碳材料的辐照及嬗变靶材的制造
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
每年有成千上万吨高放射性的核废料产生,慢慢积累起来必将对人类构成巨大威胁。分离嬗变技术的提出无疑给这一难题带来了曙光。这一技术是将毒性很大的MA和LLFP等核素从高放废物中分离出来然后对其进行辐照使其变成稳定或短寿命的核素。此外,碳材料在核能和航天航空领域应用广泛,所以它们在苛刻辐射环境中的结构稳定性显得尤为重要。
     本文比较系统地研究了碳纤维、多壁碳纳米管和石墨在伽马射线、电子和重离子辐照下的结构和性能的变化。研究结果发现,碳纤维在伽马射线辐照后石墨化程度逐渐增加,表面润湿性增强。用强迫共振法和单丝拉伸法两种方法测量碳纤维在伽马辐照后的杨氏模量发现,碳纤维的杨氏模量均随辐照剂量的增加而增加,在2MGy时增幅达到最大。在场发射透射电镜中,汇聚的电子束轰击到碳纤维表层时会产生明显的缺口和纳米碳洋葱。小剂量的铜离子辐照能提高碳纤维的石墨化程度,然而大剂量的铜离子辐照则会对碳纤维造成损伤。碳纤维表面的润湿性随着离子辐照剂量的增加先增强后减弱,在1015ions/cm~2时达到最佳。
     随着伽马辐照剂量的升高,多壁碳纳米管的有序化程度先降低后升高,碳纳米管表面含氧官能团增多,表面润湿性增强,碳纳米管的形貌则由管壁笔直清晰变得混乱无序再回复到相对有序。在电子辐照时,电子能量和电流密度对碳纳米管都有影响。电子辐照对碳纳米管的损伤和破坏随着电子能量和电流密度的增加而加剧。电子辐照也能在碳纳米管上形成碳洋葱,还能使两根纳米管焊接起来。碳纳米管在铜离子辐照时,随着辐照剂量的增加,有序化程度逐渐降低,表面润湿性和碳纤维一样,也呈现出先增强后减弱的趋势。在1015ions/cm~2剂量时,碳纳米管表现出一种特殊的形貌,即一部分中空另一部分闭合,然而随着辐照剂量的增加,碳纳米管完全变成无定型纳米线。离子辐照也能使碳纳米管焊接,从而使碳纳米管形成无定型纳米线的网状结构。
     与多壁碳纳米管变化趋势相反,石墨在伽马辐照后的石墨化程度先增加后减小,在200kGy时达到最大。相反的原因主要是多壁碳纳米管具有同轴卷曲的石墨烯片层的曲率。研究发现,只有辐照速率小的伽马辐照才能提高片状石墨的有序化程度。薄层片的石墨在电子辐照时,石墨片层发生弯曲并有变成球状的趋势;厚层片的石墨在电子辐照后高分辨网格条纹变得无序紊乱,但电子衍射图没有明显变化。石墨在铜离子辐照后的表面形貌与碳纤维不同,石墨表面有很多孔洞和凹坑,局部还有熔化的痕迹,石墨高分辨网格条纹也逐渐变得紊乱。无定型碳膜在离子辐照后能逐渐观察到越来越清晰的高分辨条纹像,条纹间距大概是0.36nm,无定型碳膜的石墨化是由离子辐照引起的原子重排和加热效应造成的。
     对Al_2O_3-CNTs和Si_3N_4-Re嬗变模拟靶材的制造和性能研究结果显示,用放电等离子烧结的Al_2O_3-CNTs嬗变靶材的致密度、维氏硬度和断裂韧性随着CNT含量的增加均呈现先增后减的趋势,在1vol.%含量时达到最大;而用常压烧结的Si_3N_4-Re嬗变靶材的抗弯强度随着Re含量的增加呈下降趋势,致密度保持在98%左右,超过1550oC烧结时靶材中的Re将与基体发生反应。在西安脉冲反应堆中对两种靶材进行一次24h和一次48h的中子辐照嬗变实验。由于较强的感生放射性,待冷却慢化完毕后,我们将对嬗变靶材辐照后的力学性能和辐照肿胀机理等进行研究和分析。
Every year tens of thousands tons of high radioactive nuclear waste has been produced,which will pose a great threat to humanity when they accumulate gradually. Presenting ofPartitioning and Transmutation technique bring dawn and hope to this problem. The technique isthat, first separating MA and LLFP nuclides from high radioactive nuclear waste and thenirradiating them to make them change to stable and short life nuclide. In addition, carbonmaterials have been widely applied in nuclear power and aerospace field. So the structurestability of them in severe radiation environment is quite important.
     In this paper, we studied the structure and property change of carbon fiber, MWCNT andgraphite under gamma ray, electron and Cu~(2+)irradiation systematically. The results revealed thatthe degree of graphitization of the carbon fiber gradually increased and the surface wettabilityenhanced after gamma ray irradiation. Forced resonant peak method and single filament drawingmethod were used to determine the Young’s modulus of the carbon fibers before and aftergamma irradiation, which showed that the Young’s modulus of the fiber increased withincreasing gamma dose and it reached the maximum at a dose of2MGy. In FETEM, focusedelectron beam was performed on the carbon fiber surface. It could create a gap and nano-sizedcarbon onions. Low dose Cu2+irradiation could raise the degree of graphitization of the carbonfiber while high dose ion irradiation damaged the carbon fiber. The carbon fiber surfacewettability was first enhanced and then down with increasing the ion dose and reached themaximum at the dose of1015ions/cm~2.
     With increasing gamma irradiation dose, the degree of structural order in MWCNTs wasdecreased first and then increased, the surface wettability of the nanotube was enhanced, and theclear straight fringe of the nanotube was changed to amorphous structure before it changed backto ordered structure. The damage degree to the nanotube after electron irradiation increased withincreasing the electron energy and current density. Electron irradiation could also create carbononions on MWCNTs. In addition, it could make two nanotubes weld together. When carbonnanotubes were irradiation by Cu2+, with the increase of irradiation dose, the structure ordergradually reduced, and the surface wettability presented enhancement trend before weakening like carbon fibers. At the ion dose of1015ions/cm~2, the carbon nanotubes showed a specialmorphology which contained part of the hollow structure and part of closure structure. However,the carbon nanotubes completely transformed to the amorphous nanowires with the increase ofirradiation dose. Ion irradiation could also make carbon nanotubes welding, which made theyform the amorphous nanowire reticular structure.
     In contrast to MWCNTs, the degree of graphitization of graphite was increased beforedecreased after gamma irradiation and it reached the maximum at the dose of200kGy. The mainreason for the different evolution of structural order between graphite and MWCNTs was thecurvature-induced strain. Studies have found that only low rate gamma irradiation could raise thestructure order in flaky graphite we used. When graphite with thin graphene layer was underelectron irradiation, the layers curled and showed the trend to sphere structure. The highresolution images became disorderly structure after electron irradiation of graphite with thickgraphene layer. However, the electron diffraction pattern did not change after electron irradiation.Unlike carbon fiber after Cu2+irradiation, there were a lot of holes, pits and some melting traceon the graphite surface, and the high resolution images turned to be disorderly. The amorphouscarbon film can be observed gradually clear high resolution images of fringes after ionirradiation and the fringe distance is about0.36nm. Graphitization of the amorphous carbon filmis caused by rearrangement of atoms and irradiation heating effect.
     The fabrication and properties of Al_2O_3-CNTs and Si_3N_4-Re transmutation simulationtargets were investigated. The results showed that the relative density, Vickers hardness andfracture toughness of the Al_2O_3-CNTs transmutation target sintered by SPS increased beforedecreased with increasing the content of CNTs, and they reached the maximum when the contentof CNTs was1vol.%. The bending strength of the Si_3N_4-Re transmutation target sintered bypressureless sintering method decreased with the increasing of the Re content. The relativedensity was maintained at about98%. The Si_3N_4matrix would react with Re if the sinteringtemperature exceeding1550oC. The two kinds of target were irradiated for24h and48h inXi’an pulse reactor to perform transmutation experiments. Due to the strong inducedradioactivity, we will investigate mechanical properties and irradiation swelling mechanism ofthe transmutation targets after cooling and moderation of the seal cans.
引文
[1] Leray S. Nuclear waste transmutation[J].Nuclear Instruments and Methods in PhysicsResearch,1996,113(1-4):495-500.
    [2] Bowman C D, Arthur E D, Lisowski P W, et al.Nuclear Energy Generation and WasteTransmutation Using an Acceleratordirven Intense Thermal Neutrons[J]. NuclearInstruments and Methods in Physics Research A,1992,320:336-341.
    [3] Voronkov V A, Dyachenko V M, Kostin V ya. Neutron Generation in Extended Lead TargetsUsing the Synchrophasotron Beams[J].Atomn Energia,1990,68:449-453.
    [4]梁彤祥,唐春和等.长寿命放射性废料的嬗变处理[J].核技术,2003,26(12):935–939.
    [5]李文埮.核材料导论[M].北京:化学工业出版社,2007.
    [6]刘慧强.Al-NaI放射性嬗变靶材的制造及其性能研究[D].合肥:合肥工业大学,2011:39-44.
    [7] Konings R J M, Transmutation of iodine: results of the EFTTRA-T1irradiaiton test. Journalof Nuclear Materials,1997,244:16-21.
    [8]刘建章.核结构材料[M].北京:化学工业出版社,2007.
    [9] Fitts R B, Long E L, Jr., Leitnaker J M, in Proceedings of the Conference on Fast ReactorFuelElement Technology, April,13-15,1971, New Orlean, American Nuclear Society, Hinscale.
    [10] Johnson C E, Crouthamel C E, Journal of Nuclear Materials,1970,34:101.
    [11]丁富荣,班勇,夏宗璜.辐射物理[M].北京:北京大学出版社,2004.
    [12] Egerton R F, Mcleod R, Wang F, Malac M. Basic questions related to electron-inducedsputtering in the TEM [J]. Ultramicroscopy,2010,110:991-997.
    [13]万发荣.金属材料的辐照损伤[M].北京:科学出版社,1993.
    [14] Xu Z W, Huang Y D, Zhang C H, Liu L, Zhang Y H, Wang L. Effect of gamma-rayirradiation grafting on the carbon fibers and interfacial adhesion of epoxy composites [J].Composites Science and Technology,2009,67(15-16):3261-3270.
    [15] Xu Z W, Liu L, Y. Huang, Sun Y, Wu X, Li J. Graphitization of polyacrylonitrile carbonfibers and graphite irradiated by γ rays [J]. Materials Letter,2009,63(21):1814-1816.
    [16] Xu Z W, Huang Y, Min C, Chen L, Chen L, Effect of γ-ray radiation on the polyacrylonitrilebased carbon fibers [J]. Radiation Physics and Chemistry,2010,79(8):839–843.
    [17] Xu Z W, Chen L, Liu L, Wu X, Chen L. Structure changes in multi-walled carbon nanotubescaused by γ-ray irradiation [J]. Carbon,2011,49(1):350-351.
    [18] Xu Z W, Huang Y D, Min C Y, Chen L, Chen L. Effect of γ-ray radiation on thepolyacrylonitrile based carbon fibers [J]. Radiation Physics and Chemistry,2010,79(8):839-843.
    [19] Xiao H, Lu Y G, Wang M H, Qin X Y, Zhao W Z, Luan J. Effect of gamma-irradiation onthe mechanical properties of polyacrylonitrile-based carbon fiber [J]. Carbon,2013,52:427-439.
    [20] Peng J, Qu X, Wei G, et al. The cutting of MWNTs using gamma radiationin the presence ofdilute sulfuric acid [J]. Carbon,2004,42:2741–2744.
    [21] Guo J X, Li Y G, Wu S W, et al. The effect of γ-irradiation dose on chemical modification ofmulti-walled carbon nanotubes[J]. Nanotechnology,2005,16:2385-2388.
    [22] Qian W, Chen J F, Wei L Z, et al. Gamma-ray irradiation-induced improvement of hydrogenadsorption in multiwalled carbon nanotubes[J]. Nano,2009,4(1):7-11.
    [23] Ajayan P M, Ravikumar V, Charlier J C. Surface reconstructions and dimensional changes insingle-walled carbon nanotubes[J]. Phys. Rev. Lett.,1998,81:1437-1440.
    [24] Banhart F. The formation of a connection between carbon nanotubes in an electron beam[J].Nano Letters,2001,1(6):329-332.
    [25] Zhu Y F, Yi T, Zheng B, Cao L L. The interaction of C60fullerene and carbon nanotubewith Ar ion beam[J]. Applied Surface Science,1999,137(1-4):83-90.
    [26] Oku T, Kurumada A, Kawamata K, Inagaki M. Effects of argon ion irradiation on themicrostructures and physical properties of carbon fibers [J]. Journal of Nuclear Materials,2002,303:242-245.
    [27] Wei B Q, D’Arcy-Gall J, Ajayan P M, Ramanath G. Tailoring structure and electricalproperties of carbon nanotubes using kilo-electron-volt ions [J]. Applied Physics Letters,2003,83(17):3581-3583.
    [28] Kim B, Lee D, Yang K, Lee B, Kim Y, Endo M. Electron beam irradiation-enhancedwettability of carbon fibers [J]. Applied Materials&Interfaces,2011,3(2):119-123.
    [29] Gupta S, Patel R J. Changes in the vibrational modes of carbon nanotubes induced byelectron-beam irradiation: resonance Raman spectroscopy [J]. Journal of RamanSpectroscopy,2007,38(2):188-199.
    [30] Lourie O, Wagner H D. Evaluation of Young’s modulus of carbon nanotubes bymicro-Raman spectroscopy [J]. Journal of Materials Research,1998,13(9):2418-2422.
    [31] Greene M L, Schwartz R W, Treleaven J W. Short residence time graphitization ofmesophase pitch-based carbon fibers [J]. Carbon,2002,40(8):1217-1226.
    [32] Safibonab B, Reyhani A, Golikand A N, Mortazavi S Z, Mirershadi S, Ghoranneviss M.Improving the surface properties of multi-walled carbon nanotubes after irradiation withgamma rays [J]. Applied Surface Science,2011,258(2):766-733.
    [33] Dobiá ováL, Stary V, Glogar P, Valvoda V. Analysis of carbon fibers and carbon compositesby asymmetric X-ray diffraction technique [J]. Carbon,1999,37(3):421-425.
    [34] Galiotis C, Batchelder D N. Strain dependences of the first-and second-order Ramanspectra of carbon fibres [J]. Journal of Materials Science Letters,1988,7(5):545-547.
    [35] Montes-Morán M A, Young R J. Raman spectroscopy study of HM carbon fibres: effect ofplasma treatment on the interfacial properties of single fibre/epoxy composites, Part: Fibrecharacterization [J]. Carbon,2002,40(6):845-855.
    [36] Liu F, Wang H, Xue L, Fan L, Zhu Z. Effect of microstructure on the mechanical propertiesof PAN-based carbon fibers during high-temperature graphitization [J]. Journal of MaterialsScience,2008,43(12):4316-4322.
    [37] Vázquez-Santos M B, Geissler E, László K, Rouzaud J N, Martínez-Alonso A, Tascón J MD. Comparative XRD, Raman, and TEM study on graphitization of PBO-derived carbonfibers [J]. Journal of Physics Chemistry C,2012,116(1):257-268.
    [38] Casiraghi C, Ferrari A C, Robertson J. Raman spectroscopy of hydrogenated amorphouscarbons [J]. Physical Review B,2005,72(8):0854011-14.
    [39] Sandler J, Shaffer M S P, Windle A H. Variations in the Raman peak shift as a function ofhydrostatic pressure for various carbon nanostructures: A simple geometric effect [J].Physical Review B,2003,67(3):0354171-8.
    [40] Huang Y, Young R J. Microstructure and mechanical properties of pitch-based carbon fibers[J]. Journal of Matterials Science,1994,29(15):4027-4036.
    [41] Montes-Morán M A, Young R J. Raman spectroscopy study of high-modulus carbon fibres:effect of plasma-treatment on the interfacial properties of single-fibre-epoxy compositesPart Ⅱ: Characterisation of the fibre-matrix interface [J]. Carbon,2002,40(6):857-875.
    [42] Chen J C, Harrison I R. Modification of polyacrylonitrile (PAN) cabon fiber precursor viapost-spinning plasticization and stretching in dimethyl formamide (DMF)[J].Carbon,2002,40(1):25-45.
    [43] Miao M, Hawkins S C, Cai J Y, Gengenbach T R, Knott R, Huynh C P. Effect ofgamma-irradiation on the mechanical properties of carbon nanotube yarns [J]. Carbon,2011,49(14):4940-4947.
    [44] Banhart F. Irradiation effects in carbon nanostructures [J]. Reports on Progress in Physics,1999,62(8):1181-1221.
    [45] Bourgoin J C, Corbett J W. Radiation effects: incorporating plasma science and plasmatechnology: Enhanced diffusion mechanisms [M]. Gordon and Breach Science PubleshersLtd, Great Britain,1978:157-188.
    [46] Urban K, Seeger A. Radiation-induced diffusion of point-defects during low-temperatureelectron irradiation [J]. Philosophical Magazine,1974,30(6):1395-1418.
    [47] Nanjundiah C, McDevitt S F, Koch V R. Differential capacitance measurements insolvent-free ionic liquids at Hg and C interfaces [J]. Journal of the Electrochemical Society,1997,144(10):3392-3397.
    [48] Rao S S. Mechanical Vibrations: Continuous Systems [M]. Fourth ed., Upper Saddle River,New Jersey,2004:613.
    [49] Miao M H, Hawkins S C, Cai J Y, Gengenbach T R, Knott R, Huynh C P. Effect ofgamma-irradiation on the mechanical properties of carbon nanotube yarns [J]. Carbon,2011,49(14):4940-4947.
    [50] Filleter T, Espinosa H D. Multi-scale mechanical improvement produced in carbon nanotubefibers by irradiation cross-linking [J]. Carbon,2013,56:1-11.
    [51] Liu W H, Wang M H, Xing Z, Wu G Z. The free radical species in polyacrylonitrile fibersinduced by γ-irradiation and their decay behaviors[J]. Radiation Physics and Chemistry,2012,81(7):835-839.
    [52] Badawy S M, Dessouki A M. Cross-linked polyacrylonitrile prepared by radiation-inducedpolymerization technique [J]. The Journal of Physical Chemistry B,2003,107(41):11273-11279.
    [53] Dossantos L G C, Kawano Y. Degradation of polyacrylonitrile by X-ray-radiation [J].Polymer Degradation and Stability,1994,44(1):27-32.
    [54] Hill D J T, Lang A P, O’Donnell J H, Pomery P J. The effects of γ-radiation onpolyacrylonitrile [J]. Polymer Degradation and Stability,1992,38(3):193-203.
    [55] Banhart F. Irradiation of carbon nanotubes with a focused electron beam in the electronmicroscope [J]. Journal of Materials Science,2006,41(14):4505-4511.
    [56] Yuzvinsky T D, MichelsonW, Aloni S, Begtrup G E, Kis A, Zettl A. Shringking a carbonnanotube [J]. Nano Letters,2006,6(12):2718-2722.
    [57] Cosslett V E. Beam and specimen: Radiation damage and image resolution [J]. Berichte derBunsengesellschaft für physikalische Chemie,1970,74(11):1171-1175.
    [58] Mckinley W A, Feshbach H. The Coulomb Scattering of relativistic electrons by nuclei [J].Physical Review,1948,74(12):1759-1763.
    [59] Wang J J, Rangel E C, Cruz N C, Swart J W, Moraes M A B. Amorphous carbon nitridefilms irradiated with argon ions [J]. Nuclear Instruments and Methods in Physics ResearchB,2000,166-167:420-425.
    [60] Park S J, Seo M K, Rhee K Y. Effect of Ar+ion beam irradiation on the physicochemicalcharacteristics of carbon fibers [J]. Carbon,2003,41(3):592-594.
    [61] Ramesh B P, Blau W J, Tyagi P K, Misra D S, Ali N, Gracio J, Cabral G, Titus E.Thermogravimetric analysis of cobalt-filled carbon nanotubes deposited by chemicalvapour deposition [J]. Thin Solid Films,2006,494(1-2):128-132.
    [62] Kitiyanan B, Alvarez W E, Harwell J H, Resasco D E. Controlled production of single-wallcarbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts [J].Chemical Physics Letters,2000,317(3-5):497-503.
    [63] Huang W, Wang Y, Luo G H, Wei F.99.9%purity multi-walled carbon nanotubes byvacuum high-temperature annealing [J]. Carbon,2003,41(13):2585-2590.
    [64] Shi Z J, Lian Y F, Liao F H, Zhou X H, Gu Z N, Zhang Y G, Iijima S, Purification ofsingle-wall carbon nanotubes [J]. Solid State Communications,1999,112(1):35-37.
    [65] Chen C M, Chen M, Leu F C, Hsu S Y, Wang S C, Shi S C, Chen C F. Purification ofmulti-walled carbon nanotubes by microwave digestion method [J]. Diamond and RelatedMaterials,2004,13(4-8):1182-1186.
    [66] Salvetat J P, Fehér T, L’Huillier C, Beuneu F, Forró L. Anomalous electron spin resonancebehavior of single-walled carbon nanotubes [J]. Physical Review B,2005,72(7):0754401-6.
    [67] Beuneu F, L’Huillier C, Salvetat J P, Bonard J M, Forró L. Modification of multiwall carbonnanotubes by electron irradiation: An ESR study [J]. Physical Review B,1999,59(8):5945-5949.
    [68]石野桀.照射损伤.东京大学出版会,1979.
    [69] Vant Lint V A J, Flanagan T M, Leadon R E, Naber J A. Mechanisms of radiation effects inelectronic materials [M]. New York: Wiley-Interscience,1980.
    [70] Ding F, Jiao K, Lin Y, Yakobson BI. How evaporating carbon nanotubes retain theirperfection [J]. Nano Letters,2007,7(3):681-684.
    [71] Kis A, Jensen K, Aloni S, Mickelson W, Zettl A. Interlayer forces and ultralow slidingfriction in multiwalled carbon nanotubes [J]. Physical Review Letters,2006,97(2):0255011-4.
    [72] Telling RH, Ewels CP, El-Barbary AA, Heggie MI. Wigner defects bridge the graphite gap.Nature Materials,2003,2(5):333-337.
    [73] SkákalováV, Dettlaff-Weglikowska U, Roth S. Gamma-irradiated and functionalized singlewall nanotubes [J]. Diamond and Related Materials,2004,13(2):296-298.
    [74] Okpalugo T, Papakonstantinou P, Murphy H, Mclaughlin J, Brown N M D. High resolutionXPS characterization of chemical functionalised MWCNTs and SWCNTs [J]. Carbon,2005,43(1):153–161.
    [75] Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C.Chemical oxidation of multiwalled carbon nanotubes [J]. Carbon,2008,46(6):833-840.
    [76] Yang T Z, Luo S Z. Structural transformation of multiwalled carbon nanotubes undergamma-ray irradiation [J]. Acta Physica Sinica (in Chinese),2010,59(1):447-452.
    [77] Gan Y J, Kotakoski J, Krasheninnikov A V, Nordlund K, Banhart F. The diffusion of carbonatoms inside carbon nanotubes [J]. New Journal of Physics,2008,10:0230221-9.
    [78] Smith B W, Luzzi D E. Electron irradiation effects in single wall carbon nanotubes [J].Journal of Applied Physics,2001,90(7):3509-3515.
    [79] Terrones M, Terrones H, Banhart F, Charlier J C, Ajayan P M. Coalescence of single-walledcarbon nanotubes [J]. Science,2000,288(5469):1226-1229.
    [80] Terrones M, Banhart F, Grobert N, Charlier J C, Terrones H, Ajayan P M. Molecularjunctions by joining single-walled carbon nanotubes [J]. Physical Review Letters,2002,89(7):0755051-4.
    [81] Nie A, Wang P, Wang H T, Mao S X. Defect-driven room-temperature coalescence ofdouble-walled carbon nanotubes [J]. Nanotechnology,2010,21(24):2453021-4.
    [82] Elman B S, Dresselhaus M S, Dresselhaus G, Maby E W, Mazurek H. Raman scatteringfrom ion-implanted graphite [J]. Physical Review B,1981,24(2):1027-1034.
    [83] Ni Z C, Li Q T, Gong J L, Zhu D Z, Zhu Z Y. Structural change of carbon nanotubesproduced by Si ion beam irradiation [J]. Nuclear Instruments and Methods in PhysicsResearch B,2007,260(2):542-546.
    [84]胡建刚.带电粒子束作用下碳纳米管结构转变的实验研究[D].上海:中国科学院上海应用物理研究所,2006:47.
    [85] Mathew S, Bhatta U M, Joseph B, Dev B N. KeV Ag ion irradiation induced damage onmultiwalled carbon nanotubes [J]. Nuclear Instruments and Methods in Physics Research B,2007,264(1):36-40.
    [86] Raghuveer M S, Ganesan P G, D’Arcy-Gall J, Ramanath G, Marshall M, Petrov I.Nanomachining carbon nanotubes with ion beams [J]. Applied Physics Letters,2004,84(22):4484-4486.
    [87] Ni Z C, Li Q T, Yan L, Gong J L, Zhu D Z. Welding of multi-walled carbon nanotubes byion beam irradiation [J]. Carbon,2008,46(2):376-378.
    [88] Wang Z, Yu L, Zhang W, Ding Y, Li Y, Han J, Zhu Z, Xu H, He G, Chen Y, Hu G.Amorphous molecular junctions produced by ion irradiation on carbon nanotubes [J].Physics Letters A,2004,324(4):321-325.
    [89] Krasheninnikov A V, Nordlund K. Ion and electron irradiation-induced effects innanostructured materials [J]. Journal of Applied Physics,2010,107(7):0713011-70.
    [90] Pimenta M A, Dresselhaus G, Dresselhaus M S, Cancado L G, Jorio A, Saito R. Studyingdisorder in graphite-based systems by Raman spectroscopy [J]. Physical ChemistryChemical Physics,2007,9(11):1276–1291.
    [91] Nikolaenko V A, Karpukhin V I. Radiation annealing of defects under the effect ofγ-radiation. Journal of Nuclear Materials,1996,233-237(2):1067-1069.
    [92] Cataldo F. A Raman study on radiation-damaged graphite by gamma-rays [J]. Carbon,2000,38(4):634-636.
    [93] Galván D H, Garzón I L, Santiago P, José-Yacamán M. Structural changes and electronicproperties of gamma irradiated graphite: An experimental and theoretical study [J].Fullerene Science and Technology,1998,6(5):867-883.
    [94] Krasheninnikov A V, Banhart F, Li J X, Foster A S, Nieminen R M. Stability of carbonnanotubes under electron irradiation: Role of tube diameter and chirality [J]. PhysicalReview B,2005,72(12):1254281-6.
    [95] Holmstr m E, Toikka L, Krasheninnikov A V, Nordlund K. Response of mechanicallystrained nanomaterials to irradiation: Insight from atomistic simulations [J]. PhysicalReview B,2010,82(4):0454201-5.
    [96] Krasheninnikov A V, Lehtinen P O, Foster A S, Nieminen R M. Bending the rules:Contrasting vacancy energetics and migration in graphite and carbon nanotubes [J].Chemical Physics Letters,2006,418(1-3):132-136.
    [97] Krasheninnikov A V, Nordlund K. Irradiation effects in carbon nanotubes [J]. NuclearInstruments and Methods in Physics Research B,2004,216:355-366.
    [98] Krasheninnikov A V, Nordlund K. Ion and electron irradiation-induced effects innanostructured materials [J]. Journal of Applied Physics,2010,107(7):0713011-70.
    [99] J rvi T T, Pakarinen J A, Kuronen A, Nordlund K. Enhanced sputtering from nanoparticlesand thin films: Size effects [J]. Europhysics Letters,2008,82(2):260021-4.
    [100] Nakai K, Kinoshita C, Matsunaga A. A study of amorphization and microstructuralevolution of graphite under electron or ion irradiation [J]. Ultramicroscopy,1991,39(1-4):361-368.
    [101]郁金南.材料辐照效应[M].北京:化学工业出版社,2007.
    [102] B rrnert F, Avdoshenko S M, Bachmatiuk A, Ibrahim I, Büchner B, Cuniberti G, RümmeliM H. Amorphous carbon under80kV electron irradiation: A means to make or breakgraphene [J]. Advanced Materials,2012,24(41):5630-5635.
    [103] Yajima A, Abe S, Fuse T, Mera Y, Maeda K, Suzuki K. Electron-irradiation-inducedordering in tetrahedral amorphous carbon films [J]. Molecular Crystals and Liquid Crystals,2002,388(1):147-151.
    [104] Liang S, Yajima A, Abe S, Mera Y, Maeda K. Evolution kinetics of sp2ordering intetrahedral amorphous carbon films induced by electron irradiation [J]. Surface Science,2005,593(1-3):161-167.
    [105] Crosslett V E. Radiation damage in the high resolution electron microscopy of biologicalmaterials: A review [J]. Journal of Microscopy,1978,113(2):113-129.
    [106] Zhan G D, Kuntz J D, Wan J, Mukherjee A K. Single-wall carbon nanotubes as attractivetoughening agents in alumina-based nanocomposites [J]. Nature Materials,2003,2(1):38-42.
    [107] Estili M, Takagi K, Kawasaki A. Multiwalled carbon nanotubes as a unique agent tofabricate nanostructure-controlled functionally graded alumina ceramics [J]. ScriptaMaterialia,2008,59(7):703-705.
    [108] Estili M, Kawasaki A. An approach to mass-producing individually alumina-decoratedmulti-walled carbon nanotubes with optimized and controlled compositions [J]. ScriptaMaterialia,2008,58(10):906-909.
    [109] Estili M, Kawasaki A, Sakamoto H, Mekuchi Y, Kuno M, Tsukada T. The homogeneousdispersion of surfactantless, slightly disordered, crystalline, multiwalled carbon nanotubesin α-alumina ceramics for structural reinforcement [J]. Acta Materialia,2008,56(15):4070-4079.
    [110] Yoshio S, Tatami J, Wakihara T, Yamakawa T, Nakano H, Komeya K, Meguro T. Effect ofCNT quantity and sintering temperature on electrical and mechanical properties ofCNT-dispersed Si3N4ceramics [J]. Journal of the Ceramic Society of Japan,2011,119(1):70-75.
    [111] Osendi M I, Gautheron F, Miranzo P, Belmonte M. Dense and homogenous silicon nitridecomposites containing carbon nanotubes [J]. Journal of Nanoscience and Nanotechnology,2009,9(10):6188-6194.
    [112] Balázsi C, Wéber F, K vér Z, Shen Z, Kónya Z, Kasztovszky Z, Vértesy Z, Biró L P,Kiricsi I, Arató P. Application of carbon nanotubes to silicon nitride matrix reinforcements[J]. Current Applied Physics,2006,6(2):124-130.
    [113] Balázsi C, Sedlá ková K, Czigány Z. Structural characterization of Si3N4-carbon nanotubeinterfaces by transmission electron microscopy [J]. Composites Science and Technology,2008,68(6):1596-1599.
    [114] Balázsi C, Kónya Z, Wéber F, Biró L P, Arató P. Preparation and characterization of carbonnanotube reinforced silicon nitride composites [J]. Materials Science and Engineering C,2003,23(6):1133-1137.
    [115] Pasupuleti S, Peddetti R, Santhanam S, Jen K P, Wing Z N, Hecht M, Halloran J P.Toughening behavour in a carbon nanotube reinforced silicon nitride composite [J].Materials Science and Engineering A,2008,491(1-2):224-229.
    [116] Xu C L, Wei B Q, Ma R Z, Liang J, Ma X K, Wu D H. Fabrication of aluminum-carbonnanotube composites and their electrical properties [J]. Carbon,1999,37(5):855-858.
    [117] Jiang D L, Zhang J X, Lv Z H. Multi-wall carbon nanotubes (MWCNTs)-SiC compositesby laminated technology [J]. Journal of the European Ceramic Society,2012,32(7):1419-1425.
    [118] Mazaheri M, Mari D, Hesabi Z R, Schaller R, Fantozzi G. Multi-walled carbonnanotube/nanostructured zirconia composites: Outstanding mechanical properties in a widerange of temperature [J]. Composites Science and Technology,2011,71(7):939-945.
    [119] Peigney A, Garcia F L, Estournès C, Weibel A, Laurent C. Toughening and hardending indouble-walled carbon nanotube/nanostructured magnesia composites [J]. Carbon,2010,48(7):1952-1960.
    [120] Samal S S, Bal S. Carbon nanotube reinforced ceramic matrix composites-A review [J].Journal of Minerals and Materials Characterization and Engineering,2008,7(4):355-370.
    [121] Belmonte M, Vallés C, Maser W K, Benito A M, Martinez M T, Miranzo P, Osendi M I.Processing route to disentangle multi-walled carbon nanotube towards ceramic composite[J]. Journal of Nanoscience and Nanotechnology,2009,9(10):6164-6170.
    [122] Xia Z, Riester L, Curtin W A, Li H, Sheldon B W, Liang J, Chang B, Xu J M. Directobservation of toughening mechanisms in carbon nanotube ceramic matrix composites [J].Acta Materialia,2004,52(4):931-944.
    [123] Yamamoto G, Omori M, Hashida T, Kimura H. A novel structure for carbon nanotubereinforced alumina composites with improved mechanical properties [J]. Nanotechnology,2008,19(31):3157081-7.
    [124] Sun J, Gao L, Li W. Colloidal processing of carbon nanotube/alumina composites [J].Chemistry of Materials,2002,14(12):5169-5172.
    [125] He C N, Tian F, Liu S J. A carbon nanotube/alumina network structure for fabricatingalumina matrix composites [J]. Journal of Alloys and Compounds,2009,478(1-2):816-819.
    [126] Wei T, Fan Z J, Luo G H, Wei F. A new structure for multi-walled carbon nanotubesreinforced alumina nanocomposite with high strength and toughness [J]. Materials Letters,2008,62(4-5):641-644.
    [127] Jiang D T, Thomson K, Kuntz J D, Ager J W, Mukherjee A K. Effect of sinteringtemperature on a single-wall carbon nanotube-toughened alumina-based nanocomposite [J].Scripta Materialia,2007,56(11):959-962.
    [128] Chen J, Hamon M A, Hu H, Chen Y S, Rao A M, Eklund P C, Haddon R C. Solutionproperties of single-walled carbon nanotubes [J]. Science,1998,282(5386):95-98.
    [129] Hernadi K, Couteau E, Seo J W, Forró L. Al(OH)3/Multiwalled carbon nanotube composite:Homogeneous coverage of Al(OH)3on carbon nanotube surfaces [J]. Langmuir,2003,19(17):7026-7029.
    [130]赵景淞.陶瓷基嬗变靶材的制备及性能研究[D].合肥:合肥工业大学,2011:42-47.
    [131] Yang H T, Gao L, Yuan R Z, Yang G T, Huang P Y. Effect of MgO/CeO2on pressurelesssintering of silicon nitride [J]. Materials Chemistry and Physics.2001,69(1-3):281-283.
    [132] Liu X J, Huang Z Y, Ge Q M, Sun X W, Huang L P. Microstructure and mechanicalproperties of silicon nitride ceramics prepared by pressureless sintering withMgO-Al2O3-SiO2as sintering additive [J]. Journal of the European Ceramic Society,2005,25(14):3353-3359.
    [133]张玉山.长寿命核废物嬗变处理的研究综述[J].原子核物理评论,1997,14(4):251-258.
    [134]罗上庚.高放废物的分离与嬗变[J].辐射防护,1996,16(1):72-75.
    [135]杨岐,卜永熙,李达忠,王克强,阮桂兴,关建维,岳升.西安脉冲反应堆[J].核动力工程,2002,23(6):1-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700