携带促血管生成素1基因的间充质干细胞干预脂多糖致炎症性肺损伤的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景及目的:
     以急性肺部感染为主的感染所致的肺损伤仍然是急性肺损伤发病的最重要,最常见因素。其中以脂多糖所致炎症性肺损伤为多见,目前尚缺乏十分有效的辅助治疗手段。我国目前缺乏大样本的相关的流行病学资料,上海市12家大学附属医院的15个ICU的为期1年的前瞻性研究显示,ALI/ARDS的最常见患病因素为肺炎(34.3%)和肺外败血症(30.6%),且样本中患者90天死亡率达到70.4%,足见感染性肺损伤的多发性和严重性。本课题设想将间充质干细胞(Mesenchymal stem cells,MSC)载体,利用基因转染技术使其携带促血管生成素1(Agiopoietin-1,Ang1)基因,回输体内进行干预脂多糖(LPS)所致的肺损伤模型,充分利用基因治疗与干细胞治疗的优点,有效干预LPS所致肺损伤。
     方法:
     采用MSCs分离、培养和扩增至第4代,经流式细胞仪鉴定,得到纯度较高的MSCs。同时以三质粒共转染法在293T细胞中制备病毒颗粒Lenti-Ang1和Lenti-EGFP,并转染MSCs,通过试验确定转染的最佳M.O.I.和最佳时间,并通过RT-PCR和western-blot检测转染后MSCs中Ang1的基因和蛋白表达,确定转染成功。以脂多糖雾化吸入的方式诱导小鼠炎症性肺损伤模型,设未处理组为对照组,设三组干预组,包括:携带Ang1的MSCs组(MSC-Ang1组),单纯Ang1组(Ang1组)和单纯MSCs组(MSC组)。观察并记录生存天数,计算生存率;提取肺组织总蛋白并用western blot方法检测Ang1蛋白的表达;测定肺部炎症和损伤指标包括肺组织髓过氧化物酶(MPO)活性和肺湿干比,实时荧光定量RT-PCR检测肺组织中TNF-.的mRNA含量;光镜观察肺组织病理学改变并进行评估;荧光显微镜检测肺组织中外源MSCs携带的eGFP所发荧光,免疫组化双染色进行外源细胞的定位,确定外源MSCs源性细胞在肺部的表现。
     结果:
     1.改良的Peister法能成功分离培养到符合实验需要的较高纯度的MSCs。
     2.通过Lentiviral载体系统,Ang1可转染MSCs并在其中稳定表达。其最佳MOI为20,最佳时间为第5天,转染效率在90%以上。
     3.CD44,Sca-1,CD31和CD45等MSCs的重要表面标记,在转染前后未见明显改变,提示转染Ang1不影响MSCs的细胞表型及特性。
     4.MSCs本身微量表达Ang1,而转染外源基因Ang1后,MSCs中Ang1的mRNA和蛋白表达量明显上升。经多重纯化后,流式细胞仪鉴定获得的干细胞为CD44(+),Sca-1(+),CD31(-)和CD45(-)的MSCs,纯度在90%以上。
     5.在第14天可见肺组织受损处多处表达GFP的细胞出现,根据其形态可判定为肺泡上皮细胞和肺血管内皮细胞,在肺损伤较重的部位表达GFP的细胞数量相对较多。
     6.对Ang1在体内表达的检测显示对照组Ang1蛋白在脂多糖诱导肺损伤后呈下降趋势,直至14d仍然低于肺损伤前,而MSC-Ang1组第3天下降明显,但随后回升,至第14天已恢复并高于损伤前水平。
     7.MSC-Ang1组在第14天的MPO活性和肺湿干比较其它三组明显降低,与对照组比较有统计学差异,提示Ang1的转入有效减低肺组织MPO的激活和肺水肿。
     8.肺组织病理学及其评分显示,与对照组比较,MSC-Ang1组在改善肺组织病理损伤总评分上差异有统计学意义,而另二组无统计学差异。
     9.MSC-Ang1生存率高于对照组,生存率分析显示存在一定优势,但尚未达到统计学差异(P=0.066)。
     结论:
     1.MSCs可成功分离提纯,并可经由Lentivirus系统高效率、长时间稳定转染,使其携带Ang1基因,且MSCs本身主要表面标志不受影响。MSCs是良好的基因治疗运载工具。
     2.携带目的基因Ang1的MSCs在输入体内后,Ang1与MSCs发挥协同作用,Ang1肺内高表达,发挥其抗炎和稳定血管减轻渗漏的作用,同时MSCs通过转化或融合,修复肺部上皮或内皮细胞。MSCs细胞介导的Ang1基因治疗不失为一种可行性的干预炎症性肺损伤的方法。
Rationale
     Lipopolysaccharide (LPS), a major component of the cell wall of gram-negative bacteria, plays an important role in the pathogenesis of ALI/ARDS. LPS induced lung injury is characterized by microvascular protein leakage, neutrophil influx, and expression of pro inflammatory mediators, followed by severe lung damage. It is still remain little effective treatment to attenuate severe lung injury caused by LPS. Recent literature suggests that bone marrow-derived mesenchymal stem cells(MSCs) can serve as vehicle of gene therapy. We speculated that MSCs therapy combined with gene therapy might be a potential therapeutic approach for lung injury.
     Objective
     To determine whether MSCs carried with agiopoietin-1 (Ang1) could attenuate injuries of lung epithelium and endothelium in lipopolysaccharide induced lung injury.
     Methods
     MSCs were obtained from adult male inbred mice and then were transduced with Ang1 gene efficiently through lentivirus vector. Phenotypes of MSCs were analyzed by fluorescence-activated cell sorting (FACS) before and after Ang1 transduced. Two hours after LPS inhalation, mice were infused by normal saline (NS group), lentiviral vector carried Ang1 (Ang1 group), lentiviral vector carried eGFP(MSCs group) and lentiviral vector carried Ang1/eGFP (MSCs-Ang1 group) by jugular vein injection. Ectogenic MSCs origined lung cells and Ang1 expressions in lungs were detected in receipt mice. Indexes of lung injury were evaluated at different time points. Lung myeloperoxidase activity, lung wet to dry ratio and TNF. were quantified in lung tissues of four groups.
     Results
     Phenotypes of MSCs were not change significantly after they were transduced with lentivirus vector. LPS-induced lung damages were attenuated and MSCs original epithelial and endothelial cells were detected in injuried lung areas 14 days after MSCs administration. Expressions of Ang1 protein in lungs were enhanced significantly 7days after MSCs-Ang1 administration. Lung MPO activities, lung W/D ratios and TNF. mRNA in lungs were attenuated 7 days after MSCs-Ang1 infusion, compared with NS group. Kaplan-Meier survival assay showed that, although did not reach statistically significance, MSCs-Ang1 infusion appeared predominance in improving survival rates of LPS-induced lung injury (p=0.066), compared with control.
     Conclusions
     MSCs played roles of not only a vehicle but also a therapeutic cell in this study. Infusion of MSCs-Ang1 improved histopathology and Ang1 expression of injured lung, attenuated the severity of lung injury. MSCs based gene transfer of Ang1 provided a feasible, if imperfect, approach on ameliorating lung injury caused by LPS
引文
1. Matthay MA, Zimmerman GA, Esmon A, et al. Future Research Directions in Acute Lung Injury. Am J Respir Crit Care Med. 2003, 167: 1027-1035.
    2.何礼贤.医院获得性肺炎的发病机制及防治.中华全科医师杂志.2006,5(10):587-589
    3. Martin GS, Mannino DM, Eaton S, et al.The epidemiology of sepsis in the United States from 1979 through 2000. NEngl J Med, 2003;348:1546-1554
    4. Shah PB, Giudice JC, Griesback R Jr, Morley TF, Vasoya A. The newer guidelines for the management of community-acquired pneumonia. J Am Osteopath Assoc. 2004;104(12):521-531
    5. Ranes JL, Gordon SM, Chen P, Fatica C, Hammel J, Gonzales JP, Arroliga AC. Predictors of long-term mortality in patients with ventilator-associated pneumonia. Am J Med. 2006.119(10):897.e13-19
    6.中华医学会呼吸病学分会.医院获得性肺炎诊断和治疗指南(草案).中化结核和呼吸杂志1999,22(4):201-203
    7. Hospital-acquired pneumonia guideline committee of the American Thoracic Society and Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med, 2005, 171:388-416
    8. Angus DC, Wax RS. Epidemiology of sepsis: an update. Critical care medicine 2001;29(7 Suppl):S109-16.
    9. Lu Y, Song Z, Zhou X, et al. A 12-month clinical survey of incidence and outcome of acute respiratory distress syndrome in Shanghai intensive care units. Intensive Care Med. 2004 Dec;30(12):2197-203.
    10. Saukkonen K, Cabellos C, Burroughs M, et al. Integrin-mediated localization of Bordetella pertussis within macrophages: role in pulmonary colonization. J Exp Med, 1991;173:1143-1149
    11. Atabai K, Matthay MA. The pulmonary physician in critical care. Acute lung injury and the acute respiratory distress syndrome: definitions and epidemiology. Thorax, 2002;57:452-458
    12. Smith A. Pathogenesis of bacterial bronchitis in cystic fibrosis. Pediatr Infect Dis J, 1997;16:91-95
    13. Wilkinson TM, Patel IS, Wilks M, et al. Airway bacterial load and FEV1 decline in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 2003;167:1090-1095
    14. Chapuy-Regaud S, Ogunniyi AD, Diallo N, et al. RegR, a global LacI/GalR family regulator, modulates virulence and competence in Streptococcus pneumoniae. Infect Immun, 2003 ;71:2615-2625
    15. Jansen HM, Sachs AP, van Alphen L. Predisposing conditions to bacterial infections in chronic obstructive pulmonary disease. Am J Respir Crit Care Med, 1995;151:2073-2080
    16. Wu CL, Lee YL, Chang KM, et al. Bronchoalveolar interleukin-1 beta: a marker of bacterial burden in mechanically ventilated patients with community-acquired pneumonia. Crit Care Med, 2003;31:812-817
    17.白春学。急性呼吸窘迫综合征研究进展。中国呼吸与危重监护杂志。2002;1(4):250-252
    18.徐金富,瞿介明,何礼贤。肺部感染相关急性肺损伤发病机制研究进展。国外医学呼吸系统分册。2004;24(2):72-75
    19. Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002, 418(6893): 41-49
    20. Bianco P, Riminncei M, Grontbo s S, et al. Bone marrow stromal stem cells: nature biology and potential application. Stem Cell, 2001, 19(3): 180-192
    21. Reyes M, Dudek A, Jahagirdar B, et al. Origin of endothelial progenitors in human postnatal bone marrow. J Clinical Invest, 2002, 109(3): 313-315
    22. Reyes M, Lund T, Lenvik T, et al. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells[J]. Blood, 2001, 98(9): 2615-2625
    23. Rojas M, Xu J, Woods CR, et al. Bone marrow-derived mesenchymal stem ceils in repair of the injured lung. Am J Respir Cell Mol Bio12005; 33:145-152
    24. Kotton DN, Summer R, Fine A. Lung stem cells: new paradigms. Exp Hematol 2004:32(4):340-3
    25. Friendenstein A J, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs[J]. Exp Hematol, 1976, 4(5): 267-274
    26. Robert JD, Annemarie BM. mesenchymal stem cells: biology and potential clinical uses[J]. Experimental Hematology, 2000, 28(8): 87
    27. Conget PA, Minguell JJ. Phenotypical and Functional Properties of Human Bo ne Marrow Mesenchymal Progenitor Cells[J]. J Cell Physiol 1999, 181(1): 67-73
    28. Pereira RF, Halford KW, Hara MD, et al. Cultured Adherent Cells from Marrow can Serve as Precursor Cells for Bone, Cartilage, and Lung in Irradiated Mice[J]. Proc Natl Acad Sci USA, 1995, 92: 4857-4861
    29. Kocon, Peter C, etal. Bone Marrow-Derived Messenchymal Stem Cells Remain Host-Derived Despite Successful Hematopoietic Engraftiment after Allogeneic Transplantation in Patients with Lysosomal and Peroxisomal Storage Diseases[J]. Exp Hematol, 1999, 27(11): 1675-1680
    30. Pittenger MF, Mackay AM, et al. Multilineage Potential of Adult Human Mesenchymal Stem Cells[J]. Science, 1999, 284(5411): 143-147
    31. Conget PA, Minguell JJ. Phenotypical and Functional Properties of Human Bo ne Marrow Mesenchymal Progenitor Cells[J]. J CellPhysiol, 1999, 181(1): 67-73
    32. Neuringer IP, Randell SH. Stem cells and repair of lung injuries. Respiratory Research. 2004, 5: 331-339.
    33. Korbling M, Estrov Z. Adult stem cells for tissue repair: a new therapeutic concept. NEngl J Med 2003; 349: 570-582
    34. Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, Phinney DG. Mcsenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci USA 2003; 100: 8407-8411
    35. Rojas M, Xu J, Woods CR, Mora AL, Spears W, Roman J, Brigham KL. Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am J Respir Cell Mol Biol 2005; 33: 145-152
    36. Denburg JA, van Eeden SF. Bone marrow progenitors in inflammation and repair: new vistas in respiratory biology and pathophysiology. Eur Respir J 2006; 27: 441-445.
    37. Stripp BR, Shapiro SD. Stem cells in lung disease, repair, and the potential for therapeutic interventions: State-of-the-art and future challenges. Am J Respir Cell Mol Biol 2006; 34: 517-518.
    38. Spees JL, Olson SD, Y lostalo J, Lynch PJ, Smith J, Perry A, Peister A, Wang MY, Prockop DJ. Differentiation, cell fusion, and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proc Natl Acad Sci USA 2003; 100: 2397-2404.
    39. Hashimoto N, Jin H, Liu T, Chensue SW, Phan SH. Bone marow -derived progenitor cells in pulmonary fibrosis. J Clin Invest 2004; 113: 243-252.
    40. Ishizawa K, Kubo H, Yamada M, Kobayashi S, Numasaki M, Ueda S, Suzuki T, Saski H. Bone marrow-derived cells contribute to lung regeneration after elastase-induced pulmonary emphysema. FEBS Lett 2004; 556: 249-252.
    41. Dunsmore SE, Shapiro SD. The bone marrow leaves its scar: new concepts in pulmonary fibrosis. J Clin Invest 2004;113:180-182.
    42. Suratt BT, Cool CD, Seris AE, Chen L, Varella-Garcia M, Shpall EJ, Brown KK, Worthen GS. Human pulmonary chimerism after hematopoietic stem cell transplantation. Am J Respir Crit Care Med 2003; 168: 318-322.
    43. Kotton DN, Fine A. Derivation of lung epithelium from bone marrow cells. Cytotherapy. 2003, 5(2): 169-173.
    44. Yamada M, Kubo H, Kobayashi S, Ishizawa K, Numazaki M, Ueda S, Takashi S, Sasaki H. Bone marrow-derived progenitor cells are important for lung repair after lipopolysaccharide-induced lung injury. J Immunol 2004; 172:1266-1272.
    45. Herzog EL, Chai L, Krause DS. Plasticity of marrow-derived stem cells. Blood 2003; 102: 3483-3493.
    46. Krause DS, Theise ND, Collector MI, Henegariu O, Hwang S, Gardner R, Neutzel S, Sharkis SJ. Multi-organ, multi-lineage engraftment by a single bone marrowderived stem cell. Cell 2001; 105: 369-377.
    47. Davis S, Aldrich TH, Jones PF, et al. Isolation of angiopoietin-1, a ligand for the tie2 receptor by secretion - trap expression cloning. Cell. 1996; 87(7) :1161-1169.
    48. Partanen J, Armstrong E, Makela TP, et al. A novel endothelial cell surface receptor tyrosine kinase with extracellular epidermal growth factor homology domains. Mol Cell Biol. 1992; 12(4): 1698-1707.
    49. Jiang S, Haider HK, Idris NM, Salim A, Ashraf M. Supportive interaction between cell survival signaling and angiocompetent factors enhances donor cell survival and promotes angiomyogenesis for cardiac repair. Circ Res 2006; 99: 776-784
    50. Lee HJ, Cho CH, Hwang SJ, et al. Biological characterization of angiopoietin -3 and angiopoietin-4. FASEBJ. 2004;18(ll):1200-1208.
    51. Thurston G, Suri C, Smith K, et al. Leakage-resistant blood vessels in mice transgenically overexpressing angiopoietin-1. Science. 1999; 286(5449): 2511-2514.
    52. Thurston G, Rudge JS, Ioffe E, et al. Angiopoietin -1 protects the adult vasculature against plasma leakage. Nat Med. 2000; 6: 460-463.
    53. Sullivan CC, Du L, Chu D, et al. Induction of pulmonary hypertension by an angiopoietin 1/TIE2/serotonin pathway. Proc Natl Acad Sci U S A. 2003; 100(21): 12331-12336.
    54. Karmpaliotis D, Kosmidou I, Ingenito EP, et aL Angiogenic growth factors in the pathophysiology of a murine model of acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2002; 283: L585-L595.
    55. Witzenbichler B, Westermann D, Knueppel S,et al. Protective role of angiopoietin-1 in endotoxic shock. Circulation. 2005 Jan 4;111(1):97-105.
    56. Cho CH, Kammerer RA, Lee HJ, et al. Designed angiopoietin-1 variant, COMP-Ang1, protects against radiation-induced endothelial cell apoptosis. PNAS. 2004; 101:5553-5558.
    57. Li X, Hahn CN, Parsons M, et al. Role of protein kinase Czeta in thrombin-induced endothelial permeability changes: inhibition by angiopoietin-1. Blood. 2004; 104(6):1716-1724.
    58. Daly C, Wong V, Burova E, et al.. Angiopoietin-1 modulates endothelial cell function and gene expression via the transcription factor FKHR (FOXO1). Genes Development. 2004; 18(9):1060-1071.
    59. Du L, Sullivan CC, Chu D, et al. Signaling molecules in nonfamilial pulmonary hypertension. N Engl J Med. 2003; 348(6): 500-509.
    60. Zhao YD, Campbell AI, Robb M, et al. Protective role of angiopoie tin-1 in experimental pulmonary hypertension. Circ Res. 2003; 92(9): 984-991.
    61. Polak J, Hench L. Gene therapy progress and prospects: in tissue engineering. Gene Ther 2005; 12:1725-1733.
    62. Naldini L, Blomer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science, 1996, 272 :263-267.
    63. Kafri T, Blomer U , Peterson DA, et al. Sustained expression of genes delivered directly into liver and muscle by lentiviral vectors. Nat Genet, 1997,17 :314-317.
    64. van Damme A, van den Driessche T, Collen D, et al. Bone marrow stromal cells as targets for gene therapy. Curr Gene Ther. 2002, 2(2): 195-209.
    65. Aiuti A, Slavin S , Aker M, et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science, 2002, 296(5577): 2410-2413
    66. Mangi AA, Noiseux N, Kong D, He H, Rezvani M, Ingwall JS, Dzau VJ. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 2003; 9:1195-1201.
    67. Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN, Champlin RE, Andreeff M. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 2004; 96:1593-1603.
    68. Reiser J, Zhang XY, Hemenway CS, Mondal D, Pradhan L, La Russa VF. Potential of mesenchymal stem cells in gene therapy approaches for inherited and acquired diseases. Expert Opin BiolTher 2005; 5:1571-1584.
    69. Peister A, Mellad JA, Larson BL, Hall BM, Gibson LF, Prockop DJ. Adult stem cells from bone marrow (MSCs) isolated from different strains of inbred mice vary in surface epitopes, rates of proliferation, and differentiation potential. Blood 2004; 103:1662-1668.
    70. Vanan VL. Characterization and Purification of Osteogenic Cells from Murine Bone Marrow by Two-color Cell Sorting Using Anti-Sca-1 Monoclonal Antibody and Wheat Germ Agglutinin[J]. Blood, 1994.84(3): 753-76
    71. Encina NR. Immunomagnetic Isolation of Osteoprogenltors from Human Bone Marrow Stroma[J]. Lab Invest. 1999. 79(4): 449-453
    72. Oreffo ROC. Retroviral Marking of Human Bone M arrow Fibroblasts: in Vitro Expansion and Localization in Calvarial Sites after SubcutaneOUS Transplantation in Vivo[J]. J Cell Physiol, 2001. 186(2):1201-1220
    73. Baddoo M. Characterization of Mesenchymal Stem Cells Isolated from Murine Bone Marrow by Negative Selection[J]. J Cell Biochem. 2003. 89(6): 1235-1241
    74. Scherr M, Eder M. Gene transfer into hematopoietic stemcells using lentiviral vectors. Curr Gene Ther ,2002 ,2(1) :45-55
    75. Xu K, Ma H, McCown TJ, et al. Generation of a stable cell line producing high-titer self-inactivating lentiviral vectors. Mol Ther, 2001, 3 :97-104.
    76. Ingenito EP, Mora R, Cullivan M, Marzan Y, Haley K, Mark L, and Sonna LA. Decreased surfactant protein-B expression and surfactant dysfunction in a murine model of acute lung injury. Am J Respir Cell Mol Biol 2001; 25: 35-44
    77. Takao Y, Mikawa K, Nishina K, Obara H. Attenuation of acute lung injury with propofol in endotoxemia. Anesth Analg 2005; 100:810-816.
    78. Pizurki L, Zhou Z, Glynos K, et al. Angiopoietin-1 inhibits endothelial permeability, neutrophil adherence and IL-8 production. Brit J Pharmacol. 2003, 139(2): 329-336.
    79. The Dynamic in vivo Distribution of Bone Marrow-Derived Mesenchymal Stem Cells after Infusion. Cells Tissues Organs, 2001;169:12-20
    80. Tolar J, Osborn M, Bell S, et al. Real-time in vivo imaging transgenesis by of stem cells following transposition. Mol Ther 2005,12 (1): 42-48
    81. Martinez-Serrano A, Villa A, Navarro B et al. Human neural progenitor cells: Better blue than green? Nat Med 2000; 6:483-484.
    82. Van Damme A, Thorrez L, Ma L, Vandenburgh H, Eyckmans J, Dell'Accio F, De Bari C, Luyten F, Lillicrap D, Collen D, VandenDriessche T, Chuah MK. Efficient Lentiviral Transduction and Improved Engraftment of Human Bone Marrow Mesenchymal Cells. Stem Cells 2006;24;896-907
    83. Wang, X., H. Willenbring, Y. Akkari, Y. Torimaru, M. Foster, M. Al-Dhalimy, E. Lagasse, M. Finegold, S. Olson, and M. Grompe. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 2003; 422:897-901.
    84. Vassilopoulos G, Wang PR, Russell DW. Transplanted bone marrow regenerates liver by cell fusion. Nature 2003;422:901-904
    85. Guimbaud R,Bertrand V,Chauvelot-Moachon L,et al. Network of inflammatory cytokines and correlation with disease activity in ulcerative colitis.Am J Gastroenterol,1998;93:2397-2404
    86. Park WY, Goodman RB, Steinberg KP, et al.Cytokine balance in the lungs of patients with acute respiratory distress syndrome. Am J Respir Crit Care Med,2001;164:1896-1903
    87. Matthay MA. Conference summary: acute lung injury. Chest, 1999;116: 119S-126S
    88. Abraham E, Kaneko DJ, Shenkar R.Effects of endogenous and exogenous catecholamines on LPS-induced neutrophil trafficking and activation.Am J Physiol,1999;276L1-8
    89. Tolar J, Shaughnessy MJ, Panoskaltsis-Mortari A,et al. Host factors that impact the biodistribution and persistence of multipotent adult progenitor cells. Blood 2006,107(10):4182-4188

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700