515~567.
    [16] D. Cvetkovic, I. Kostic, C. Mitrovic, A. Bengin, Dusko Radakovic. Mathematical models of helicopter flight dynamics. 40th AIAA Aerospace Sciences Meeting & Exhibit 14-17 January 2002 / Reno, NV.
    [17] Alexander Bogdanov, Magnus Carlsson, Geoff Harvey, John Hunt. STATE-DEPENDENT RICCATI EQUATION CONTROL OF A SMALL UNMANNED HELICOPTER. OGI Schoolof Science and Engineering, OHSU 2000 NW Walker Rd, Beaverton, Oregon 97006.
    [18] 4.Analysis of US Civil Rotorcraft Accidents from 1990 to 1996 and Implications for a Safety Program. Iseler, L and De Maio, J.Presented at the American Helicopter Society 57th Annual Forum, Washington DC May 9-11, 2001.
    [19] Smidt H A, Wang K W, Smith E C. Stability of a segmented supercritical driveline with non-constant velocity couplings subjected to misalignment and torque. Journal of Sound and Vibration, 2004, 277(3) 859~918.
    [20]刘相新,孟宪颐. ANSYS基础与应用教程[M].北京:科学出版社,2006,2~3,336~372.
    [21]博嘉科技.有限元分析软件——ANSYS融会与贯通[M].北京:中国水利水电出版社,2002,132~145.
    [22]白葳,喻海良.通用有限元分析ANSYS8.0基础教程[M] .北京:清华大学出版社,2005,1~3,260~302.
    [23]张洪信.有限元基础与ANSYS应用.北京:机械工业出版社,2006,44~55.
    [24]张洪信,赵清海. ANSYS有限元分析完全手册[M] .北京:机械工业出版社,2008,50~51.
    [25]丁科,陈月顺.有限单元法[M].北京:北京大学出版社,2006,113~128.
    [26]吴宏庆.结构有限元分析[M].北京:中国铁道出版社,2000,1~3,210~222.
    [27] R.伽西,H.菲茨耐.转子动力学导论[M].北京:机械工业出版社,1986,44~55.
    [28]阎以诵,靳晓雄.工程机械动力学[M].上海:同济大学出版社,1986,50~51.
    [29]王焕定,焦兆平.有限单元法基础[M].北京:高等教育出版社,2008.
    [30]吴宏庆.结构有限元分析[M].北京:中国铁道出版社,2000,1~3,210~222.
    [31]孙之钊,萧秋庭,徐桂祺.直升机强度[M].北京:航空工业出版社,1990,113.
    [32]张波,盛和太. ANSYS有限元数值分析原理与工程应用[M].北京:清华大学大学出版社,2005,216~226.
    [33]美国ANSYS公司北京办事处. ANSYS动力学分析指南[M].
    [34]陈建中等.直升机构造学下册[M].北京:长城出版社,1996,1、38.
    [35]尹美.“啊帕奇”直升机传动系统探讨[C].中国航空学会第十二届机械动力传输学术会议论文集,2005,239.
    [36]牛牧,刘兴龙,陈嘉全.直升机尾传动轴系设计[C].中国航空学会第十二届机械动力传输学术会议论文集,2005,104~111.
    [37]肖根升,丁文强,尹美.某直升机传动系统动力轴膜盘型面设计[C].中国航空学会第十二届机械动力传输学术会议论文集,2005,288~293.
    [38]航空发动机设计手册总编委会.航空发动机设计手册[M].北京:航空工业出版社,2000,36,43,44,62.
    [39]陈建中等.直升机构造学上册[M].北京:长城出版社,1996,206~219.
    [40]李润方,王建军.齿轮系统动力学-振动?冲击?噪声[M].北京:科学出版社,1997,154~188.
    [41]石端伟.机械动力学[M].北京:中国电力出版社,2007,116~117.
    [42]周长城,胡仁喜,熊文波ANSYS 11.0基础与典型范例[M].北京:电子工业出版社,2007,132,260.
    [43]屈维德,唐恒龄.机械振动手册[M].北京:机械工业出版社,2000,135~138.
    [44]张策.机械动力学[M].北京:高等教育出版社,2000,129.
    [45] A.C.克利宗,齐曼斯基,雅科列夫.转子动力学弹性支承[M].北京:科学出版社,1987,153.
    [46]航空工业部第602研究所.直升机工程初步设计[M].
    [47]钟一谔,何衍宗,王正,李方泽.转子动力学[M].北京:清华大学出版社,1987,71.
    [48]张洪伟,张以都,王锡平,周慎杰.基于ANSYS参数化建模的农用车车架优化设计[J].农业机械学报,2007年3月,第38卷第3期.
    [49]王三民,欧卫林,袁茹.某航空发动机传动系统的固有模态分析[C].中国航空学会第十二届机械动力传输学术会议论文集,2005,158.
    [50]博弈创作室. APDL参数化有限元分析技术及其应用实例[M].北京:中国水利出版社,2005.
    [51]美国ANSYS公司北京办事处. ANSYS单元帮助手册.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700