用户名: 密码: 验证码:
河床结构对推移质运动及下切河流影响的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以我国西南山区小江支流吊嘎河为对象,通过野外观测和试验研究了山区河流推移质运动规律和河床结构对推移质运动的影响;以人工阶梯-深潭系统作为典型河床结构,研究了其对下切河流微地貌、水力特性及生态的影响。
     采用子-母槽坑测法测量推移质输沙率。设计制作推移质运动观测和视频采集装置研究河床结构不同发育条件下山区河流推移质运动规律。设计制作床面结构测量装置,实现河床结构发育程度参数SP的测量和量化,为分析河床结构发育程度与推移质运动之间的关系提供了基础。
     山区河流推移质输沙率在相同水流条件下可能相差数百到上千倍,一般汛前比第一次洪水后大,在输沙率-水流强度关系图上呈顺时针“绳套型”,其主要原因是汛前和汛期第一次洪水后来沙条件明显不同。来沙条件的不同也会使输沙量呈现显著的年际差异。山区河流推移质运动与河床结构的发育程度有密切关系,河床结构发育良好时,推移质输沙强度低,跃移运动是推移质输沙的主体;无河床结构条件下,滚动(间或滑动)和跃移输沙均为推移质输沙的主要方式;如果水流和来沙强度达到一定限值,可能发生层移质运动,此时滚动(滑动)输沙超越跃移输沙成为主要推移质输沙方式。推移质输沙和河床结构均消耗水流能量,两者相互制约,是一对矛盾统一体。对同一河段,在同等水流条件下,推移质输沙率和河床结构发育程度系数在对数坐标系下成线性负相关关系。
     野外试验表明,人工阶梯-深潭系统在稳定河床,改善河流生态上作用显著。人工阶梯-深潭系统布置后,吊嘎河试验段河床结构发育程度明显上升,推移质泥沙起动受到抑制,同时蓄积部分上游来沙,因而河床下切趋势得到有效控制。不同底质、流速和水深环境交替出现,在空间层次上塑造了多样性的水生环境,栖息地多样性指数从试验前的11上升到九个月后的42。随着水生栖息地环境提升,底栖生物密度和物种丰度分别从61.5个/m2、17种上升到5217个/m2、22种,水生生态明显改善。吊嘎河野外试验的已有结果表明,人工阶梯-深潭系统是一个值得继续探索的方法,对我国山区下切河流的治理具有参考作用。
The dissertation studies the impacts of streambed structures on the bed load transport and effects of an artificial streambed structure on channel incision control and ecological restoration through two field experiments in the Diaoga River, a tributatry mountain stream of Xiaojiang River in Southwest China.
     One experiment was conducted to investigate the bed load transport under unsteady flow conditions. The bed load transport rate was measured with a double-box pit trap sampler and the motion of bed load particles were observed by using a video-capturing instrument in a flume buried within the channel bed. The streambed structure was quantified by using a parameter SP, which was measured with a specially-designed instrument.
     The flow discharge and sediment transport respond well to the rainfall process in mountain stream, showing the feature of“drastic increase and dramatic fall”. Bed load transport rate may be thousands times less after the first flood of the year than before under the same flow conditions, and the bed load transport rate versus stream power diagram shows a clockwise looped curve. The difference of incoming sediment also causes distinct discrepancy of total annual bed load between years.
     The bed load transport and the development degree of streambed structures in mountain streams is closely interrelated with each other. For streams with well-developed streambed structures, bed load transport rate is low, and particles moves mainly in saltation. For streams without streambed structures, both contact load motion and saltation load motion occur; and if the flow intensity and incoming sediment reach a critical high value, laminated load motion may occur and be the main part of bed load transport. Both the bed load transport and streambed structures consume flow energy; they act as resistance to the flow and are inter-restricted. Given a stream power, the bed load transport rate is inversely proportional to the development degree of streambed structures in a logarithmic coordinate system for the same stream reach.
     Step-pool system is the strongest bed structure in mountain streams on flow energy dissipation and bed incision control. In case of no naturally developed step-pool system, artificial step-pool system may be used. The second experiment was conducted by constructing an artificial step-pool system to study its effects on streambed incision control and aquatic ecology restoration. The experiment has been showing marked positive effects on these aspects. Initiation of bed particles have been controlled and bed load from upstream is partly stored in the experiment sections, therefore the stream bed incision in the experimental reach is effectively controlled, and consequently improves stream bed and bank slope stability. Different substrate, flow velocity and water depth environment alternating upstream steps and in pools creates spatially diversified stream habitats which enhances the development of the aquatic creatures. The habitat diversity index increases from 11 for natural channel to 42 nine months after the artificial step-pool system. The number density of individual benthic invertebrate and taxa richness (number of benthic invertebrate species) increased from 61.5/m2 and 17 to 5217/m2 and 22 respectively, indicating the stream ecology is obviously improved. The results of the field experiment show that, artificial step-pool system is worthwhile for further research, and is positive on restoration of incised mountain streams in China.
引文
[1] Abrahams A D, Li G and Atkinson J F. Step-pool stream: Adjustment to maximum flow resistance. Water Resources Research, 1995, 31(10): 2593-2602.
    [2] Ashida K, Egashira S, Nishino T, et al. Mechanics of sediment transport in the production and destruction processes of step-pool morphology (Japanese with English abstract). Bulletin of the Disaster Prevention Research Institute, Kyoto University, 1987, 30(B-2): 493-506.
    [3] Barry J J, Buffington J M and King J G. A general power equation for predicting bed load transport rates in gravel bed rivers. Water Resource Research, 2004, 40, W10401, doi:10.1029/2004WR003190.
    [4] Barry J J, et al. Performance of bed load transport equations in mountain gravel-bed rivers: a re-analysis. Proceedings of the Eighth Federal Interagency Sedimentation Conference (8thFISC), April2-6, 2006, Reno, NV, USA, 2006: 90-97.
    [5] Bathurst J C, Graf W H and Cao H H. Bed load discharge equations for steep mountain rivers. // Thorne C R, Bathurst J C, Hey R D. Sediment Transport in Gravel-bed Rivers. John Wiley, Chichester, UK, 1987, pp. 453-491.
    [6] Biggs B J F, Maurice J D, Steven N F, et al. Physical characterization of microform bed cluster refugia in 12 headwater streams, New Zealand. New Zealand Journal of Marine and Freshwater Research, 1997, 31: 413-422.
    [7] Billi P, D′Agostino V, Lenzi M A and Marchi L. Bedload, slope and channel processes in a high-altitude torrent. // Klingemann P C, Beschta R L, Komar P D, et al. Gravel-bed rivers in the environment, Highlands Ranch, CO: Water Resources Publications, 1998: 15-38.
    [8] Bravard J P, Amoros C, Pautou G, et al. River incision in South-East France: morphological phenomena and ecological effects. Regulated Rivers: Research and Management, 1997, 13(1): 75-90.
    [9] Buffington J M and Montgomery D R. Effects of hydraulic roughness on surface textures of gravel-bed rivers. Water Resources Research, 1999, 35(11): 3507-3521.
    [10] Chartrand S M and Whiting P J. Alluvial architecture in headwater streams with special emphasis on step-pool topography. Earth Surface Processes and Landforms, 2000, 25: 583-600.
    [11] Chin A and Phillips J D. The self-organization of step-pools in mountain streams. Geomorphology, 2007, 83: 346-358.
    [12] Chin A and Wohl E. Toward a theory for step pools in stream channels. Progress in Physical Geography, 2005, 29(3): 275-296.
    [13] Chin A. Step-pools in stream channels. Progress in Physical Geography, 1989, 13: 391-408.
    [14] Chin A. The geomorphic significance of step-pools in mountain streams. Geomorphology, 2003, 55: 125-137.
    [15] Chin A. The morphologic structure of step-pool in mountain streams, Geomorphology, 1999, 27: 191-204.
    [16] Chin A. The periodic nature of step-pool mountain streams. American Journal of Science, 2002, 302: 144-167.
    [17] Chow V T. Open channel hydraulics. New York, McGraw-Hill, 1959, 680 p.
    [18] Church M and Zimmermann A. Form and stability of step-pool channels: Research progress. Water Resources Research, 2007, 43, W03415, doi: 10.1029/2006WR005037.
    [19] Church M, Hassan M A and Wolcott J F. Stabilizing self-organized structures in gravel-bed stream channels: Field and experimental observations. Water Resources Research, 1998, 34(11): 3169-3179.
    [20] Cudden J R and Hoey T B. The causes of bedload pulses in a gravel channel: The implications of bedload grain-size distributions. Earth Surface Processes and Landforms, 2003, (13): 1411-1428.
    [21] Curran J H and Wohl E. Large woody debris and flow resistance in step-pool channels, Cascade Range, Washington. Geomorphology, 2003, 51(1-3): 141-157.
    [22] Diego C, Peter G and Milos M. Derivation of a bedload sediment transport formula using artificial neural networks. 7th International Conference on Hydroinformatics (HIC), 2006, Nice, France, 1-8.
    [23] Downes B J, Lake P S, Schreiber E S G, et al. Habitat structure, resources and diversity: the separate effects of surface roughness and macroalgae on stream invertebrates. Oecologia, 2000, 123: 569-581.
    [24] Downing J. GTS Instruction manual. D & A Instrument Company, Port Townsend, WA, 1999.
    [25] Duckson D W and Duckson L J. Morphology of bedrock step pool systems. Water Resources Bulletin, 1995, 31: 43-51.
    [26] Ergenzinger P. River bed adjustment in a step-pool system in Lainbach, upper Bavaria. // Thorne C R, Bathurst J C and Hey R D. Sediment Transport in Gravel-bed Rivers, John Wiley, New York, 1992: 415-430.
    [27] Glenn B W, et al. Trichoptera. // John C M, Yang L F and Tian L X. Aquatic insects of China useful for monitoring water quality. Hohai University Press, 1994, pp. 260
    [28] Gomez B, Emmett W W and Hubbell D W. Comments on sampling bedload in small rivers. // Proceeding of the 5th Federal Inter-Agency Sedimentation Conference, 1991, 2: 65-72.
    [29] Gomez B and Church M. An assessment of bed load sediment transport formulae for gravel bed rivers. Water Resources Research, 1989, 25: 1161-1186.
    [30] Gorman O T and Karr J R. Habitat structure and stream fish communities. Ecology, 1978, 59: 507-515.
    [31] Grant G E and Mizuyama T. Origin of step-pool sequences in high gradient streams: a flume experiment. // Tominaga M. Proceedings Japan-US Workshop on Snow Avalanche, Landslide, and Debris Flow Prediction and Control. Tsukuba, Japan Science and Technology Agency, 1991: 523-532.
    [32] Grant G, Swanson F J and Wolman M G. Pattern and origin of stepped-bed morphology in high-gradient streams, western Cascades, Oregon. Geological Society American Bulletin, 1990, 102: 340-352.
    [33] Gray J R. Proceedings of the Federal Interagency Sediment Monitoring Instrument and Analysis Research Workshop, 2005, Flagstaff, Arizona: U.S. Geological Survey Circular 1276, 46 pages plus extended abstracts available only online at: http://water.usgs.gov/osw/techniques/sediment/sedsurrogate2003workshop/listofpapers.htm
    [34] Grodek T, Inbar M and Schick A P. Step pool geometry and flow characteristics in low gradientstorage channel beds. // Cotroneo G V and Rumer R R. Hydraulic Engineering 1994. Proceedings of the National Conference on Hydraulic Engineering, Buffalo, NY: American Society of Civil Engineers, 1994: 819-823.
    [35] Gui H. Ephemeroptera. // John C M, Yang L F and Tian L X. Aquatic insects of China useful for monitoring water quality. Nanjing, Hohai University Press, 1994, pp. 124.
    [36] Hassan M A and Church M. Experiments on surface structure and partial sediment transport in gravel bed streams. Water Resources Research, 2000, 36(5): 1885-1895, Paper number 2000WR900055.
    [37] James A L. Incision and morphologic evolution of an alluvial channel recovering from hydraulic mining sediment. Bulletin of the Geological Society of America, 1991, 103: 723-736.
    [38] Jong C DE and Ergenzinger P. The interrelations between mountain valley form and river-bed arrangement. // Edward J Hickin. River Geomorphology, John Wiley & Sons Ltd., 1995: 55-91.
    [39] Karr J R. Defining and measuring river health. Freshwater Biology, 1999, 41: 221-234.
    [40] King J G, Emmett W W, Whiting P J, et al.“Sediment transport data and related information for selected gravel-bed streams and rivers in Idaho.”U.S. For. Serv. Gen. Tech. Rep. RM, RMRS-GTR-131, 2004, 26 pp.
    [41] Klingeman P C. Short-term considerations on river gravel supply. // Salmon-spawning gravel: a renewable resource in the pacific northwest region, Water Research Center, Washington State University, Pullman, Washington, 1981: 123-139.
    [42] Kondolf G M, Wolman M G. The sizes of salmonid spawning gravels. Water Resources Research; 1993, 29(7): 2275-2285.
    [43] Kondolf G M. Hungry water: effects of dams and gravel mining on river channels. Environmental Management, 1997, 21: 533-551.
    [44] Krebs C J. Ecology: the experimental analysis of distribution and abundance, 2nd ed. Harper and Row, New York, 1978.
    [45] Lamarre H and Roy A G. The role of morphology on the displacement of particles in a step-pool river system. Geomorpholog, 2008, 99: 270-279.
    [46] Laronne J B and Carson M A. Interrelationships between bed morphology and bed-material transport for a small, gravel-bed channel. Sedimentology, 1976, 23: 67-85.
    [47] Lenat D R, Smock L A and Penrose D L. Use of benthic macroinvertebrates as indicators of environmental quality. // Worf D L. Biological Monitoring for Environmental Effects, Lexington, MA, 1980: 97-112.
    [48] Lenzi M A. Stream bed stabilization using boulder check dams that mimic step-pool morphology features in northern Italy. Geomorphology, 2002, 45: 243-260.
    [49] Limerinos J T. Determination of the Manning coefficent from measured bed roughness in natural channels. U.S. Geological Survey Water-Supply Paper 1898-B, Federal Centre, Colorado, 1970.
    [50] Madej M A. Development of channel organization and roughness following sediment pulses in single-thread, gravel-bed rivers. Water Resources Research, 2001, 37(8): 2259-2272.
    [51] Mahoney J M and Rood S B. Response of a hybrid poplar to water table decline in different substrates. Forest Ecology and Management, 1992, 54: 141-156.
    [52] Marston R A. The geomorphic significance of log steps in forest streams. Association of American Geographers Annals, 1982, 72: 99-108.
    [53] Martin Y. Evaluation of bed load transport formulae using field evidence from the Vedder River, British Columbia. Geomorphology, 2003, 53: 75-95.
    [54] Matja M and Spazzapan E M. Development of the SPY-Cobble– an instrumented tracer for measuring dynamics of sediment transport in turbulent flows. // Nolan T J and Thorne C R. Gravel-bed Rivers 2000 (A Special Publication of the New Zealand Hydrological Society), Christchurch, New Zealand, 2000.
    [55] Milzow C, Molnar P, McArdell B W, et al. Spatial organization in the step-pool structure of a steep mountain stream (Vogelbach, Switzerland) Christian. Water Resources Research, 2006, 42, W04418, doi:10.1029/2004WR003870.
    [56] Montgomery D R and Buffington J M. Channel-reach morphology in mountain drainage basins. Geological Society of America Bulletin, 1997, 109: 596-611.
    [57] Montgomery D R, Buffington J M, Smith R D, et al. Pool spacing in forest channels. Water Resources Research, 1995, 31: 1097-1105.
    [58] Montgomery D R, Maria S P and Shannon K H. Channel-bed mobility response to extreme sediment loading at Mountain Pinatubo. Geology, 1999, 27(3): 271-274.
    [59] Moog D B and Whiting P J. Annual hysteresis in bed load rating curves. Water Resources Research, 1998, 34(9): 2393-2399, Paper number 98WR01658.
    [60] Morris S E. Geomorphic aspects of stream-channel restoration. Physical Geography, 1995, 16(5): 444-459.
    [61] Nickolotsky A and Pavlowsky R T. Morphology of step-pools in a wilderness headwater stream: The importance of standardizing geomorphic measurements. Geomorphology, 2007, 83: 294-306.
    [62] Oldmeadow D F and Church M. A field experiment on streambed stabilization by gravel structures. Geomorphology, 2006, 78: 335-350.
    [63] Papanicolaou A N, Knapp D, Strom K, et al. Bedload measurements and testing of the gravel transport sensor. Report prepared for the Washington Technology Center, Pullman, WA, 2002.
    [64] Parker G, Klingeman P C and Mclean D C. Bedload and size distribution in Paved Gravel-bed stream. Journal of Hydraulic Division, ASCE, 1982, 104: 544-571.
    [65] Pavluk T I, et al. Development of an index of trophic completeness for benthic macroinvertebrate communities in flowing waters. Hydrobiologia, 2000, 427:135-141.
    [66] Peter H A and Wang Z M. Simuliidae. // John C M, Yang L F and Tian L X. Aquatic insects of China useful for monitoring water quality. Nanjing, Hohai University Press, 1994, pp. 478.
    [67] Pitlick J C and Thorne C R. Sediment supply, movement and storage in an unstable gravel-bed river // Thorne C R, Bathurst J C, Hey R D. Sediment Transport in Gravel-bed Rivers. John Wiley, Chichester, UK, 1987, pp. 151-183.
    [68] Rennie C D, Millar R G, Church M A. Measurement of bedload velocity using an acoustic Doppler current profiler. Journal of Hydraulic Engineering, 2002, 128: 473-483.
    [69] Rennie C D, Millar R G. Measurement of bedload transport velocity spatial distribution. Earth Surface Processes and Landforms, 2004, 29: 1173-1193.
    [70] Rood S B and Mahoney J M. Collapse of riparian poplar forests downstream from dams in western prairies: probable causes and prospects for mitigation. Environmental Management, 1990, 14: 451-464.
    [71] Rosport M and Dittrich A. Step pool formation and stability-a flume study. Proceedings of the Sixth International. Symposium on River Sedimentation, 1995, pp. 525-533.
    [72] Rosport M. Hydraulics of steep mountain streams. International Journal of Sediment Research, 1997, 12(3): 99-108.
    [73] Ryan S E and Porth L S. A field comparison of three pressure-difference bedload samplers. Geomorphology, 1999, 30: 307-322.
    [74] Ryan S E and Troendle C A. Measuring Bedload in a Coarse-Grained Mountain Channels: Procedures, Problems, and Recommendations. // Proceeding of AWRA Annual Summer Conference, 1997: 949-958.
    [75] Ryckoczi J S. Experimental study of flume bed roughness. Proceedings of 12th Congress of IAHR, Fort Collins, 1967, 1: 181-186.
    [76] Sear D A and Archer D R. The effects of gravel extraction on the stability of gravel-bed rivers: a case study from the Wooler Water, Northumberland, UK. // Klingeman P C, Beschta R, Komar P, et al. Gravel Bed Rivers in the Environment. Water Resources Publications, Littleton, Colorado, 1998: 413-430.
    [77] Sear D A. Event bed load yield measurement with load cell bedload traps and prediction of bed load yield from hydrograph shape. // Bogen J, Fergus T and Walling D E. Erosion and Sediment Transport Measurement in Rivers: Technological and Methodological Advances. Proceedings of the Oslo Workshop, Wallingford, UK, IAHS Press, 2003, 283: 146-153.
    [78] Smith M J, Kay W R, Edward D H D, et al. AusRivAS: Using macro-invertebrates to assess ecological condition of rivers in Western Australia. Freshwater Biology, 1999, 41: 269-282.
    [79] Song V and Chiew Y M. Effect of bed-load movement on flow resistace. Proceedings of the 27th Congress of the IAHR, 1997.
    [80] Sterling S M and Church M. Sediment trapping characteristics of a pit trap and the Helley-Smith sampler in a cobble gravel bed river. Water Resources Research, 2002, 38(8), 1144, doi:10.1029/2000WR000052.
    [81] Strom K, Papanicolaou A N, Evangelopoulos N, et al. Microforms in gravel bed rivers: formation, disintegration, and effects on bedload transport. Journal of Hydraulic Engineering, 2004, 130(6): 554-567.
    [82] Suttle K B, Power M E, Levine J M, et al. How fine sediment in riverbeds impairs growth and survival of juvenile salmonids. Ecological Applications, 2004, 14(4): 969-974.
    [83] Thomas D B, Abt S R, Mussetter R A, et al. A design procedure for sizing step-pool structures. ASCE Conference Proceedings. 2000, 104: 1-10
    [84] Todd M and Mike L. Natural channel design of step-pool watercourses using the“key-stone”concept. ASCE conference proceedings, 2003, 118: 1-11.
    [85] Wang X K, Li D X, Qu Z S, et al. Verification and Comparison of Bed Load Transport Formulas. Journal of Hydrodynamics (B1), 2001, (13): 8-11.
    [86] Wang Z Y and Lee H W J. Integrated River Management. Textbook for Ph.D. students, Tsinghua University, 2006, pp. 165-192.
    [87] Wang Z Y, Huang G H, Wang G Q, et al. Modeling of vegetation-erosion dynamics in watershed systems. Journal of Environmental Engineering, ASCE, 2004b, 130(7): 792-800.
    [88] Wang Z Y, Melching C S, Duan X H, et al. Ecological and hydraulic studies of step-pool system. Journal of Hydraulic Engineering, ASCE, 2008 (in press, corrected proof).
    [89] Wang Z Y, Wolfgang K, Lu X Z, et al. Flume experiments on sediment transport, erosion and siltation of a channel bed in unsteady and non-uniform flow conditions. Institut für Hydrologie und Wasserwirtschaft (IHW), Karlsruhe, 1993a, B1-B82.
    [90] Wang Z Y, Wolfgang K, Lu X Z, et al. Uncertainty of sediment discharge, siltation and erosion in rivers and its implications for hydraulic works. Institut für Hydrologie und Wasserwirtschaft (IHW), Karlsruhe, 1993b, D1-D38.
    [91] Wang Z Y, Xu J and Li C Z. Development of step-pool sequence and its effects in resistance and stream bed stability. International Journal of Sediment Research, 2004a, 19(5): 161-171
    [92] Whittaker J G and Jaeggi N R. Origin of step-pool system in mountain streams. Journal of Hydraulic Division, ASCE, 1982, 108: 758-773
    [93] Whittaker J G. Sediment transport in step-pool streams. // Thorne C R, Bathurst J C, and Hey, R D. Sediment Transport in Gravel-Bed Rivers, John Wiley, Chichester, 1987: 545-579.
    [94] Wilcox A C and Wohl E E. Field measurements of three-dimensional hydraulics in a step-pool channel. Geomorphology, 2007, 83: 215-231.
    [95] Wittenberg L and Newson M D. Particle clusters in gravel-bed rivers: an experimental morphological approach to bed material transport and stability concepts. Earth Surface Process and Landforms, 2005, 30: 1351-1368.
    [96] Wittenberg L, Laronne J B, and Newson M D. Bed clusters in humid perennial and Mediterranean ephemeral gravel-bed streams: The effect of clast size and bed material sorting. Journal of Hydrology, 2007, 334: 312-318.
    [97] Wohl E E and Grodek T. Channel bed-steps along Nahal Yael, Negev Desert, Israel. Geomorphology, 1994, 9: 117-126.
    [98] Wohl E E and Thompson D M. Velocity characteristics along a small step-pool channel. Earth surface processes and landforms, 2000, 25: 353-367.
    [99] Wohl E E. Substrate influences on step-pool sequences in the Christopher Creek drainage, Arizona. Journal of Geology, 2000, 108: 121-129.
    [100] Wohl E, Madsen S and Lee M. Characteristics of log and clast bed-steps in step-pool streams of northwestern Montana, USA. Geomorphology, 1997, 20: 1-10.
    [101] Yang C T and Huang C A. Applicability of sediment transport formulas. International Journal of Sediment Research, 2001, 16(3): 335-353.
    [102] Zimmermann A and Church M. Channel morphology, gradient stresses and bed profiles during flood in a step-pool channel. Geomorphology, 2001, 40: 311-327.
    [103]曹凑贵.生态学基础.北京:高等教育出版社, 2002.
    [104]曹叔尤,刘兴年,方铎,等.山区河流卵石推移质的输移特性.泥沙研究, 2000 (4): 1-5.
    [105]曹叔尤,刘兴年,方铎.长江三峡卵石推移质颗粒沿程分布.水力发电学报, 1998, (2): 50-57.
    [106]陈循谦.论东川市水土流失、泥石流得危害和治理.水土保持学报, 1989, 3(4): 29-39.
    [107]崔鹏,王道杰,韦方强.干热河谷生态修复模式及其效应-以中国科学院东川泥石流观测研究站为例.中国水土保持科学, 2005, 3(3): 60-64.
    [108]段志科,彭润泽,许德风,等.非均匀卵石推移质分组输沙率水槽试验资料初步分析.泥沙研究, 1990, 3: 56-64.
    [109]胡春宏,惠遇甲.明渠挟沙水流运动的力学和统计规律.北京:科学出版社, 1995.
    [110]胡春宏.水流中推移质颗粒跃移规律的力学和统计分析[博士学位论文].北京:清华大学水利水电工程系, 1989.
    [111]康志成,马蔼乃,李焯芬,等.中国泥石流研究.北京,科学出版社: 2004: 1-4.
    [112]李义天,孙昭华,邓金运,等.泥沙输移变化与长江中游水患.泥沙研究, 2004, (2): 33-39.
    [113]刘兴年,方铎,陈远信等.宽级配推移质输沙随机过程的分维研究.四川联合大学研究报告, 1997.
    [114]刘兴年,黄尔,曹叔尤等.宽级配推移质输沙特性研究.泥沙研究, 2000 (4): 14-17.
    [115]刘兴年,黄尔,曹叔尤.长江上游卵石推移质输沙量时空分布初探.四川联合大学研究报告, 1996.
    [116]刘兴年.沙卵石推移质运动及模拟研究[博士学位论文].成都:四川大学高速水力学国家重点实验室, 2004.
    [117]钱宁,万兆惠.泥沙运动力学.北京:科学出版社, 1983.
    [118]秦荣昱,王崇浩.河流推移质运动理论及应用.北京:中国铁道出版社, 1996.
    [119]秦荣昱.不均匀沙的起动规律.泥沙研究, 1980,复刊号, 83-91.
    [120]秦荣昱.不均匀沙的推移质输移规律的研究.泥沙研究, 1993, 1: 29-38.
    [121]曲兆松,李丹勋,彭述明,等.都江堰河床质级配和推移质输沙率研究.水力发电学报, 1999, (3): 62-70.
    [122]水利部水文局.江河泥沙测量文集.郑州:黄河水利出版社, 2000.
    [123]唐立模.推移质颗粒三维运动规律的试验研究[博士学位论文].北京:清华大学水利水电工程系, 2006.
    [124]王军.三十年来东川泥石流防治回顾与展望. //崔鹏等.第三届海峡两岸泥石流灾害防治会议论文集, 2006: 295-300.
    [125]王兴奎,安凤玲,任裕民,等.床面颗粒临界起动时受力的脉动特性.泥沙研究, 1993, (3): 104-108.
    [126]王兴奎,邵学军,李丹勋.河流动力学.北京:中国水利水电出版社, 2002.
    [127]王兆印,程东升,何易平等.西南山区河流阶梯-深潭系列的生态学研究.地球科学进展, 2006, 21(4): 409-416.
    [128]王兆印,钱宁.层移质运动规律的实验研究.中国科学(A辑), 1984, 9: 863-870.
    [129]王兆印,王光谦,高菁.侵蚀地区植被生态动力学模型.生态学报, 2003a, 23(1): 98-105.
    [130]王兆印,王光谦,李昌志,等.植被-侵蚀动力学的初步探索和应用.中国科学(D辑), 2003b, 33(10): 1013-1023.
    [131]谢洪,钟敦伦,韦方强,等.我国城镇泥石流灾害及其成因.山地学报, 2006, 24(1): 79-87.
    [132]徐江,王兆印.阶梯-深潭的形成及作用机理.水利学报, 2004, 10: 48-55.
    [133]杨吉山.长江上游流域植被变化对土壤侵蚀和生态的影响研究[博士后出站报告].北京:清华大学水利水电工程系, 2008.
    [134]杨具瑞,方铎,何文社,等.推移质输沙率的非线性研究, 2003, 14(1): 36-39.
    [135]姚令侃,方铎.非均匀沙自组织临界性及其应用研究.四川联合大学研究报告, 1996.
    [136]姚于丽,陈怀汲.川江卵石推移质实测资料分析及输沙公式检验.长江科学院, 1989, 9.
    [137]禹明忠. PTV技术和颗粒三维运动规律的研究[博士学位论文].北京:清华大学水利水电工程系, 2002.
    [138]张之湘.卵石推移质输移随机性研究[博士学位论文].成都:四川大学水力学与山区河流开发保护国家重点实验室, 2005.
    [139]章书成.泥石流研究述评.力学进展, 1989, 19(3): 365-375.
    [140]郑钧,孙砚方,王兴奎,等.都江堰卵石推移质输沙规律研究.水力发电学报, 2005, 25(3): 21-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700