高精度多线切割机数控系统关键技术及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多线切割机是IC(集成电路)、IT(信息技术)、PV(光伏)等行业核心器件基片制造流程中的关键装备。多线切割是目前最先进的切片加工技术,其原理是通过金属线的高速往复运动把磨料带入待切割材料加工区域进行研磨,将待切件同时切割为数百或数千片薄片的创新性切片工艺。但多线切割机制造技术难度大,其核心技术长期被瑞士、日本等国家的极少数公司所垄断,严重制约了我国半导体照明、光伏、集成电路制造等产业的发展。开发具有自主知识产权的多线切割技术及装备,已成为突破国外技术封锁和国内产业瓶颈的关键举措。本文以多线切割机产品开发过程中的关键技术难题为主线,针对多线切割机数控系统关键技术进行深入研究。
     根据项目研究目的、内容及要求,给出了项目实施方案和技术路线。依据作者所承担的课题开发任务,研究多线切割的理论基础和技术基础,指出了研究的重点和攻克的难点,总结了多线切割机的国内外研究现状及发展趋势。
     针对切割线张力控制线问题,探讨多线切割机走线过程中影响线张力的各种因素,提出一种机电一体化的张力控制策略,该方法用转矩电动机代替张力锤施加张力,这种张力控制方法与传统的控制方法相比能极大地降低线张力波动的强度。理论分析和实验结果都表明:该方法张力控制精度高、易于实现,而且断线故障率低、张力调整方便。机电一体化张力控制的实现为多线切割机走线系统的设计奠定了基础。
     针对多电机速度同步系统控制问题,采用机理建模方法,建立了张力电机的运动学数学模型。全面分析了引起多线切割机走线系统稳定性各种不确定因素,指出多线切割机同步系统是一个非线性、时变、多输出的复杂系统。针对走线系统高速运行时数字PID控制系统存在的问题,提出多电机系统速度同步自适应逆控制算法,该系统以主电机为参考模型,由一个系统辨识环节和一个自适应控制器环节构成,引入虚拟模型自适应地调整控制器,使放线电机与主电机具有类似的动态特性。实验结果证明:该算法能有效提高速度同步系统的稳定性、快速性和精确性。
     针对排线控制问题,分析了接近开关限位排线方法的局限性,设计了无接近开关的伺服电机排线系统机械结构,建立排线机构的凸轮传动数学模型,通过对凸轮传动模型仿真研究,提出基于电子凸轮传动的排线控制算法,该方法用软件方法为收线电机虚拟一个电子凸轮,该电子凸轮在收线电机的“驱动”下,实现等效于排线动作的交替收、放卷功能,以此电子凸轮的“输出”作为控制量,对排线电机进行伺服控制。实验结果表明:这种实现方法机械结构简单、运行可靠、限位精度高、排线均匀。
     针对高速走线换向过程控制问题,分析了加工辊走线速度和主轴传动系统的性能对走线系统的安全性和稳定性的影响,建立传动系统数学模型,研究影响传动系统灵敏度、精度及抑制线速度扰动的各个要素,综合设计传动系统。通过理论分析和实验仿真的方法,深入研究梯形走线规律曲线和双余弦半波速度规律曲线的传动效果,提出单余弦半波走线算法。仿真和实验结果证明:该法方法传动效率高、速度曲线平滑、过渡时间短。
     根据多线切割机功能及技术指标要求,开发高精度多线切割机数控系统,设计了工作台进给系统、供砂系统、走线系统、主轴系统等辅助装置,成功研制多线切割机产品。运行实验结果表明:该产品控制系统运行稳定,切片加工精度高。
     本文攻克的高精度多线切割机数控系统关键技术,有效解决了多线切割机开发、成果转化和产业化过程中的技术难题,为高性能多线切割机的设计制造提供了重要理论依据和有效实现途径。
Multi-wire saw (MWS) is the key equipment in the core device of the substratemanufacturing process in IC,IT and PV industries. MWS is one of the most advanced slice processing technology. The principle of MWS is putting abrasive slurry in cutting materials processing area through high-speed reciprocating motion of a stainless steel wire, and the materials will be cut into hundreds of thousands of wafers at the same time. But the design and implementation of MWS technology is very hard. And the core technology of MWS have been mastered by minority several countries, such as Japan, Switzerland and so on, which delays the development of related industry of our county. the development of China's independent intellectual property rights of high-precision cutting machine products are very important for breakthroughingmonopolization of foreign technology and bottleneck of domestic industry. Taken the designing process of MWS product in technical difficult problem as clues, the key technologies of MWS are deeply researched in the dissertation.
     (1) Based on the project research purposes, contents and requirements, the project implementation and technique realization scheme have been put forward. According to the project tasks undertaken by author, the theory and technique foundation have been deeply researched. The research emphases and the conquered difficulties of this project have been pointed out. And the domestic and foreign research present situation and trend of development have been summarized in the dissertation.
     (2) Aimed at the problem of wire tension control, factors that influence wire tension are analyzed. A wire tension control scheme, which torque motor is used to produce tension on wire instead of hammer, based on electromechanical integration is proposed. By using this tension control method, the intensity of fluctuations in tension can be greatly reduced. The theoretical analysis and experiment results proved that themethod has high control precision,flexible realization,low wire-broken malfunction and facile tension adjusting. And the realization of wire tension control scheme based on electromechanical integration laies the foundation for hardware project design of MWS.
     (3) Aimed at the problem of multi-motor speed synchronization control, the kinematics model of the tension motor is established by using the mechanical theory modeling method, and uncertainties that disturb the function of wire winding system of MWS is particularized comprehensively. MWS synchronization system is a nonlinear, time-varying, multi-output complex system. Aimed at the problem of PID control system in high speed running, An adaptive inverse control algorithm ,which takes the main motor as reference model and consists of a system identification process and an adaptive controller process, was proposed; When MWS works,the controller is adjusted adaptively to force the supplying and collecting motor to follow the main motor’s output speed, The experiment result proved this algorithm can enhance synchronous system's stability, rapidity and accuracy.
     (4) Aimed at the problem of arranging wire servo control, the disadvantages to arranging wire method of close limit switches control system are pointed out. Andarranging wire servo control method of non-close limit switches is designed. The mathematical model of arranging wire structure based on the cam drive is established.By simulation research, the arranging wire control algorithm of electronic cam is realized. This algorithm hypothesized an electronic cam with software method. It can realize alternately supply and collect wire function by driving of collect spool motor. The experimental results proved that the realization of the scheme provided with superiority of simple mechanical structure, stability, high accuracy limit and uniform arranging wire.
     (5) Aimed at the problem of multi-motor system synchronized switching directionprocess control, this dissertation studied the reliability and stability of the wire winding system which directly influenced on stability of roller wire speed and performance of main axis transmission system. Mathematical model of transmission system is built, and main parameters of transmission system are designed byresearching each essential factor which influences sensitivity and precision of transmission system. Through theoretical analysis and experiment simulation, transmission effect in trapezoid wire winding curve and the double cosine half-wave speed rule curve is researched. And the wire winding algorithm of single cosine half-wave is proposed. The simulation and experimental result proved that the transmission efficiency is high, the velocity curve is smooth and the transition time is short.
     (6) According to the MWS functions and technical specification request, Highaccuracy multi-wire numerical control system is developed, and periphery assistantdevice, which includes the table feed system, sand-supplying system, wire windingsystem and the main axis system, is successfully developed. The MWS product is developed successfully. The experimental result proved that the MWS product has merits of stable control system, high precision of wafer.
     The developed key technologies of MWS in this dissertation solved the technical problem in development of MWS and the transformation of achievement and the process of industrial production effectively. It provided important theory basis and effective realized ways for developing MWS.
引文
[1]常美茹.线切割机加工半导体晶片质量控制的研究[J].半导体技术,2006,31(3):176~179
    [2] Kojima.多线精密锯切装置[J]. Sumitomo Search, 1993(52):228~230
    [3] Wang, Z.,Miao, J.,Tan, C.W.. Acoustic transducers with a perforated damping backplate based on PZT/silicon wafer bonding technique[J]. Sensors & Actuators: A. Physical, 2009,149 (2):27l~283
    [4] Hu, Y.Q., Zhao, Y.P.,Yu, T.. Tensile tests of micro anchors anodically bonded between Pyrex glass and aluminum thin film coated on silicon wafer[J]. Microelectronics Reliability, 2008,48 (10):1720~1723
    [5] Nie, H.Y., McIntyre, N.S., Lau, W.M., Feng, J.M.. Optical properties of an octadecylphosphonic acid self—assembled monolayer on a silicon wafer[J]. Thin Solid Films, 2008,517 (2):814~818
    [6] J.Li,et al.. Modelling Stresses of Contacts in Wire Saw Slicing of Polycrystalline and Crystalline Ingots. Application to Silicon Wafer Production. ASME J.Electronics Packaging, 120, June 1998:123~128.
    [7] Kubair, D.V., Cole, D.J.,Ciacchi, L.C.,etc. Multiscale mechanics modeling of direct silicon wafer bonding[J]. Scripta Materialia, 2009,60 (12):1125~1128
    [8] Clark, W.I.,Shih, A.J., Hardin, etc. Fixed abrasive diamond wire machining—part I: process monitoring and wire tension force[J], International Journal of Machine Tools and Manufacture, 2003,43 (5):523~532
    [9] Wang, W., Liu, Z.D., Tian, Z.J.. High efficiency slicing of low resistance silicon ingot by wire electrolytic—spark hybrid machining[J]. Journal of Materials Processing Tech., 2009,209 (7):3149~3155
    [10]王棕.半导体材料加工新秀—多线切割机[J].电子工业专用设备,2004,(111):63~64
    [11]王棕.多线切割机的现状和发展趋势[J].电子工业专用设备,2006,(168):11~13.
    [12] F. Cheng, G. Feng, Z. Isago. Thermo—mechanical analysis and optimal tension control of micro wire electrode Han[J]. International Journal of Machine Tools and Manufacture. 2008, 48 (7):922~931
    [13] D. Knittel, E. Laroche, H. Koc. Tension control for winding systems with twodegrees of freedom H∞controller. IEEE Transactions on education. 2001, 45(.4):576~58
    [14] Pagilla P.R., King E.O., Dreinhoefer L.H., etc. Robust observer—based control of an aluminum processing line[J]. IEEE Transactions on Industry Applications. 2000,36(3): 865~870
    [15] Claveau Ph., Chevrel D. A two of freedom H2 controller design methodology for mufti—motors web handling system. 2005 American Control Conference June 8—10, 2005. Portland ,OR,USA,: 1383~1388
    [16] Norber A. Ebler, Ragnar Arnason, Gerd Michaelis, etc. Tension control:dancer roller or load cell[J]. IEEE transactions on industry applications, 1993, 29( 4):727~730
    [17] Cheol Jae Park, Duk Man Lee, Seung Gap Choi. Development of fuzzy PID control system for hot strip finishing mill. Industrial Electronics Society, 2001. IECON'O1. The 27th Annual Conference of the IEEE, 2001,1(29): 787~791
    [18]董佐庆,齐占庆.模糊PID控制在H型钢张力控制中的应用[J].控制工程,2002, 9(3): 53~54
    [19] GUO S, HE Y Y, FANG M L. Design of a fuzzy precompensator PID tension controller for fabric based on DSP[J]. 2004 8th International Conference on Control, Automation, Robotics and Vision, 2004,(11):1895~1900.
    [20] CHUNG B M, LEE S G, CHO C S. Active tension control of high speed splitting machines using fuzzy PID[J]. Proceedings of the 2005 IEEE International Conference on Mechatronics, 2005,(7):72~77.
    [21] WANG C X. Research on precision tension control system based on neural network[J]. IEEE Transactions on Industrial Electronics, 2004,51(2):381~386.
    [22]方强.被动式力矩伺服控制系统设计方法及应用研究.哈尔滨工业大学博士论文.哈尔滨:哈尔滨工业大学,2006,22~25
    [23]尹征琦,朱劲.自适应张力控制.电气传动,2001, 31(6): 35~37
    [24] S.Bennett,A Brief History of Servomechanisms. IEEE Control System,1994,14(2):75~79
    [25]肖英奎,尚涛,陈殿生.伺服系统实用技术[M],北京:化学工业出版社,2004.1~5
    [26]赖天华.高精度伺服传动系统的设计与实践:双电动机驱动的伺服传动系统的设计与探讨[J],电子机械工程,1996 4: 46~49
    [27] J.A. Wickert and C. D. Mote, Jr. Response and Discretization Methods for Axially Moving Materials[J]. Applied Mechanics Review, 1991,44(11):279~284.
    [28] Altintas Y. Manufacturing Automation—Metal Cutting Mechanics, Machine Tool Vibrations and CNC Design[M]. Cambridge University Press,2002,83~90.
    [29]陈伯时,陈敏逊.交流调速系统[M].北京:机械工业出版社,2005.130~140.
    [30]Bosch Rexroth AG..Embedded Controller. http://www.boschrexroth. Com /business_units/brc/subwebsites/product_catalogue/en/steuerungskomponenten_en/Controls_en/IndraControl_L_en/Embedded_Controller_en/index.jsp.2009.3.10
    [31]西门子(中国)有限公司工业业务领域工业自动化与驱动技术集团. Simotion运动控制系统.http://www.ad.siemens.com.cn/products/mc/ h_performance/ SIMOTION.asp,(2009-4-20)
    [32] Yaskawa Electric America, Inc. Specifications and Features for MP2300Siec.http://www.yaskawa.com/site/products.nsf/ProductDetailPages/Multi—Axis%20Motion%20Controllers~MP2300Siec~MP2300Siec_features.html.(2008-12-11)
    [33] Danaher motion. MMC Smart Drive and Digital MMC Control Hardware Manual, Part No. M.3000.0040, Version 2.3. http://www.danahermotion.com /website/com/eng /products/controls/glmc_manuals.php.(2009-2-10).
    [34]丛爽,李泽湘.实用运动控制技术[M],北京:电子工业出版社,2006,10~20
    [35]云利军,孙鹤旭,雷兆明等.运动控制网络的研究现状及发展趋势[J].控制工程,2006,13(4):289~293
    [36] Zhaohong Wang,Tiantong Tang,Shi Chen. surface electrical charge and field analysis of single—electrode type interdigital transducers with bus—bar [J]. Journal of Physics D: Applied Physics, 2007,40 (15):4476—4481
    [37] Bellato, M., Isocrate, R., Meng, G..Remoting field bus control by means of a PCI Express—based optical serial link Bellato[J].Nuclear Inst. and Methods in Physics Research, 2007,570 (3):518~524
    [38]郭晓光,郭东明,康仁科等.单晶硅超精密磨削分子动力学仿真[J].机械工程学报,2006,42(6):46~50.
    [39] Watson, M A, Mathias, K J, Ashcroft G P,etc. Wire tension in the Ilizarov system: accuracy of the wire—tensioning device[J]. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine, 2005,219 (5):355~359
    [40] Carofino, B.C.,Santangelo, S.A., Kabadi, M.. Olecranon Fractures Repaired With FiberWire or Metal Wire Tension Banding: A Biomechanical Comparison[J].Arthroscopy: The Journal of Arthroscopic and Related Surgery, 2007,23 (9):964~970
    [41] Seung—Ho Song, Seung—Ki Su. Design and control of multi—span tension simulator[J]. IEEE Transactions on Industry Applications, 2000 36(2): 640~648
    [42]张京诚.张力辊组打滑与设计原则分析[J].有色金属加工.2003, 32(3): 23~26
    [43]史步海,丁川,李向阳.铜带气垫炉生产线小张力控制的研究[J].制造业自动化, 2004,(4):47~49
    [44] Antoci, Valentin,Voor, Michael J, Antoci, Valentin. Effect of wire tension on stiffness of tensioned fine wires in external fixation: a mechanical study[J]. American journal of orthopedics (Belle Mead, N.J.), 2007,36 (9):473~476
    [45] Chen, J.,Dawson, D.M.,Dixon, W.E.,etc. Navigation function—based visual servo control [J]. Automatica, 2007,43 (7):1165~1177
    [46]童朝南,纪智,彭开香,萤沽.卷取张力控制新方法[J].北京科技大学学报,2002,24(4):463~465
    [47] Gorju G , Jucha A , Jain A , Crozatier, V. Active stabilization of a rapidly chirped laser by an optoelectronic digital servo—loop control [J]. Optics letters,2007,32(5):484~486
    [48] M?ller H J.Basic mechanisms and models of multi—wire sawing[J].Advanced Engineering Materials,2004,6(7):501~515
    [49] Chen, J.,Dawson, D.M.,Dixon, W.E.,etc. avigation function—based visual servo control[J]. Automatica, 2007,43 (7):1165~1177
    [50]张义兵,戴瑜兴,袁巨龙等.多线切割机线张力控制系统设计实现?D?.机械工程学报,2009,45(5):295~300
    [51]湖南宇晶机器实业有限公司. YJXQ300A多线切割机.http://www.yj—cn. om/pro_show.asp?id=157. (2006-10-20)
    [52] YASKAWA Electric Corporation. SGDS Sigma III for mechatrolink II user manual[EB/OL].http://www.yaskawa.com/site/DMServo.nsf/DocID/ 86256EC30069FDEF86256F890057 F579?OpenDocument. (2005-01-14)
    [53]何振亚.自适应信号处理[M],上海:科学出版社,2002:68~77
    [54]张海燕,王伟,赵庆梅.无轴传动控制策略及仿真分析[J].自动化技术与应用,2007,26(3):105~108
    [55] Anderson R G, Lorenz R,et al.Web Machine coordinated motion control via electronixs line—shafting[J].IEEE Transactions on industry applications, 2001,37(1):247~254
    [56] Valenzuela M A,Lorenz R D. Electronic Line—shafting control for paper machinedrives[J], IEEE Transactions on industry applications, 2001,37(1):158~164[57]郑魁敬,赵永生.基于PMAC的并联机床运动控制技术研究J].机床与液压,2004(8):36~39
    [58] Wu,S.J. Affine TS—model—based fuzzy regulating/servo control design[J]. Fuzzy Sets and Systems, 2007,158 (20):2288~2305
    [59] Pachidis, Theodore P., Tarchanidis, Kostas N.,Lygouras, John N.,etc. Robot Path Generation Method for a Welding System Based on Pseudo Stereo Visual Servo Control[J]. EURASIP Journal on Applied Signal Processing, 2005, 2005(14):2268~2280
    [60] Chin,G.T.—C., Tomizuka,M.b. Coordinated position of multi—axis mechanical systems[J]. Journal of Dynamic systems, Measure and control, Transaction of ASME,1998,120(3):389~393
    [61] Chin,G.T.—C.,Tomizuka,Masayoshi.Contouring control of machine tool feed drive system: A task coordinate frame approach[J]. IEEE Transactions on Control Systems Technology,2001,9(1):130~139
    [62] Li, Zhijun,Ge, Shuzhi, Sam Ming,etc. Adaptive robust motion/force control of holonomic—constrained nonholonomic mobile manipulators[J]. IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics : a publication of the IEEE Systems, Man, and Cybernetics Society, 2007,37 (3):607~616
    [63]文方,姜孝华.多级电动机同步驱动控制系统[J],电气传动,2000,30 (5):14~17
    [64]刘福才,张学莲,刘立伟.多级电动机传动系统同步控制理论与应用研究[J].控制工程,2002,9(4):87~89
    [65]夏超英.交直流传动系统的自适应控制[M].北京:机械工业出版社,2000,35~45
    [66] Yu.L.H,Fang. J.C,Wu.C. Magnetically suspended control moment gyro gimbal servo—system using adaptive inverse control during disturbances. Electronics Letters.2005,41(17):1~5
    [67] Lu, L.,Murray—Smith, D.J., Thomson, D.G.. ssues of numerical accuracy and stability in inverse simulation[J]. Simulation Modelling Practice and Theory, 2008,16 (9):1350~1364
    [68] WIDROW B,WALACH E. Adapt inverse control[M]. Englewood Cliffs,American,NJ:Prentice—Hall,1998.303~310.
    [69] H.Y. Chang, C. H. Liu. A model—referenced adaptive control strategy for improving contouring accuracy of multi—axis machine tools[J]. IEEETransactions on Industry Application, 1992,28(1):221~227
    [70] LEECH, TENGCC. Identification and Control of Dynamic Systems Using Recurrent Fuzzy Neural Networks[J]. IEEE Trans Fuzzy Syst,2000,8(4):349~366
    [71]张义兵,戴瑜兴,汤睿.多线切割机速度同步系统的自适应逆控制[J].控制理论与应用,2008,25(6):1007~1010.
    [72] Delis, J.S. Design machinery and control options in coil winding. Insulation Magazine, IEEE Volume 9, Issue 4, July-Aug. 1993:16~22
    [73] Li,Y.,Xu,Q..Dynamic modeling and robust control of a 3—PRC translational parallel kinematic machine[J].Robotics and Computer Integrated Manufacturing,2009,25(3):630~640
    [74] Jo, S.. Adaptive biomimetic control of robot arm motions[J]. Neurocomputing,2008,71(16):3625~3630
    [75]周建洪.浆纱机织轴的恒张力控制[J].电机与控制学报.2004(6):145~146
    [76]湖南宇晶机器有限公司.基于伺服电机的伺服排线系统.中国专利.ZL 2008 2 0052558.4,2008-2-4
    [77]孙桓,陈作模.机械原理[M].北京:高等教育出版社,2001:292~320
    [78] Tikhonenko Irina , Nag, Dilip K ,Martin Nora,etc. Kinesin—5 is not essential for mitotic spindle elongation in Dictyostelium[J]. Cell motility and the cytoskeleton, 2008, 65 (11):853~862
    [79] Cao Y Z, Altintas Y. A general method for the modeling of spindle bearing systems [J]. ASME, J. of Mechanical Design, 2004, 126: 1089~1104.
    [80] Altintas Y, Cao Y. Virtual design and op timization of machine tool spindles. CIRP Annals [J]. Manufacturing Technology, 2005,54: 379~382.
    [81] Dolgui, A., Ihnatsenka, I.. Branch and bound algorithm for a transfer line design problem: Stations with sequentially activated multi-spindle heads[J]. European Journal of Operational Research,2009,197(3):1119~1132
    [82] Kunda, P.,Baum, B..The actin cytoskeleton in spindle assembly and positioning [J].Trends in Cell Biology, 2009,19 (4):174—179
    [83]蔡英,黄国庆,刘建清,冯一东,刘士良.机床高速主轴系统的动力学特性[J].江南大学学报(自然科学版),2003,2(3):286~292.
    [84]郭策,庆鸿,蒋书运.高速高精度数控车床主轴双转子系统动力特性[J].西南交通大学学报,2003,38(5):553~557.
    [85] B.Armstrong—Helouvry,P.Dupont. Friction Modeling for Control[J]. Proceedings of the American Control Conference.1993,(2):1905~1909
    [86] C.Candus, H.Olsson, K.J.Astrom, et al. A New Model for Control of Systems with Friction[J].IEEE Transaction on Automatic Control.1995. 40(3):419~425
    [87] H. Du and S. S. Nair. Modeling and Compensation of Low—Velocity Friction with Bounds. IEEE Transaction on Control Systems Technology. 1999. 7(1):110~121
    [88] H. Rachoor and A. Harnoy. Modeling of Dynamic Friction in Lubricated Line Contacts for Precise Motion Control[J]. Tribology Transations.1996 39(2):476~482
    [89]何伟,何邦贵,杨朝丽.主轴系统结构设计参数对其动力特性影响研究[J].精密制造与自动化, 2002, 1:18~21.
    [90]张波,虎恩典,陈天宁,陈花玲,刘保东.数控机床主轴部件动态优化设计[J].机械设计, 2004,21(5): 33~35.
    [91] Seiko Epson Corporation. Motor velocity and acceleration determining method, Acceleration/Deceleration generation method, Acceleration/Deceleration controlling method, Acceleration/Deceleration apparatus and motor controlling apparatus. United States Patent patent, US 6,552,507 B2,2003-4-22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700