低剂量培哚普利和厄贝沙坦联合治疗扩张型心肌病的疗效及相关机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章低剂量培哚普利和厄贝沙坦联合治疗对扩张型心肌病大鼠心功能及预后的影响
     背景:扩张型心肌病(DCM)的主要危害是慢性心力衰竭(CHF)。联合应用血管紧张素转换酶抑制剂(ACEIs),血管紧张素Ⅱ1型受体阻滞剂(ARBs)治疗CHF可以使患者额外受益。将ACEIs和ARBs的常用治疗心衰剂量减半后,再联合治疗DCM的CHF可否获得更好的近期和远期疗效,值得探讨。本研究通过联合培哚普利和厄贝沙坦治疗DCM大鼠,验证这一设想。
     目的:观察低剂量培哚普利和厄贝沙坦联合治疗对DCM大鼠心功能及预后的影响。
     方法:腹腔注射阿霉素建立SD大鼠DCM模型。然后将大鼠分为4组进行干预:正常大鼠组(n=14),予蒸馏水灌胃。DCM大鼠随机分为DCM对照组(n=26),予蒸馏水灌胃;单用培哚普利组(n=24),予培哚普利2mg.kg~(-1).d~(-1)灌胃;培哚普利联合厄贝沙坦组(n=24),予以培哚普利1mg.kg~(-1).d~(-1)及厄贝沙坦25mg.kg~(-1).d~(-1)灌胃。全自动生化分析仪检测血钾、血肌酐;ELISA方法检测血浆脑利钠肽(BNP)水平;彩色超声心动图测定左室射血分数(LVEF),记录每只大鼠的生存时间。
     结果:(1)各组干预前后血钾、血肌酐水平差异无统计学意义(P>0.05)。(2)干预前各个DCM组血浆BNP水平均高于正常组(P<0.05)。与干预前比较,单用培哚普利组、联合治疗组干预后血浆BNP水平均明显下降(P<0.01)。与单用培哚普利组比较,联合治疗组血浆BNP水平下降更明显(P<0.01)。(3)干预前各个DCM组LVEF均低于正常组(P<0.05)。与干预前比较,单用培哚普利组、联合治疗组干预后LVEF均明显升高(P<0.01)。与单用培哚普利组比较,联合治疗组LVEF升高更明显(P<0.05)。(4)对数秩检验显示:单用培哚普利组存活期长于DCM对照组(P<0.05),而短于联合治疗组(P<0.05);Cox回归分析显示:联合治疗或单用培哚普利为延长生存期因素,联合治疗作用更明显。
     结论:(1)DCM大鼠血浆BNP水平增高,LVEF下降。(2)单用培哚普利或培哚普利和厄贝沙坦各减半常用抗心衰剂量联合治疗DCM大鼠,均可降低血浆BNP水平,升高LVEF,延长存活期。(3)联合治疗在改善左室功能及远期预后方面优于单用培哚普利。
     第二章培哚普利联合厄贝沙坦对扩张型心肌病大鼠心肌AT_1受体、lamin A及NF-κB表达的影响
     背景:联合ACEIs和ARBs治疗CHF的临床试验较多,但是二者合用的作用机制报道不多。CHF患者存在肾素-血管紧张素系统(RAS)激活;而A型核纤层蛋白(lamin A/C,LMNA)突变或表达缺失可以导致DCM;CHF患者心肌核因子-κB(NF-κB)表达增加。提示心肌血管紧张素Ⅱ1型受体(AT_1Rs)、lamin A/C和NF-κB的表达量改变可能参与DCM的发病机制。ACEIs和ARBs治疗DCM的CHF,是否通过影响上述指标,达到更好疗效,本文就此进行初步探讨。
     目的:探讨培哚普利联合厄贝沙坦对DCM大鼠心肌AT_1Rs,lamin A的mRNA及NF-κB蛋白表达的调节。
     方法:DCM动物模型的制备、药物干预分组、LVEF和BNP检测见第一章。RT-PCR方法检测心肌AT_1Rs、lamin A的mRNA表达;心肌切片HE染色后进行病理评分:免疫组化方法检测心肌NF-κB蛋白的表达。
     结果:(1)与正常组比较,DCM对照组AT_1Rs表达下调(P<0.05)。与DCM对照组比较,单用培哚普利组、联合治疗组AT_1Rs表达均上调(P<0.05)。与单用培哚普利组比较,联合治疗组AT_1Rs表达上调更明显(P<0.01)。(2)与正常组比较,DCM对照组lamin A表达下调(P<0.05);联合治疗组lamin A表达水平高于DCM对照组(P<0.05)。(3)与正常组比较,DCM对照组存在明显心肌病理损害;与DCM对照组比较,单用培哚普利组、联合治疗组心肌病理损害均减轻(P<0.01)。(4)与正常组比较,DCM对照组心肌NF-κB表达增加(P<0.05)。与DCM对照组比较,单用培哚普利组、联合治疗组NF-κB表达均减弱(P<0.05)。与单用培哚普利组比较,联合治疗组NF-κB表达减弱更明显(P<0.05)。
     结论:(1)DCM大鼠心肌AT_1Rs及lamin A的表达下调,NF-κB的表达增加,可能参与了DCM的发病机制。(2)单用培哚普利或培哚普利联合厄贝沙坦均能减轻心肌病理损害。(3)单用培哚普利或联合治疗均上调AT_1Rs表达,减弱NF-κB表达;而联合治疗作用更明显伴上调lamin A的表达。联合治疗可能通过影响AT_1Rs、lamin A、NF-κB的表达实现更好的抗心衰疗效。
     第三章低剂量培哚普利和厄贝沙坦联合治疗扩张型心肌病患者的疗效分析
     背景:扩张型心肌病(DCM)的预后很差,国内报道症状出现后5年的存活率在65.3%左右。虽然目前治疗DCM有心脏移植、左心室减容术、心脏再同步治疗,但是因为费用昂贵,并不能广泛应用。自上世纪90年代开始,就有临床试验探讨联合应用ACEIs,ARBs治疗CHF是否可以使患者额外受益。至2005年将联合应用ACEIs,ARBs治疗CHF列入治疗心衰指南。但是,至今尚未阐明联合应用ACEIs,ARBs治疗DCM患者的合适剂量。
     目的:探讨低剂量培哚普利和厄贝沙坦联合治疗DCM患者的疗效及不良反应。
     方法:选择住院或门诊的DCM患者60例,随机分为常规治疗组(n=30)和联合治疗组(n=30)。两组性别、年龄、病情、病程无差异。常规治疗组治疗方案包括培哚普利4mg/d,联合治疗组治疗方案包括培哚普利2mg/d和厄贝沙坦75mg/d,其余的治疗措施2组一致。全自动生化分析仪检测血钾、血肌酐;ELISA方法检测血浆BNP水平;彩色超声心动图测定LVEF。
     结果:(1)2组干预后心功能均改善(P<0.05;P<0.01),且联合治疗组较常规治疗组心功能改善更明显(P<0.05)。(2)2组干预后血浆BNP水平均明显下降(P<0.01),且联合治疗组BNP水平低于常规治疗组(P<0.05)。(3)2组干预后LVEF均明显升高(P<0.01),且联合治疗组LVEF高于常规治疗组(P<0.05)。(4)2组干预前后血钾、血肌酐水平差异无统计学意义(P>0.05)。
     结论:(1)单用培哚普利或培哚普利和厄贝沙坦各减半常用抗心衰剂量联合治疗DCM患者,均改善DCM患者心功能,降低血浆BNP水平、升高LVEF。(2)培哚普利联合厄贝沙坦治疗DCM患者,在改善心功能,降低血浆BNP水平、升高LVEF方面优于单用培哚普利,且不增加不良反应。
Chapter 1The effects of combination therapy with low dose of perindopril andirbesartan on cardiac function and prognosis in a rat modelof dilated cardiomyopathy
     Background The main hazard of dilated cardiomyopathy (DCM)is chronic heart failure (CHF). It has been reported that combinationtherapy with ACEIs and ARBs would produce better therapeutic effectsto patients with CHF. It is not well known if half of the conventionaldosage of ACEIs for heart failure combined with half of the conventionaldosage of ARBs for heart failure would also bring better short-term andlong-term therapeutic effects to CHF induced by DCM. This studyconfirmed this hypothesis by combination therapy with perindopril andirbesartan in a rat model of DCM.
     Objective To evaluate the effects of combination therapy with lowdose of perindopril and irbesartan on cardiac function and prognosis in arat model of DCM.
     Methods For inducing DCM, adriamycin was administeredintraperitoneally in Sprague-Dawley rats. Then the rats were divided into4 groups. Normal group (n=14), which was administered distilled water.Rats with DCM were randomly divided into DCM-control group (n=26),perindopril group (n=24) and combination therapy (combination therapywith perindopril and irbesartan ) group (n=24). The DCM-control groupwas administered distilled water. The perindopril group was administeredperindopril 2mg.kg~(-1).d~(-1). The combination therapy group wasadministered perindopril 1mg.kg~(-1).d~(-1) and irbesartan 25mg.kg~(-1).d~(-1). All thedrugs were given orally by gastric gavage once a day. Plasma potassiumand creatinine were measured by automatic biochemistry analyzer; brainnatriuretic peptide (BNP) was assessed by ELISA; LVEF weredetermined by ultrasonic cardiogram. Each rat's survival time duringintervention was recorded.
     Results (1) Each group plasma concentrations of potassium andcreatinine showed no significant differences between pre-intervention andpost-intervention (P>0.05). (2) Before intervention, plasmaconcentrations of BNP of each DCM group were higher than those of thenormal group (P<0.05). In both perindopril group and combinationtherapy group, plasma concentrations of BNP were much lower afterintervention compared with those before intervention (P<0.01).However, plasma concentrations of BNP decreased more in thecombination therapy group than in the perindopril group (P<0.01). (3)Before intervention, LVEF of each DCM group was lower than that of thenormal group (P<0.05). LVEF in both perindopril group andcombination therapy group was much higher after intervention comparedwith that before intervention (P<0.01). However, LVEF increased morein the combination therapy group than in the perindopril group (P<0.05). (4) Log rank test showed that the life span of perindopril groupwas longer than that of the DCM-control group (P<0.05), but wasshorter than that of the combination therapy group (P<0.05). Coxregression analysis showed that combination therapy or onlyadministering perindopril could prolong the survival time, butcombination therapy's contribution was bigger.
     Conclusions (1) Rats with DCM have elevated plasmaconcentrations of BNP and decreased LVEF. (2) Both monotherapy withperindopril and combination therapy with half of the conventional dosagefor CHF of perindopril and half of the conventional dosage for CHF ofirbesartan in a rat model of DCM can reduce the plasma concentrations ofBNP, increase LVEF and prolong survival time. (3) Combinationtherapy can more effectively improve left ventricular function andprognosis in rats with DCM than monotherapy with perindopril.
     Chapter 2The effects of combination therapy with perindopril and irbesartanon the expression of AT_1 receptor and lamin A and NF-κB in themyocardium of a rat model of dilated cardiomyopathy
     Background Many clinical trials about combination therapy withACEIs and ARBs in CHF have been reported, but the related mechanismshave not been fully illuminated. The renin-angiotensin system (RAS) isactivated in patients with CHF; the mutation or deficiency of theexpression of lamin A/C may induce DCM; and the NF-kappa B(NF-κB)is over activated in the myocardium of patients with CHF. All thesefindings imply that the changes of expression of angiotensinⅡtype 1receptors (AT_1Rs) and lamin A/C and NF-κB might participate in thepathogenesis of DCM. It is worth investigating if combination therapywith ACEIs and ARBs might more obviously affect these factors toachieve better therapeutic effects on CHF of DCM.
     Objective To evaluate the effects of combination therapy withperindopril and irbesartan on the mRNA expression of AT_1Rs and laminA and on the protein expression of NF-κB in the myocardium of the ratswith DCM.
     Methods The methods of inducing an animal model of DCM,grouping for drug treatment, and measuring LVEF and BNP have beenmentioned in the chapter one. The mRNA expression of AT_1Rs and laminA in the myocardium was detected by reverse transcription-polymerasechain reaction (RT-PCR); the pathological lesions of cardiac muscletissues after HE staining were evaluated by light microscope; and theprotein expression of NF-κB was assessed by immunohistochemistry.
     Results (1) Compared with those in the normal group, expressionlevels of AT_1Rs in the DCM-control group were down-regulated (P<0.05). Compared with those in the DCM-control group, expression levelsof AT_1Rs in both perindopril group and combination therapy group wereup-regulated (P<0.05). Expression levels of AT_1Rs were more obviously up-regulated in the combination therapy group than in theperindopril group (P<0.01). (2) Compared with those in the normalgroup, expression levels of lamin A in the DCM-control group weredown-regulated (P<0.05). Expression levels of lamin A in thecombination therapy group were higher than those in the DCM-controlgroup (P<0.05). (3) Compared with those in the normal group,cardiac muscle tissues in the DCM-control group were obviouslydamaged. Compared with those in the DCM-control group, pathologicallesions of cardiac muscle tissues in both perindopril group andcombination therapy group were attenuated (P<0.01). (4) Comparedwith that in the normal group, NF-κB in the DCM-control group wasmore obviously expressed (P<0.05). Compared with that in theDCM-control group, obviously expressed NF-κB was attenuated in bothperindopril group and combination therapy group (P<0.05). Obviouslyexpressed NF-κB was attenuated more in the combination therapy groupthan in the perindopril group (P<0.05).
     Conclusions (1) Down-regulation of the expression of AT_1Rsand lamin A, and the over-expression of NF-κB might participate in thepathogenesis of DCM. (2) Both monotherapy with perindopril andcombination therapy with perindopril and irbesartan can attenuatepathological lesions of cardiac muscle tissues. (3) Both monotherapywith perindopril and combination therapy can up-regulate the expressionof AT_1Rs and attenuate the expression of NF-κB, and the combinationtherapy's effects are more obvious. Furthermore, combination therapy canup-regulate the expression of lamin A. The effects of combination therapyon the expression of AT_1Rs, lamin A and NF-κB may contribute to thebetter therapeutic effects on heart failure.
     Chapter 3The therapeutic effects of combination therapy with low dose ofperindopril and irbesartan in patientswith dilated cardiomyopathy
     Background The prognosis of DCM is very poor, and in China,the 5-year survival rate is about 65.3%after the symptom occurs.Nowadays, therapeutic measures, such as heart transplantation, leftventricular reconstruction operation and cardiac resynchronizationtherapy are used in clinic, but these measures are too expensive to bewidely used. Since 1990s, there were clinical trials investigating ifcombination therapy with ACEIs and ARBs could produce better effectson patients with CHF. In 2005, combination therapy with ACEIs andARBs was suggested in the guideline of CHF. But until now, it is notclear what is the appropriate dose of combination therapy with ACEIs andARBs in treating patients with DCM.
     Objective To evaluate the effects of combination therapy with lowdose of perindopril and irbesartan on patients with DCM and the relatedadverse reactions.
     Methods 60 hospitalized patients or outpatients with DCM wereenrolled, and the patients were randomly divided into two groups,conventional therapy group (n=30) and combination therapy group (n=30). The age, sex, patient's condition, and course of disease showed nosignificant differences between the conventional therapy group and thecombination therapy group. The conventional therapy group wasadministered perindopril 4mg/d and the combination therapy group wasadministered perindopril 2mg/d and irbesartan 75mg/d. The othertherapeutic measures in these two groups were just the same. Plasmapotassium and creatinine were studied by automatic biochemistryanalyzer; brain natriuretic peptide (BNP) was assessed by ELISA; leftventricular ejection fraction (LVEF) were measured by ultrasoniccardiogram.
     Results (1) In both groups, cardiac function was improved afterdrug treatment (P<0.05; P<0.01); cardiac function was moremarkedly improved in the combination therapy group than in theconventional therapy group (P<0.05). (2) In both groups, plasmaconcentrations of BNP were much lower after drug treatment (P<0.01),however, plasma concentrations of BNP in the combination therapygroup was lower than those in the conventional therapy group (P<0.05).(3) In both groups, LVEF was much higher after drug treatment (P<0.01), but LVEF in the combination therapy group was higher than thatin the conventional therapy group (P<0.05). (4) In each group, plasmaconcentrations of potassium and creatinine showed no significantdifferences between pre-intervention and post-intervention (P>0.05).
     Conclusions (1) Both monotherapy with pedndopril andcombination therapy with half of the conventional dosage for CHF ofperindopril and half of the conventional dosage for CHF of irbesartan inpatients with DCM can improve cardiac function, reduce the plasmaconcentrations of BNP and increase LVEF. (2) Combination therapywith perindopril and irbesartan in patients with DCM can moreeffectively improve cardiac function, reduce the plasma concentrations ofBNP and increase LVEF than monotherapy with perindopril, withoutincreased adverse reactions.
引文
[1] Michels VV, Driscoll DJ, Miller FA, et al. Progression of familial and non-familial dilated cardiomyopthy: long term follow up. Heart, 2003, 89(7): 757-761.
    [2] Pascual Figal DA, Morena Valenzuela Gde L, Nicolas Ruiz F, et al. Addition of an angiotensin Ⅱ receptor blocker to maximal dose of ACE inhibitors in heart failure. Rev Esp Cardiol, 2002, 55(8): 862-866.
    [3] Kasama S, Toyama T, Kumakura H, et al. Addition of valsartan to an angiotensin-converting enzyme inhibitor improves cardiac sympathetic nerve activity and left ventricular function in patients with congestive heart failure. J Nucl Med, 2003, 44(6): 884-890.
    [4] Blanchet M, Sheppard R, Racine N, et al. Effects of angiotensin-converting enzyme inhibitor plus irbesartan on maximal and submaximal exercise capacity and neurohumoral activation in patients with congestive heart failure. Am Heart J, 2005, 149(5): 938. e1-7
    [5] Skvortsov AA, Mareev VIu, Nasonova SN, et al. Is triple combination of different neurohormonal modulators recommended for treatment of mild-to-moderate congestive heart failure patients? (Results of SADKO-CHF study). Part 2. Ter Arkh, 2006,78(9): 61-71.
    [6] McMurray JJ, Ostergren J, Swedberg K, et al. Effects of candesartan in patients with chronic heart failure and reduced left ventricular systolic function taking angiotensin-converting-enzyme inhibitors: the CHARM-Added trial. Lancet, 2003, 362 (9386): 767-771.
    [7] Kim S, Yoshiyama M, Izumi Y, et al. Effects of combination of ACE inhibitor and angiotensin receptor blocker on cardiac remodeling, cardiac function, and survival in rat heart failure. Circulation, 2001, 103(1): 148-154.
    [8] Koji T, Onishi K, Dohi K, et al. Addition of angiotensin Ⅱ receptor antagonist to an ACE inhibitor in heart failure improves cardiovascular function by a bradykinin-mediated mechanism. J Cardiovasc Pharmacol, 2003, 41(4): 632-639.
    [9] TAO Ze-wei, HUANG Yuan-wei, XIA Qiang, et al. Combined effects of ramipril and angiotensin Ⅱ receptor blocker TCV116 on rat congestive heart failure after myocardial infarction. Chin Med J (Engl), 2005, 118 (2): 146-154.
    [10] Schwarz ER, Pollick C, Dow J, et al. A small animal model of non-ischemic cardiomyopathy and its evaluation by transthoracic echocardiography. Cardiovasc Res, 1998, 39(1): 216-223.
    [11] Teraoka K, Hirano M, Yamaguchi K, et al. Progressive cardiac dysfunction in adriamycin-induced cardiomyopathy rats. Eur J Heart Fail, 2000, 2(4): 373-378.
    [12] 施新猷主编.现代医学实验动物学.北京:人民军医出版社,2000.333-334.
    [13] Watanabe K, Saito Y, Ma M, et al. Comparative effects of perindopril with enalapril in rats with dilated cardiomyopathy. J Cardiovase Pharmacol, 2003, 42, Suppl 1: S105-109.
    [14] Berthonneche C, Sulpice T, Tanguy S, et al. AT1 receptor blockade prevents cardiac dysfunction after myocardial infarction in rats. Cardiovasc Drugs Ther, 2005, 19(4): 251-259.
    [15] Ohno N, Fedak PW, Weisel RD, et al. Transplantation of cryopreserved muscle cells in dilated cardiomyopathy: effects on left ventficular geometry and function. J Thorac Cardiovasc Surg, 2003, 126(5): 1537-1548.
    [16] Arimura T, Helbling-Leclerc A, Massart C, et al. Mouse model carrying H222P-Lmna mutation develops muscular dystrophy and dilated cardiomyopathy similar to human striated muscle laminopathies. Hum Mol Genet, 2005, 14(1): 155-169.
    [17] 李双杰,张召才,陈瑞珍,等.Balb/c小鼠CVB_3病毒性扩张型心肌病并心力衰竭模型的建立.复旦学报(医学版),2004,31(6):559-562.
    [18] Elliott JF, Liu J, Yuan ZN, et al. Autoimmune cardiomyopathy and heart block develop spontaneously in HLA-DQ8 transgenic IAbeta knockout NOD mice. Proc Natl Acad Sci U S A, 2003, 100(23): 13447-13452.
    [19] Quiles JL, Huertas JR, Battino M, et al. Antioxidant nutrients and adriamycin toxicity. Toxicology. 2002, 180(1): 79-95.
    [20] Tokarska-Schlattner M, Zaugg M, Zuppinger C, et al. New insights into doxorubicin-induced cardiotoxicity: The critical role of cellular energetics. J Mol Cell Cardiol, 2006, [Epub ahead of print].
    [21] McKelvie RS, Yusuf S, Pericak D, et al. Comparison of candesartan, enalapril, and their combination in congestive heart failure: randomized evaluation of strategies for left ventrieular dysfunction (RESOLVD) pilot study. The RESOLVD Pilot Study Investigators. Circulation, 1999, 100(10): 1056-1064.
    [22] Cohn JN, Tognoni G, Valsartan Heart Failure Trial Investigators. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med, 2001,345(23): 1667-1675.
    [23] Pfeffer MA, McMurray JJ, Velazquez EJ, et al. Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N Engl J Med, 2003, 349(20): 1893-1906.
    [24] Hunt SA, Abraham WT, Chin MH, et al. ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult. Circulation, 2005,112(12): e154-235.
    [25] Aspromonte N, Ceci V, Chiera A, et al. Rapid Brain Natriuretic Peptide Test and Doppler Echocardiography for Early Diagnosis of Mild Heart Failure. Clin Chem, 2006, [Epub ahead of print].
    [26] Tamagno G, Guzzon S. Bioimpedance analysis and plasma B-type natriuretic peptide assay may cooperate in diagnosing and managing heart failure. Acta Cardiol, 2006, 61(3): 359-361.
    [27] Simon de Denus, Chantal Pharand, David R Williamson. Brain Natriuretic Peptide in the Management of Heart Failure. Chest, 2004, 125: 652-668.
    [28] Ishikawa C, Tsutamoto T, Fujii M, et al. Prediction of mortality by high-sensitivity C-reactive protein and brain natriuretic peptide in patients with dilated cardiomyopathy. Circ J, 2006, 70(7): 857-863.
    [29] Scow DT, Smith EG, Shaughnessy AF, et al. Combination therapy with ACE inhibitor and angiotensin-receptor blockers in heart failure. Am Fam Physician, 2003,68(9): 1795-1798.
    [30] Matsumura Y, Takata J, Kitaoka H, et al. Long-term prognosis of dilated cardiomyopathy revisited: an improvement in survival over the past 20 years. Circ J, 2006, 70(4): 376-383.
    [1] Maron BJ, Towbin JA, Thiene G, et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation, 2006, 113(14): 1807-1816.
    [2] Guo X, Saini HK, Wang J, et al. Prevention of remodeling in congestive heart failure due to myocardial infarction by blockade of the renin-angiotensin system. Expert Rev Cardiovasc Ther, 2005, 3(4): 717-732.
    [3] Sebillon P, Bouchier C, Bidot LD, et al. Expanding the phenotype of LMNA mutations in dilated cardiomyopathy and functional consequences of these mutations. J Med Genet, 2003, 40(8): 560-567.
    [4] Nikolova V, Leimena C, McMahon AC, et al. Defects in nuclear structure and function promote dilated cardiomyopathy in lamin A/C-deficient mice. J Clin Invest, 2004, 113(3): 349-351.
    [5] Jankowska EA, Czarny A, Zaczynska E, et al. The activation of the NF-kappaB system in chronic heart failure. Eur J Heart Fail, 2003 Supplements 2(1): 141-142.
    [6] Ghanem FA, Movahed A. Should angiotensin receptor blockers be added to angiotensin-converting enzyme inhibitors in the treatment of heart failure? Rev Cardiovasc Med, 2005, 6(4): 206-213.
    [7] Kim S, Yoshiyama M, Izumi Y, et al. Effects of combination of ACE inhibitor and angiotensin receptor blocker on cardiac remodeling, cardiac function, and survival in rat heart failure. Circulation, 2001, 103(1): 148-154.
    [8] TAO Ze-wei, HUANG Yuan-wei, XIA Qiang, et al. Combined effects of ramipril and angiotensin Ⅱ receptor blocker TCV116 on rat congestive heart failure after myocardial infarction. Chin Med J (Engl), 2005, 118 (2): 146-154.
    [9] Ellis GR, Nightingale AK, Blackman DJ, et al. Addition of candesartan to angiotensin converting enzyme inhibitor therapy in patients with chronic heart failure does not reduce levels of oxidative stress. Eur J Heart Fail, 2002, 4(2): 193-199.
    [10] Ishiyama Y, Gallagher PE, Averill DB, et al. Upregulation of angiotensin-converting enzyme 2 after myocardial infarction by blockade of angiotensin Ⅱ receptors. Hypertension, 2004, 43(5): 970-976.
    [11] Becari C, Sivieri DO Jr, Santos CF, et al. Role of elastase-2 as an angiotensin Ⅱ-forming enzyme in rat carotid artery. J Cardiovasc Pharmacol, 2005, 46(4): 498-504.
    [12] 张瑞英,孙艺红,富路,等.血管紧张素转换酶抑制剂和AT_1受体拮抗剂联合应用对大鼠心室重构影响的实验研究。中国实用内科杂志,2005,25(1):36-38.
    [13] 张瑞英,黄永麟,孙艺红.血管紧张素转换酶抑制剂和血管紧张素Ⅱ-1型受体拮抗剂联合应用对内皮型一氧化氮合酶的影响.中华医学杂志,2005,85,(45):1053-1056.
    [14] 徐瑞,张运,张梅,等.氯沙坦和雷米普利单用及合用对高血压大鼠左室重构和功能的影响.中华医学杂志,2005,85,(45):3199-3204.
    [15] Lassegue B, Alexander RW, Nickenig G, et al. Angiotensin Ⅱ down regulates the vascular smooth muscle AT1 receptor by transcriptional and posttranscriptional mechanisms: evidence for homologous and heterologous regulation. Mol Pharrnacol, 1995, 48(4): 601-609.
    [16] Yang L, Qi F, Yang Y, et al. Gene expression of Ang Ⅱ receptors in myocardium in congestive heart failure. Zhonghua Nei Ke Za Zhi, 2002, 41(5): 302-305.
    [17] Shumaker DK, Kuczmarski ER, Goldman RD. The nucleoskeleton: lamins and actin are major players in essential nuclear functions. Curt Opin Cell Biol, 2003, 15(3): 358-366.
    [18] Brodsky GL, Muntoni F, Miocic S, et al. Lamin A/C gene mutation associated with dilated cardiomyopathy with variable skeletal muscle involvement. Circulation, 2000, 101(5): 473-476.
    [19] Nikolova V, Leimena C, McMahon AC, et al. Defects in nuclear structure and function promote dilated cardiomyopathy in lamin A/C-deficient mice. J Clin Invest, 2004, 113(3): 357-369.
    [20] Liu J, Rolef Ben-Shahar T, Riemer D, et al. Essential Roles for Caenorhabditis elegans Lamin Gene in Nuclear Organization, Cell Cycle Progression, and Spatial Organization of Nuclear Pore Complexes. Mol Biol Cell, 2000, 11(11): 3937-3947.
    [21] Jones WK, Brown M, Ren X, et al. NF-kappaB as an integrator of diverse signaling pathways: the heart of myocardial signaling? Cardiovasc Toxicol, 2003, 3(3): 229-254.
    [22] Kagan-Ponomarev MIa. Clinical value of some factors of gene transcription in heart diseases. Kardiologiia, 2004, 44(1): 66-70.
    [23] Frantz S, Fraccarollo D, Wagner H, et al. Sustained activation of nuclear factor kappa B and activator protein 1 in chronic heart failure. Cardiovasc Res, 2003, 57(3): 749-756.
    [24] Gupta S, Sen S. Role of the NF-kappaB signaling cascade and NF-kappaB-targeted genes in failing human hearts. J Mol Med, 2005, 83(12): 993-1004.
    [25] Frantz S, Stoerk S, Ok S, et al. Effect of chronic heart failure on nuclear factor kappa B in peripheral leukocytes. Am J Cardiol, 2004, 94(5): 671-673.
    [26] Wang S, Kotamraju S, Konorev E, et al. Activation of nuclear factor-kappaB during doxorubicin-induced apoptosis in endothelial cells and myocytes is pro-apoptotic: the role of hydrogen peroxide. Biochem J, 2002, 367(Pt 3): 729-740.
    [27] Kawamura N, Kubota T, Kawano S, et al. Blockade of NF-kappaB improves cardiac function and survival without affecting inflammation in TNF-alpha-induced cardiomyopathy. Cardiovasc Res, 2005, 66(3): 520-529.
    [28] Frantz S, Hu K, Bayer B, et al. Absence of NF-kappaB subunit p50 improves heart failure after myocardial infarction. FASEB J, 2006, 20(11): 1918-20.
    [29] Kawano S, Kubota T, Monden Y, et al. Blockade of NF-kappaB improves cardiac function and survival after myocardial infarction. Am J Physiol Heart Circ Physiol, 2006, 291(3): H1337-H1344.
    [30] Zhang L, Cheng J, Ma Y, et al. Dual pathways for nuclear factor kappaB activation by angiotensin Ⅱ in vascular smooth muscle: phosphorylation of p65 by IkappaB kinase and ribosomal kinase. Circ Res, 2005, 97(10): 975-982.
    [31] Douillette A, Bibeau-Poirier A, Gravel SP, et al. The proinflammatory actions of angiotensin Ⅱ are dependent on p65 phosphorylation by the IkappaB kinase complex. J Biol Chem, 2006, 281(19): 13275-13284.
    [32] Napoleone E, Di Santo A, Camera M, et al. Angiotensin-converting enzyme inhibitors downregulate tissue factor synthesis in monocytes. Circ Res, 2000, 86(2): 139-143.
    [33] 王海蓉,李建军,蒋锡嘉,等.血管紧张素Ⅱ对血管内皮细胞核因子-κB激活及厄贝沙坦干预研究[J].中华心血管病杂志,2004,32(1):64-67.
    [34] Yoshiyama M, Omura T, Takeuchi K, et al. Angiotensin blockade inhibits increased JNKs, AP-1 and NF- kappa B DNA-binding activities in myocardial infarcted rats. J Mol Cell Cardiol, 2001, 33(4): 799-810.
    [35] Takenaka H, Kihara Y, Iwanaga Y, et al. Angiotensin Ⅱ, oxidative stress, and extracellular matrix degradation during transition to LV failure in rats with hypertension. J Mol Cell Cardiol, 2006, 41(6): 989-997.
    [1] Maron BJ, Towbin JA, Thiene G, et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomies and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation, 2006,113(14): 1807-1816.
    [2] 上海市心力衰竭调查协作组.上海市稳定性心力衰竭患者药物治疗现状调查.中华心血管病杂志,2001,29(11):644-648.
    [3] 程宽,王齐兵,李高平,等.扩张型心肌病280例临床分析.临床心血管病杂志,2006,22(7):393-396.
    [4] Zeilinski T, Korewicki J, Browarek A, et al. Survival of patients referred for heart transplantation -prospective, registry based analysis. Journal of Heart and Lung Transplantation, 2006, 25(2):70.
    [5] Milano CA, Lodge AJ, Blue LJ, et al. Implantable left ventricular assist devices: new hope for patients with end-stage heart failure. N C Med J, 2006, 67(2): 110-115.
    [6] Vanderheyden M, Wellens F, Bartunek J, et al. Cardiac resynchronization therapy delays heart transplantation in patients with end-stage heart failure and mechanical dyssynchrony. J Heart Lung Transplant, 2006, 25(4): 447-453.
    [7] Buffolo E, Branco JN, Catani R, et al. End-stage cardiomyopathy and secondary mitral insufficiency surgical alternative with prosthesis implant and left ventricular restoration. Eur J Cardiothorac Surg, 2006, Suppl 1: S266-271
    [8] Felix SB, Staudt A. Non-specific immunoadsorption in patients with dilated cardiomyopathy: Mechanisms and clinical effects. Int J Cardiol, 2006, 112(1): 30-33.
    [9] Hamroff G, Katz SD, Mancini D, et al. Addition of angiotensin Ⅱ receptor blockade to maximal angiotensin-converting enzyme inhibition improves exercise capacity in patients with severe congestive heart failure. Circulation, 1999, 99(8): 990-992.
    [10] Vizir VA, Berezin AE. Effect of long-term treatment with enalapril, losartan and their combination on the quality of life of patients with congestive heart failure. Ter Arkh, 2002, 74(1): 52-55.
    [11] Murdoch DR, McDonagh TA, Farmer R, et al. ADEPT: Addition of the AT1 receptor antagonist eprosartan to ACE inhibitor therapy in chronic heart failure trial: hemodynamic and neurohormonal effects. Am Heart J, 2001, 141(5): 800-807.
    [12] 杨光,张冠琴,李新,等.伊贝沙坦联合苯那普利治疗充血性心力衰竭疗效与安全性观察(附36例报告).山东医药,2004,44(1):44-45.
    [13] 高渝峰.血管紧张素Ⅱ受体阻滞剂与血管紧张素转换酶抑制剂联合治疗充血性心力衰竭疗效观察.中国综合临床,2004,20(4):312-313。
    [14] 韩光辉.缬沙坦联合贝那普利治疗充血性心力衰竭34例.山东医药,2005,45(20):36-37.
    [15] 周泉,胡振玉,吴大方,等.依贝沙坦与卡托普利联合治疗充血性心力衰竭的疗效.第四军医大学学报,2005,26(23):2178-2180。
    [16] 金恒,吴红萍,华守明,等.苯那普利及其合用缬沙坦治疗心力衰竭患者半年及2年的临床观察.南京医科大学学报(自然科学版),2006,26(10):960-963
    [17] Cohn JN, Tognoni G., Valsartan Heart Failure Trial Investigators. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure, N Engl J Med, 2001, 345(23): 1667-1675.
    [18] McMurray JJ, Ostergren J, Swedberg K, et al. Effects of candesartan in patients with chronic heart failure and reduced left ventricular systolic function taking angiotensin-converting-enzyme inhibitors: the CHARM-Added trial. Lancet, 2003, 362 (9386): 767-771.
    [19] Kawecka-Jaszcz K, Czarnecka D, Mroczek-Czemecka D, et al. Enalapril in treatment of severe heart failure in patients with dilated cardiomyopathy. Pol Arch Med Wewn, 1994, 91(1): 45-50.
    [20] Kim S, Yoshiyama M, Izumi Y, et al. Effects of combination of ACE inhibitor and angiotensin receptor blocker on cardiac remodeling, cardiac function, and survival in rat heart failure. Circulation, 2001, 103(1): 148-154.
    [21] TAO Ze-wei, HUANG Yuan-wei, XIA Qiang, et al. Combined effects of ramipril and angiotensin Ⅱ receptor blocker TCV116 on rat congestive heart failure after myocardial infarction. Chin Med J (Engl), 2005, 118 (2): 146-154.
    [22] Yasumura Y, Miyatake K, Okamoto H, et al. Rationale for the use of combination angiotensin-converting enzyme inhibitor and angiotensin Ⅱ receptor blocker therapy in heart failure. Circ J, 2004, 68(4): 361-366.
    [23] 叶健烽,刘冬生.常用剂量苯那普利和缬沙坦联合治疗充血性心力衰竭 的临床观察.第一军医大学学报,2005,25(11):1441-1443.
    [24] Sato H, Yaoita H, Maehara K, et al. Attenuation of heart failure due to coronary stenosis by ACE inhibitor and angiotensin receptor blocker. Am J Physiol Heart Cite Physiol, 2003, 285(1): H359-H368.
    [25] Zhang RY, Wang LF, Zhang L, et al. Effects of angiotensin converting enzyme inhibitor, angiotensin Ⅱ type Ⅰ receptor blocker and their combination on postinfarcted ventricular remodeling in rats. Chin Med J (Engl), 2006, 119(8): 649-655.
    [1] Richardson P, McKenna W, Bristow W et alo Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definitionn nd Classification of cardiomyopathies. Circulation, 1996, 93(5): 841-842.
    [2] Maron BJ, Towbin JA, Thiene G, et al. Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation, 2006, 113(14): 1807-1816.
    [3] Codd MB, Sugrue DD, Gersh BJ, et al. Epidemiology of idiopathic dilated and hypertrophic cardiomyopathy. A population-based study in Olmsted County, Minnesota, 1975-1984. Circulation, 1989, 80(3): 564-572.
    [4] Miura K, Nakagawa H, Morikawa Y, et al. Epidemiology of idiopathic cardiomyopathy in Japan: results from a nationwide survey. Heart, 2002, 87(2): 126-130.
    [5] 王志民,邹玉宝,宋雷,等.超声心动图检查调查8080例成人肥厚型心肌病患病率.中华心血管病杂志,2004,32(12):1090-1094.
    [6] Michels VV, Moll PP, Miller FA, et al. The frequency of familial dilated cardiomyopathies in a series of patients with idiopathic dilated cardiomyopathy. N Engl J Med, 1992, 326(2): 77-82.
    [7] Castro Beiras A, Monserrat L, Hermida M. Familial Dilated Cardiomyopathy: Current Status and Clinical Benefits of Basic Research. Rev Esp Cardiol, 2003, 56 (Supl.1): 7-12.
    [8] Arad M, Lahat H, Freimark D. Genetic ideology of dilated cardiompathy. Isr Med Assoc J, 2005, 7(6): 392-396.
    [9] Chang AN, Potter JD. Sarcomeric protein mutations in dilated cardiomyopathy. Heart Fail Rev, 2005, 10(3): 225-235.
    [10] Schonberger J, Kuhler L, Martins E, et al. A novel locus for autosomal-dominant dilated cardiomyopathy maps to chromosome 7q22.3-31.1. Hum Genet, 2005, 118(3-4): 451-457.
    [11] Osterziel KJ, Hassfeld S, Geier C, et al. Familial dilated cardiomyopathy. Herz, 2005, 30(6): 529-534.
    [12] Decostre V, Ben Yaou R, Bonne G. Laminopathies affecting skeletal and cardiac muscles: clinical and pathophysiological aspects. Acta Myol, 2005, 24(2): 104-109.
    [13] Perrot A, Sigusch HH, Nagele H, et al. Genetic and phenotypie analysis of dilated cardiomyopathy with conduction system disease: Demand for strategies in the management of presymptomatic lamin A/C mutant carders. Eur J Heart Fail, 2006, 8(5): 484-493.
    [14] Zeller R, Ivandic BT, Ehlermann P, et al. Large-scale mutation screening in patients with dilated or hypertrophic cardiomyopathy: a pilot study using DGGE. J Mol Med, 2006: [Epub ahead of print]
    [15] McKeon FD, Kirschner MW, Caput D. Homologies in both primary and secondary structure between nuclear envelope and intermediate filament proteins. Nature, 1986, 319(6053): 463-468.
    [16] Moir RD, Spann TP, Lopez-Soler RI, et al. The dynamics of the nuclear lamins during the cell cycle relationship between structure and function. J Struct Biol, 2000, 129(2-3): 324-334.
    [17] Mattout A, Goldberg M, Tzur Y, et al. Specific and conserved sequences in D. melanogaster and C. elegans lamins and histone H2A mediate the attachment of lamins to chromosomes. J Cell Sci, 2007,120(Pt 1):77-85.
    [18] Goldman RD, Goldman AE, Shumaker DK. Nuclear lamins: building blocks of nuclear structure and function. Novartis Found Symp, 2005, 264: 3-16; discussion 16-21,227-230.
    [19] Wydner KL, McNeil JA, Lin F, et al. Chromosomal assignment of human nuclear envelope protein genes LMNA, LMNB1, and LBR by fluorescence in situ hybridization. Genomics, 1996, 32(3): 474-478.
    [20] Herrmann H, Foisner R. Intermediate filaments: novel assembly models and exciting new functions for nuclear lamins. Cell Mol Life Sci, 2003, 60(8): 1607-1612.
    [21] Herrmann H, Aebi U. Intermediate filaments: molecular structure, assembly mechanism, and integration into functionally distinct intracellular Scaffolds. Annu Rev Biochem, 2004, 73: 749-789.
    [22] Gruenbaum Y, Goldman RD, Meyuhas R, et al. The nuclear lamina and its functions in the nucleus. Int Rev Cytol, 2003, 226: 1-62.
    [23] Stierle V, Couprie J, Ostlund C, et al. The carboxyl-terminal region common to lamins A and C contains a DNA binding domain. Biochemistry, 2003, 42(17): 4819-4828.
    [24] Maraldi NM, Lattanzi G. Linkage of lamins to fidelity of gene transcription. Crit Rev Eukaryot Gene Expr, 2005,15(4): 277-294.
    [25] Tolstonog GV, Sabasch M, Traub P. Cytoplasmic intermediate filaments are stably associated with nuclear matrices and potentially modulate their DNA-binding function. DNA Cell Biol, 2002, 21(3): 213-239.
    [26] Broers JL, Ramaekers FC. Dynamics of nuclear lamina assembly and disassembly. Symp Soc Exp Biol, 2004, (56): 177-192.
    [27] Margalit A, Liu J, Fridkin A, et al. A lamin-dependent pathway that regulates nuclear organization, cell cycle progression and germ cell development. Novartis Found Symp, 2005,264: 231-240.
    [28] Dreuillet C, Tillit J, Kress M, et al. In vivo and in vitro interaction between human transcription factor MOK2 and nuclear lamin A/C. Nucleic Acids Res, 2002, 30(21): 4634-4642.
    [29] Markiewicz E, Dechat T, Foisner R, et al. Lamin A/C Binding Protein LAP2a Is Required for Nuclear Anchorage of Retinoblastoma Protein. Mol Biol Cell, 2002,13(12): 4401-4413.
    [30] Mattout A, Dechat T, Adam SA, et al. Nuclear lamins, diseases and aging. Curr Opin Cell Biol, 2006,18(3): 335-341.
    [31] Moss SF, Krivosheyev V, de Souza A, et al. Decreased and aberrant nuclear lamin expression in gastrointestinal tract neoplasms. Gut, 1999,45(5): 723-729.
    [32] Oguchi M, Sagara J, Matsumoto K, et al. Expression of lamins depends on epidermal differentiation and transformation. Br J Dermatol, 2002,147(5): 853-858.
    [33] Ausma J, van Eys GJ, Broers JL, et al. Nuclear lamin expression in chronic hibernating myocardium in man. J Mol Cell Cardiol, 1996,28(6): 1297-1305.
    [34] Liu J, Rolef Ben-Shahar T, Riemer D, et al. Essential Roles for Caenorhabditis elegans Lamin Gene in Nuclear Organization, Cell Cycle Progression, and Spatial Organization of Nuclear Pore Complexes. Mol Biol Cell, 2000, 11(11): 3937-3947.
    [35] Tulac S, Dosiou C, Suchanek E, et al. Silencing lamin A/C in human endometrial stromal cells: a model to investigate endometrial gene function and regulation. Mol Hum Reprod, 2004, 10(10): 705-711.
    [36] Sullivan T, Escalante-Alcalde D, Bhatt H, et al. Loss of A-type Lamin Expression Compromises Nuclear Envelope Integrity Leading to Muscular Dystrophy. J Cell Biol, 1999, 147(5): 913-920.
    [37] Nikolova V, Leimena C, McMahon AC, et al. Defects in nuclear structure and function promote dilated eardiomyopathy in lamin A/C-deficient mice. J Clin Invest, 2004, 113(3): 357-369.
    [38] Lammerding J, Schulze PC, Takahashi T, et al. Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J Clin Invest, 2004, 113(3): 370-378.
    [39] Broers JL, Peeters EA, Kuijpers HJ, et al. Decreased mechanical stiffness in LMNA-/- cells is caused by defective nucleo-cytoskeletal integrity. Implications for the development of laminopathies. Hum Mol Genet, 2004: [Epub ahead of print].
    [40] Fatkin D, MacRae C, Sasaki T, et al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med, 1999, 341(23): 1715-1724.
    [41] Brodsky GL, Muntoni F, Miocic S, et al. Lamin A/C gene mutation associated with dilated cardiomyopathy with variable skeletal muscle involvement. Circulation, 2000, 101(5): 473-476.
    [42] Genschel J, Baier P, Kupferling S, et al. A new frame shift mutation at codon 466 (1397delA) within the LMNA gene. Mutation and Polymorphism Report #151 (Online). Hum Mutat, 2000, 16: 278.
    [43] Arbustini E, Pilotto A, Repetto A, et al. Autosomai dominant dilated cardiomyopathy with atrioventricular block: a lamin A/C defect-related disease. J Am Coll Cardiol, 2002, 39(6): 981-990.
    [44] Hershberger RE, Hanson EL, Jakobs PM, et ai. A novel lamin A/C mutation in a family with dilated cardiomyopathy, prominent conduction system disease, and need for permanent pacemaker implantation. Am Heart J, 2002, 144(6): 1081-1086.
    [45] Sebillon P, Bouchier C, Bidot LD, et al. Expanding the phenotype of LMNA mutations in dilated cardiomyopathy and functional consequences of these mutations. J Med Genet, 2003, 40(8): 560-567.
    [46] Hermida-Prieto M, Monserrat L, Castro-Beiras A, et al. Familial dilated cardiomyopathy and isolated left ventricular noncompaction associated with lamin A/C gene mutations. Am J Cardiol, 2004, 94(1): 50-54.
    [47] Taylor MR, Fain PR, Sinagra G, et al. Natural history of dilated cardiomyopathy due to lamin A/C gene mutations. J Am Coll Cardiol, 2003, 41(5): 771-780.
    [48] Karkkainen S, Helio T, Miettinen R, et al. A novel mutation, Serl43Pro, in the lamin A/C gene is common in finnish patients with familial dilated cardiomyopathy. Eur Heart J, 2004, 25(10): 885-893.
    [49] Perrot A, Sigusch HH, Nagele H, et al. Genetic and phenotypic analysis of dilated cardiomyopathy with conduction system disease: Demand for strategies in the management of presymptomatic lamin A/C mutant carriers. Eur J Heart Fail, 2005, [Epub ahead of print]
    [50] Wang H, Wang J, Zheng W, et al. Mutation Glu82Lys in lamin A/C gene is associated with cardiomyopathy and conduction defect. Biochem Biophys Res Commun, 2006, [Epub ahead of print].
    [51] Verga L, Concardi M, Pilotto A, et al. Loss of lamin A/C expression revealed by immuno-electron microscopy in dilated cardiomyopathy with atrioventricular block caused by LMNA gene defects. Virchows Arch, 2003, 443 (5): 664-671.
    [52] Sylvius N, Bilinska ZT, Veinot JP, et al. In vivo and in vitro examination of the functional significances of novel lamin gene mutations in heart failure patients. J Med Genet, 2005,42(8): 639-647,
    [53] Holt I, Ostlund C, Stewart CL, et al. Effect of pathogenic mis-sense mutations in lamin A on its interaction with emerin in vivo. J Cell Sci, 2003, 116(Pt 14): 3027-3035.
    [54] Raharjo WH, Enarson P, Sullivan T, et al. Nuclear envelope defects associated with LMNA mutations cause dilated cardiomyopathy and Emery-Dreifuss muscular dystrophy. J Cell Sci, 2001,114(Pt 24): 4447-4457.
    [55] Hutchison CJ, Alvarez-Reyes M, Vaughan OA. Lamins in disease: why do ubiquitously expressed nuclear envelope proteins give rise to tissue-specific disease phenotypes? J Cell Sci, 2001,114(Pt 1): 9-19.
    [56] Arimura T, Helbling-Leclerc A, Massart C, et al. Mouse model carrying H222P-Lmna mutation develops muscular dystrophy and dilated cardiomyopathy similar to human striated muscle laminopathies. Hum Mol Genet, 2005,14(1): 155-169.
    [57] Gilchrist S, Gilbert N, Perry P, et al. Altered protein dynamics of disease-associated lamin A mutants. BMC Cell Biol, 2004, 5(1): 46.
    [58] Mounkes LC, Kozlov SV, Rottman JN, et al. Expression of an LMNA-N195K variant of A-type lamins results in cardiac conduction defects and death in mice. Hum Mol Genet, 2005,14(15): 2167-2180.
    [59] Lammerding J, Lee RT. The nuclear membrane and mechanotransduction: impaired nuclear mechanics and mechanotransduction in lamin A/C deficient cells. Novartis Found Symp, 2005, 264: 264-278.
    [60] Michels VV, Driscoll DJ, Miller FA et al. Progression of familial and non-familial dilated cardiomyopathy: long term follow up. Heart, 2003, 89(7): 757-761.
    [61] Taylor MR, Fain PR, Sinagra G, et al. Natural history of dilated cardiomyopathy due to lamin A/C gene mutations. J Am Coll Cardiol, 2003, 41(5): 771-780.
    [62] Amorim S, Cardoso S, Moura B, et al. Heart transplantation. A Portuguese hospital center's experience. Rev Port Cardiol, 2004, 23(6): 821-831.
    [63] Lunkenheimer PP, Redmann K, Kimaun D, et al. A critical evaluation of results of partial left ventrieulectomy. J Card Surg, 2003, 18(3): 225-235.
    [64] Peichl P, Kautzner J, Cihak R, et al. The spectrum of inter- and intraventricular conduction abnormalities in patients eligible for cardiac resynchronization therapy. Pacing Clin Electrophysiol, 2004, 27(8): 1105-1112.
    [65] Staudt A, Staudt Y, Dorr M, et al. Potential role of humoral immunity in cardiac dysfunction of patients suffering from dilated cardiomyopathy. J Am Coll Cardiol, 2004, 44(4): 829-836.
    [66] Serose A, Prudhon B, Salmon A, et al. Administration of insulin-like growth factor-1 (IGF-1) improves both structure and function of delta-sarcoglycan deficient cardiac muscle in the hamster. Basic Res Cardiol, 2005, 100(2): 161-170.
    [67] Yoon YS, Uchida S, Masuo O, et al. Progressive attenuation of myocardial vascular endothelial growth factor expression is a seminal event in diabetic cardiomyopathy: restoration of microvascular homeostasis and recovery of cardiac function in diabetic cardiomyopathy after replenishment of local vascular endothelial growth factor. Circulation, 2005, 111(16): 2073-2085.
    [1] Hunt SA, Abraham WT, Chin MH, et al. ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult. Circulation, 2005, 112(12): e 154-235.
    [2] 戚文航.心力衰竭的流行病学及治疗进展.现代实用医学,2004,16(11):632-634.
    [3] American Heart Association. Heart Disease and Stroke Statistics: 2005 Update. Dallas, Tex; American Heart Association. 2005.
    [4] McMurray JJ, Stewart S. Epidemiology, aetiology, and prognosis of heart failure. Heart, 2000, 83(5): 596-602.
    [5] Berry C, Murdoch DR, McMurray JJ. Economics of chronic heart failure. Eur J Heart Fail, 2001, 3(3): 283-291.
    [6] Miyazaki M, Takai S. Tissue angiotensin Ⅱ generating system by angiotensin-converting enzyme and chymase. J Pharmacol Sci, 2006, 100(5): 391-397.
    [7] Sharma R, Davidoff MN. Oxidative stress and endothelial dysfunction in heart failure. Congest Heart Fail, 2002, 8(3): 165-72.
    [8] Jalil JE, Perez A, Ocaranza MP, et al. Increased aortic NADPH oxidase activity in rats with genetically high angiotensin-converting enzyme levels. Hypertension, 2005, 46(6): 1362-1367.
    [9] Zhu J, Drenjancevic-Peric I, McEwen S, et al. Role of superoxide and angiotensin Ⅱ suppression in salt-induced changes in endothelial Ca2+ signaling and NO production in rat aorta. Am J Physiol Heart Circ Physiol, 2006, 291(2): H929-H938.
    [10] Tipnis SR, Hooper NM, Hyde R, et al. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril insensitive carboxypeptidase. J Biol Chem, 2000, 275: 33238-33243.
    [11] Donoghue M, Hsieh F, Baronas E, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin Ⅰ to angiotensin 1-9. Circ Res, 2000, 87(5): E1-E9.
    [12] Harmer D, Gilbert M, Borman R, Clark KL. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett, 2002, 532(1-2): 107-110.
    [13] Iyer SN, Averill DB, Chappell MC, et al. Contribution of angiotensin-(1-7) to blood pressure regulation in salt-depleted hypertensive rats. Hypertension, 2000, 36(3): 417-422.
    [14] Ren Y, Garvin JL, Carretero OA. Vasodilator action of angiotensin-(1-7) on isolated rabbit afferent arterioles. Hypertension, 2002, 39(3): 799-802.
    [15] Huang L, Sexton DJ, Skogerson K, et al. Novel peptide inhibitors of angiotensin-converting enzyme 2. J Biol Chem, 2003, 278: 15532-15540.
    [16] Turner AJ, HooperNM.The angiotensin-converting enzyme gene family: Genomics and pharmacology. Trends Pharmacol Sci, 2002, 23(4): 177-183.
    [17] Suo M, Hautala N, Foldes G, et al. Posttranscriptional control of BNP gene expression in angiotensin Ⅱ-induced hypertension. Hypertension, 2002, 39(3): 803-808.
    [18] Villa-Abrille MC, Cingolani HE, Garciarena CD, et al. Angiotensin Ⅱ-induced endothelin-1 release in cardiac myocytes. Medicina (B Aires), 2006, 66(3): 229-236.
    [19] He Y, Huang Y, Zhou L, et al. All-trans retinoic acid inhibited angiotensin Ⅱ-induced increase in cell growth and collagen secretion of neonatal cardiac fibroblasts. Acta Pharmacol Sin, 2006, 27(4): 423-429.
    [20] Filippatos G, Tilak M, Pinillos H, et al. Regulation of apoptosis by angiotensin Ⅱ in the heart and lungs. Int J Mol Med, 2001, 7(3): 273-280.
    [21] Zhang W, Shokeen M, Li D, et al. Identification of apoptosis-inducing factor in human coronary artery endothelial cells. Biochem Biophys Res Commun, 2003, 301(1): 147-151.
    [22] Graiani G, Lagrasta C, Migliaccio E, et al. Genetic deletion of the p66Shc adaptor protein protects from angiotensin Ⅱ-induced myocardial damage. Hypertension, 2005, 46(2): 433-440.
    [23] Neves MF, Amiri F, Virdis A, et al. Role of aldosterone in angiotensin Ⅱ-induced cardiac and aortic inflammation, fibrosis, and hypertrophy. Can J Physiol Pharmacol, 2005, 83(11): 999-1006.
    [24] Liu HQ, Wei XB, Sun R, Cai YW, et al. Angiotensin Ⅱ stimulates intercellular adhesion molecule-1 via an AT1 receptor/nuclear faetor-kappaB pathway in brain microvascular endothelial cells. Life Sci, 2006, 78(12): 1293-1298.
    [25] Nickenig G, Strehlow K, Baumer AT, et al. Negative feedback regulation of reactive oxygen species on AT1 receptor gene expression. Br J Pharmacol, 2000, 131(4): 795-803.
    [26] Ichiki T, Takeda K, Tokunou T, et al. Reactive oxygen species-mediated homologous downregulation of angiotensin II type 1 receptor mRNA by angiotensin II. Hypertension, 2001, 37(2 Part 2): 535-540.
    [27] Chen Xi, Cui Zhaoqiang, Zhang Fujian, et al. Angiotensin II and cAMP regulate AT_1-mRNA expression in rat cardiomyocytes by transcriptional mechanism. Eur J Pharmacol, 2002,448(1): 1-9.
    [28] Ishiyama Y, Gallagher PE, Averill DB, et al. Upregulation of angiotensin-converting enzyme 2 after myocardial infarction by blockade of angiotensin II receptors [ J ]. Hypertension, 2004, 43(5): 970-976.
    [29] Muller C, Reddert A, Wassmann S, et al. Insulin-like growth factor induces up-regulation of AT(1)-receptor gene expression in vascular smooth muscle cells. J Renin Angiotensin Aldosterone Syst, 2000,1(3): 273-277.
    [30] Tower CL, Chappell SL, Morgan K, et al. Transforming growth factor beta1 regulates angiotensin II type I receptor gene expression in the extravillous trophoblast cell line SGHPL-4. Mol Hum Reprod, 2005, 11(12): 847-852.
    [31] Smith RD, Baukal AJ, Zolyomi A, et al. Agonist-induced phosphorylation of the endogenous AT1 angiotensin receptor in bovine adrenal glomerulosa cells. Mol Endocrinol, 1998,12(5): 634-644.
    [32] Guo DF, Sun YL, Hamet P, et al. The angiotensin II type 1 receptor and receptor-associated proteins. Cell Res, 2001, ll(3):165-180.
    [33] Zhao X, Martin MM, Elton TS. Basal level transcriptional regulation of the human angiotensin II type 1 receptor gene. Biochim Biophys Acta, 2000, 1494(1-2): 181-184.
    [34] Zhao X, Martin MM, Elton TS. The transcription factors Sp1 and Sp3 are required for human angiotensin II type 1 receptor gene expression in H295-R cells. Biochim Biophys Acta, 2001,1522(3): 195-206.
    [35] Duffy AA, Martin MM, Elton TS. Transcriptional regulation of the AT1 receptor gene in immortalized human trophoblast cells. Biochim Biophys Acta, 2004, 1680(3): 158-170.
    [36] Kambe T, Kinjyo N, Hiruki H, et al. Basal transcriptional regulation of rat AT1 angiotensin II receptor gene expression. Clin Exp Pharmacol Physiol, 2004, 31(1-2): 96-100.
    [37] Kubo T, Kinjyo N, Ikezawa A, et al. Spl decoy oligodeoxynucleotide decreases angiotensin receptor expression and blood pressure in spontaneously hypertensive rats. Brain Res, 2003, 992(1): 1-8.
    [38] Wang LL, Chan SH, Chan JY. Fos protein is required for the re-expression of angiotensin Ⅱ type 1 receptors in the nucleus tractus solitadi after baroreceptor activation in the rat. Neuroscience, 2001,103(1): 143-151.
    [39] Elton TS, Martin MM. Alternative splicing: a novel mechanism to free-tunethe expression and function of the human AT1 receptor. Trends Endocrinol Metab, 2003, 14(2): 66-71
    [40] Wu Z, Made C, Roesch DM, et al. Estrogen regulates adrenal angiotensin AT1 receptors by modulating AT1 receptor translation. Endocrinology, 2003, 144(7): 3251-3261.
    [41] Nickenig G, Michaelsen F, Muller C, et al. Post-transcriptional regulation of the AT1 receptor mRNA. Identification of the mRNA binding motif and functional characterization. FASEB J, 2001, 15(8): 1490-1492.
    [42] Haywood GA, Gullestad L, Katsuya T, et al. AT_1 and AT_2 angiotensin receptor gene expression in human heart failure. Circulation, 1997, 95(5): 1201-1206.
    [43] Zisman LS, Asano K, Dutcher DL, et al. Differential regulation of cardiac angiotensin converting enzyme binding sites and AT_1 receptor density in the failing human heart. Circulation, 1998, 98(17): 1735-1741.
    [44] Yang L, Qi F, Yang Y, et al. Gene expression of Ang Ⅱ receptors in myocardium in congestive heart failure. Zhonghua Nei Ke Za Zhi, 2002, 41(5): 302-305.
    [45] Wackenfors A, Pantev E, Emilson M, et al. Angiotensin Ⅱ receptor mRNA expression and vasoconstriction in human coronary arteries: effects of heart failure and age. Basic Clin Pharmacol Toxicol, 2004, 95(6): 266-272.
    [46] Ishiyama Y, Gallagher PE, Averill DB, et al. Upregulation of angiotensin-converting enzyme 2 after myocardial infarction by blockade of angiotensin Ⅱ receptors. Hypertension, 2004, 43(5): 970-976.
    [47] Goulter AB, Goddard MJ, Allen JC, et al. ACE2 gene expression is up-regulated in the human failing heart. BMC Med, 2004, 2: 19.
    [48] Horiuchi M. Pathophysiological roles of angiotensin in the pathogenesis of hypertension and cardiovascular remodeling. Rinsho Byori, 2000, 48(10): 935-940.
    [49] Zhang C, Hein TW, Wang W, et al. Divergent roles of angiotensin II AT1 and AT2 receptors in modulating coronary microvascular function. Circ Res, 2003, 92(3): 322-329.
    [50] Tanaka Y, Nagai M, Date T, et al. Effects of bradykinin on cardiovascular remodeling in renovascular hypertensive rats. Hypertens Res, 2004, 27(11): 865-875.
    [51] Xu J, Carretero OA, Sun Y, et al. Role of the B1 kinin receptor in the regulation of cardiac function and remodeling after myocardial infarction. Hypertension, 2005,45(4): 747-753.
    [52] Bannister AL, Schriefer JA. Demonstration of endopeptidase 24.15 in rabbit heart: evidence of bradykinin's role in cardioprotection. J Am Osteopath Assoc, 2005, 105(1): 21.
    [53] Cohn JN, Johnson G, Ziesche S, et al. A comparison of enalapril with hydralazine-isosorbid dinitrate in the treatment of congestive chronic heart failure. N Engl J Med, 1991, 325: 303-310.
    [54] Kober L, Torp-Pedersen C, Carlsen JE, et al. A clinical trial of the angiotensin-converting-enzyme inhibitor trandolapril in patients with left ventricular dysfunction after myocardial infarction.Trandolapril Cardiac Evaluation (TRACE) Study Group. N Engl J Med, 1995, 333: 1670-1676.
    [55] Yusuf S, Sleight P, Pogue J, et al. Effects of an angiotensin-converting enzyme inhibitor ramipril on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study. N Engl J Med, 2000,342: 145-153.
    [56] Majumdar SR, McAlister FA, Cree M, et al. Do evidence-based treatments provide incremental benefits to patients with congestive heart failure already receiving angiotensin-converting enzyme inhibitors? A secondary analysis of one-year outcomes from the Assessment of Treatment with Lisinopril and Survival (ATLAS) study. Clin Ther, 2004,26(5): 694-703.
    [57] Pitt B, Poole-Wilson PA, Segal R, et al. Effect of losartan compared with captopril on mortality in patients with symptomatic heart failure: randomised trial-the Losartan Heart Failure Survival Study ELITE II. Lancet, 2000,355: 1582-1587.
    [58] Dickstein K, Kjekshus J, and the OPTIMAAL Steering Committee for the OPTIMAAL Study Group. Effects of losartan and captopril on mortality and morbidity in high-risk patients after acute myocardial infarction: the OPTIMAAL randomised trial. Optimal Trial in Myocardial Infarction with Angiotensin II Antagonist Losartan. Lancet, 2002, 360 (9335): 752-760.
    [59] Pfeffer MA, McMurray JJV, Velazquez EJ, et al. Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both. N Engl J Med, 2003, 349: 1893-1906.
    [60] Yusuf S, Pfeffer MA, Swedberg K, et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet, 2003, 362: 777-781.
    [61] Simko F, Sirnko J, Fabryova M. ACE-inhibition and angiotensin Ⅱ receptor blockers in chronic heart failure: Pathophysiological consideration of the unresolved battle. Cardiovasc Drugs Ther, 2003, 17(3): 287-290.
    [62] Lee VC, Rhew DC, Dylan M, et al. Meta-Analysis: Angiotensin-Receptor Blockers in Chronic Heart Failure and High-Risk Acute Myocardial Infarction. Ann Intern Med, 2004, 141(9): 693-704.
    [63] Chen PM, Leng XG, Fan LL, et al. Changes of chymase, angiotensin converting enzyme and angiotensin Ⅱ type 1 receptor expressions in the hamster heart during the development of heart failure. Chin Med J (Engl), 2005, 118(22): 1886-1892.
    [64] Jamali AH, Wilson Tang WH, Khot UN, et al. The role of angiotensin receptor blockers in the management of chronic heart failure. Arch Intern Med, 2001, 161: 667-671.
    [65] Vaughan D. Pharmacology of ACE inhibitors versus AT1 blockers. Can J Cardiol, 2000, 16(suppl E): 36E-40E.
    [66] Matsubara H. Renin-angiotensin system in human failing hearts: message from noumyoeyte cells to myocytes. Circ Res, 2001, 88(9): 861-863.
    [67] Cosentino F, Savoia C, De Paolis P, et al. Angiotensin Ⅱ type 2 receptors contribute to vascular responses in spontaneously hypertensive rats treated with angiotensin Ⅱ type 1 receptor antagonists. Am J Hypertens, 2005, 18(4 Pt 1): 493-499.
    [68] Yayama K, Hiyoshi H, Imazu D, et al. Angiotensin Ⅱ stimulates endothelial NO synthase phosphorylation in thoracic aorta of mice with abdominal aortic banding via type 2 receptor. Hypertension, 2006, 48(5): 958-964.
    [69] Nikolaidis LA, Doverspike A, Huerbin R, et al. Angiotensin-converting enzyme inhibitors improve coronary flow reserve in dilated cardiomyopathy by a bradykinin-mediated, nitric oxide-dependent mechanism. Circulation, 2002, 105(23): 2785-2790.
    [70] Koji T, Onishi K, Dohi K, et al. Addition of angiotensin Ⅱ receptor antagonist to an ACE inhibitor in heart failure improves cardiovascular function by a bradykinin-mediated mechanism. J Cardiovasc Pharmacol, 2003, 41(4): 632-639.
    [71] Ellis GR, Nightingale AK, Blackman DJ, et al. Addition of candesartan to angiotensin converting enzyme inhibitor therapy in patients with chronic heart failure does not reduce levels of oxidative stress. Eur J Heart Fail, 2002, 4(2): 193-199.
    [72] Kim S, Yoshiyama M, Izumi Y, et al. Effects of combination of ACE inhibitor and angiotensin receptor blocker on cardiac remodeling, cardiac function, and survival in rat heart failure. Circulation, 2001, 103(1): 148-154.
    [73] TAO Ze-wei, HUANG Yuan-wei, XIA Qiang, et al. Combined effects of ramipril and angiotensin Ⅱ receptor blocker TCV116 on rat congestive heart failure after myocardial infarction. Chin Med J (Engl), 2005, 118 (2): 146-154.
    [74] Sugie T, Kagaya Y, Takeda M, et al. Should increasing the dose or adding an AT1 receptor blocker follow a relatively low dose of ACE inhibitor initiated in acute myocardial infarction? Cardiovasc Res, 2003, 58(3): 611-620.
    [75] Kashimum T, Hayashi M, Kodama M, ert al. Effects of imidapril and TA-606 on rat dilated cardiomyopathy after myocarditis. Jpn Heart J, 2003, 44(5): 735-744.
    [76] 徐瑞,张运,张梅,等.氯沙坦和雷米普利单用及合用对高血压大鼠左室重构和功能的影响.中华医学杂志,2005,85(45):3199-3204.
    [77] Sato H, Yaoita H, Maehara K, et al. Attenuation of heart failure due to coronary stenosis by ACE inhibitor and angiotensin receptor blocker. Am J Physiol Heart Circ Physiol, 2003, 285(1): H359-H368.
    [78] Zhang RY, Wang LF, Zhang L, et al. Effects of angiotensin converting enzyme inhibitor, angiotensin Ⅱ type Ⅰ receptor blocker and their combination on postinfarcted ventricular remodeling in rats. Chin Med J (Engl), 2006,119(8): 649-655.
    [79] Pascual Figal DA, Morena Valenzuela Gde L, Nicolas Ruiz F, et al. Addition of an angiotensin Ⅱ receptor blocker to maximal dose of ACE inhibitors in heart failure. Rev Esp Cardiol, 2002, 55(8): 862-866.
    [80] Vizir VA, Berezin AE. Effect of long-term treatment with enalapril, losartan and their combination on the quality of life of patients with congestive heart failure. Ter Arkh, 2002, 74(1): 52-55.
    [81] Kasama S, Toyama T, Kumakura H, et al. Addition of valsartan to an angiotensin-converting enzyme inhibitor improves cardiac sympathetic nerve activity and left ventricular function in patients with congestive heart failure. J Nucl Med, 2003, 44(6): 884-890.
    [82] Yasumura Y, Miyatake K, Okamoto H, et al. Rationale for the use of combination angiotensin-converting enzyme inhibitor and angiotensin Ⅱ receptor blocker therapy in heart failure. Circ J, 2004, 68(4): 361-366.
    [83] Blanchet M, Sheppard R, Racine N, et al. Effects of angiotensin-converting enzyme inhibitor plus irbesartan on maximal and submaximal exercise capacity and neurohumoral activation in patients with congestive heart failure. Am Heart J, 2005, 149(5): 938. e1-7
    [84] Susan M, Petrescu L, Rivis AI, et al. Dual renin angiotensin system blockade in patients with acute myocardial infarction and preserved left ventricular systolic function. Rom J Intern Med, 2005, 43(3-4): 187-198.
    [85] Skvortsov AA, Mareev VIu, Nasonova SN, et al. Is triple combination of different neurohormonal modulators recommended for treatment of mild-to-moderate congestive heart failure patients? (Results of SADKO-CHF study). Part 2. Ter Arkh, 2006,78(9): 61-71.
    [86] Ghanem FA, Movahed A. Should angiotensin receptor blockers be added to angiotensin-converting enzyme inhibitors in the treatment of heart failure? Rev Cardiovasc Med, 2005, 6(4): 206-213.
    [87] McKelvie RS, Yusuf S, Pericak D, et al. Comparison of candesartan, enalapdl, and their combination in congestive heart failure: randomized evaluation of strategies for left ventricular dysfunction (RESOLVD) pilot study. The RESOLVD Pilot Study Investigators. Circulation, 1999, 100(10): 1056-1064.
    [88] Colin JN, Tognoni G., Valsartan Heart Failure Trial Investigators. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med, 2001, 345(23): 1667-1675.
    [89] McMurray JJ, Ostergren J, Swedberg K, et al. Effects of candesartan in patients with chronic heart failure and reduced left ventricular systolic function taking angiotensin-converting-enzyme inhibitors: the CHARM-Added trial. Lancet, 2003, 362(9386): 767-771.
    [90] Sleight P. The ONTARGET/TRANSCEND Trial Programme: baseline data. Acta Diabetol, 2005, 42 Suppl 1: S50-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700