离子注入制备硅基发光材料及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着集成电路按照摩尔定律继续朝着尺寸更小、处理速度更快、成本更低的方向发展,芯片中的器件集成度越来越高,相应的金属互连结构的复杂程度和长度都达到了惊人的水平,随之带来的层间干扰、能量耗散、信号延迟等问题越来越严重;而且特征尺寸的缩小,将导致平面CMOS的寄生电阻和电容将超过其本身的沟道电阻和电容。另外,全球光通讯的飞速发展,使得短距离信号传输所使用的金属互连成为信号传输“瓶颈”。再有,集成电路的发展不仅体现在器件集成度的提高,而且反映在应用范围的扩大,例如在探测、力学、流体等方面的拓展应用,特别是在光学方面的应用。所有这些问题和挑战都需要硅基的光电集成系统来解决,而硅基发光器件成为了这类系统的关键,也是本论文的研究内容。
     本文利用离子注入工艺制备了硅基发光材料和器件,包括硅pn结、稀土离子Tb~(3+)注入SiN_x和SnO_2薄膜,并研究其发光性能,得到了以下创新性结果:
     首先,通过离子注入和退火的方法制备了不同的硅pn结,对其进行低温、室温光致发光的研究,利用透射电镜观察了硅pn结中的缺陷,并且对硅pn结进行了室温电子束诱生电流的测试。研究发现:硅pn结的发光和注入离子的类型没有关系,其发光强度随着离子注入剂量的增大而先增强后减弱。对于退火处理,常规炉退火比快速热退火更能得到比较强的发光,而氢退火可以进一步提高发光强度,并且退火温度应该控制在950~1100℃范围内。低温下,硅pn结束缚激子的发光峰得到了增强。经过高温退火后,在硅pn结的离子注入区域有位错环存在,该区域在室温下有载流子复合,而没有位错本身的发光峰,证明了位错环边缘的量子限域效应是硅pn结室温发光的主要机制。
     其次,通过PECVD(等离子体增强化学气相沉积)的方法制备SiN_x薄膜,并用离子注入在薄膜中引入Tb~(3+)离子,研究了退火温度和测试温度对该SiN_x:Tb~(3+)体系发光性能的影响。通过控制PECVD工艺中反应气体的比例,沉积了不同Si含量的SiN_x薄膜,并研究了这些不同的SiN_x薄膜对Tb_(3+)发光的影响。结果表明:在室温下SiN_x:Tb~(3+)体系能够得到Tb~(3+)离子的~5D_4→~7F_k(k=6-3)系列的发光峰,其发光强度随着退火温度的上升而增强(≤1000℃),该体系的发光几乎没有温度淬灭效应。进一步地,薄膜中含有较少的氧、缺陷态能量传递、载流子辅助以及较短的发光寿命等因素是SiN_x:Tb~(3+)体系中Tb~(3+)发光增强的原因。对于富硅的SiN_x薄膜,由于该类薄膜在高温退火时容易被氧化,并且有纳米Si颗粒从SiN_x基体中析出,导致了Tb~(3+)发光强度的降低。
     最后,利用高温氧化和RMS(反应磁控溅射)的方法制备了不同的SnO_2薄膜,表征了这些薄膜的微观形貌并分析了薄膜的形成机理,研究了SnO_2薄膜室温的光致和电致发光性能;另外利用离子注入和退火制备了SnO_2:Tb~(3+)薄膜,并表征了室温下它们的发光性能。结果表明:金属Sn薄膜在经过1000℃的高温氧化后得到纯的四方金红石结构SnO_2薄膜,存在位于590 nm的氧空位等缺陷相关的发光峰,而且在氧气中长时间退火会导致该发光峰的减弱。RMS制备的SnO_2薄膜在经过高温退火后也可以观察到590 nm的缺陷发光。正向偏置情况下,SnO_2╱p-Si异质结在可获得电致发光。对于SnO_2:Tb~(3+)薄膜,经过1000℃的高温退火后,发现了SnO_2的氧空位缺陷发光和Tb~(3+)发光共存的现象。另外,通过磷扩散工艺,可以提高SnO_2:Tb~(3+)薄膜中Tb~(3+)的发光,并抑制SnO_2的缺陷发光。
Nowadays,more and more transistors are integrated in chips as the integrated circuit advances according to the Moore's law.Chips become smaller,faster and cheaper.At the same time,the structure and length of the metal interconnection become overwhelming,which will worse problems such as cross talk,energy dissipation,etc.Moreover,the parasitic resistence and capacitance of the planar CMOS will exceed its channel resistence and capacitance with the scaling of feature size.On the other hand,the ever-growing global optical communication is severely hampered by the "bottleneck" of the data transmission of short-distance metal interconnection.Finally,the development of the integrated circuit includes not only the increased integration level of ultra-large-scale integrated circuits (ULSIs)but also the expanding of applications such as sensors,mechanics,fluid, and optics,etc.The chips need to have the function to process optical singles in optics system.All these challenges require the emergence of silicon optoelectronics system,among which the silicon-based light emitting device is the key opponent and therefore,the main objective of this thesis.
     Silicon-based light emitting materials and devices,including silicon pn junction,rare-earth Tb~(3+)doped SiN_x and SnO_2 films,were fabricated by ion-implantation and their light emission properties were studied in this thesis and some significant results were achieved as follows:
     Firstly,silicon pn junctions were prepared by ion-implantation and subsequent annealing process and their low temperature and room-temperature photoluminescence(PL)properties wereinvestigated.The defect microstructures and carrier recombination at dislocation loops region were characterized by transmission electron microscope(TEM)and electron beam induced current (EBIC),respectively.Results show that the light emission of pn junction is independent of ion types(B or P).PL intensity firstly increases and then drops down with the increasing ion-implantation dose.PL intensity of pn junction prepared by furnace annealing is higher than that by rapid thermal annealing (RTA).And hydrogen annealing can further improve the light emission intensity. The annealing temperature should be controlled in the range of 950-1100℃.The light mission from bounded excitons at low temperature is enhanced.After ion-implantation and high temperature annealing,dislocation loops are formed in the pn junction.Carrier recombination at the dislocation loop region is intense at room-temperature.No dislocation-related luminescence is found.The quantum confinement effect at the edge of dislocation loops is the main mechanism of the light emission from silicon pn diode at room-temperature.
     Secondly,SiN_x films were deposited by plasma-enhanced chemical vapor deposition(PECVD)and Tb~(3+)ions were introduced by ion-implantation.The effects of post annealing on luminescence properties of the SiN_x:Tb~(3+)thin films were investigated.Furthermore,SiN_x films with different silicon concentrations were deposited by PECVD with varying reactive gas ratio of SiH_4 to NH_3.And the effects of these different SiN_x substrates on the light emission of Tb~(3+)ions were measured.Results show that ~5D_4→~7F_k(k=6-3)series luminescence lines of Tb~(3+)ions is observed in SiN_x:Tb~(3+)films and the PL intensity increases with annealing temperature(≤1000℃).The SiN_x:Tb~(3+)thin films have little temperature quenching of light emission.Little oxygen content,energy transfer from defect related states,carrier mediated and short light emission lifetime are the reasons for the improved light emission of Tb~(3+)in SiN_x:Tb~(3+)film.Light emission of Tb~(3+)ions can be found in different SiN_x host materials.But in silicon rich SiN_x(SRSN)films,silicon nanocrystals precipitate from the matrix after annealing at high temperature.And the SRSN film is easy to be oxidized.The PL intensity of the Tb~(3+)is decreased by the two factors.
     Thirdly,SnO_2 thin films were fabricated by high temperature oxidation and reactive magnetron sputtering(RMS).Microstructures and formation mechanisms of these films were characterized and analyzed,respectively.Room-temperature PL and electroluminescence(EL)of SnO_2 films were studied.Moreover,Tb~(3+) doped SnO_2 films(SnO_2:Tb~(3+))were prepared by ion-implantation and subsequent annealing process.And its room-temperature light emission properties were investigated.Results show that pure tetragonal rutile structure SnO_2 films are formed by oxidation of Sn films at 1000℃and intense oxygen vacancy related luminescence at 590 nm are detected at room-temperature.The luminescence intensity of this line decreases with the increasing of oxidation time.The light emission at about 590 nm is also observed in SnO_2 films prepared by RMS and high-temperature annealing.The SnO_2 film is proved to be a good candidate of silicon-based luminescent materials by the EL of SnO_2/p-Si heterojunction when forward-biased.The light emission from Tb~(3+)ions from SnO_2:Tb~(3+)film annealed at 1000℃is observed and coexists with the host SnO_2 defect luminescence.The light emission of Tb~(3+)ions is enhanced and the light emission of the defect-related luminescence from SnO_2 is suppressed by the P diffusion into the SnO_2:Tb~(3+) films.
引文
1. J.Bardeen and W.H.Barttain, "Physical principles involved in transistor action," Physical Review 75,1208-1225 (1949).
    2. J.S.Kilby and E.Keonjian, "Design of a semiconductor-solid-circuit adder," Electron Devices Meeting, 1959 international 5,78 (1959).
    3. J.S.Kilby, "Invention of the integrated circuit," IEEE Transactions on Electron Devices ED-23, 648-654 (1976).
    4. G.E.Moore, "Cramming more components onto integrated circuits," Electronics 38,114-117(1965).
    5. A.Oishi, O.Fujii, T.Yokoyama, K.Ota, T.Sanuki, H.Inokuma, K.Eda, T.Idaka, and H.Miyajima, "High performance CMOSFET technology for 45 nm generation and scalability of stress-induced mobility enhancement technique," IEDM Technical Digest, IEEE International 229-232 (2005).
    6. H.Ohta, Y.Kim, Y.Shimamune, T.Sakuma, A.Hatada, A.katakami, T.Soeda, K.Kawamura, H.Kokura, and H.Morioka, "High performance 30 nm gate bulk CMOS for 45 nm node with ∑-shaped SiGe-SD," IEDM Technical Digest, IEEE International 237-240 (2005).
    7. S.Tyagi, C.Auth, P.Bai, G.Curello, H.Deshpande, S.Gannavaram, O.Golonzka, R.Heussner, R.James, C.Kenyon, and S-H Lee,"An advanced low power, high performance, strained channel 65 nm technology," IEDM Technical Digest, IEEE International 245-247 (2005).
    8. http: // www. intel. com/ technology / silicon / 65nm_technology.htm. "65-Nanometer Technology," Ref Type: Electronic Citation.2006.
    9. S.E.Thompson and S.Parthasarathy, "Moore's law: the future of Si microelectronics," Materials Today 9,20-25 (2006).
    10. International Technology Roadmap for Semiconductors (ITRS) 2005 Edition. http://www.itrs.net/Common/2005ITRS/Home2005.htm. 2006. Ref Type: Electronic Citation
    11. R.Dejule, "CMP challenges below a quarter micron," Semiconductor International 15, 55-60 (1997).
    12. K.P.Homewood and M.A.Lourenco, "Light from Si via dislocation loops," Materials Today 8, 36-39 (2005).
    13.Ansheng Liu.Recent development in silicon photonics.2005.2005硅基光电子国际会议,杭州,中国.Ref Type:Slide
    14.Mario Paniccia,Mike Morse,and Micheal Salib,"Integrated Photonics,"Silicon Photonics,Topics of Applied Physics 94,(Springer-Verlag Berlin Heidelberg,2004),51-90.
    15.J.M.Sun,W.Skorupa,T.Dekorsy,M.Helm,L.Rebohle,and T.Gebel,"Bright green electroluminescence from Tb~(3+)in silicon metal-oxide-semiconductor devices," Journal of Applied Physics 97,123513-1-123513-7(2005).
    16.W.Skorupa,J.M.Sun,S.Prucnal,L.Rebohle,T.Gebel,A.N.Nazarov,I.N.Osiyuk,and M.Helm,"Rare earth ion implantation for silicon based light emission," Solid State Phenomena 108-109,755-760(2005).
    17.L.Rebohle,T.Gebel,R.A.Yankov,T.Trautmann,W.Skorupa,J.M.Sun,G.Gauglitz,and R.Frank,"Microarrays of silicon-based light emitters for novel biosensor and lab-on-a-chip applications," Optical Materials 27,1055-1058(2005).
    18.S.K.Tewksbury,L.A.Hornak,and M.hatarnian,"Semiconductor devices and superconducting interconnections at 77 K:super-semi or semi-super,"Proceedings of the Workshop on Low Temperature Semiconductor Electronics 14-18(1989).
    19.李腾,刘静,”芯片冷却技术的最新研究进展及其评价,”制冷学报3,22-32(2004).
    20.3-D and Ⅲ-Ⅴ Transistors.http://www.intel.com/technology/silicon/tri-gate.html.2007.RefType:Electronic Citation
    21.Bahaa E.A.Saleh and Malvin C.Teich,Fundamentals of Photonics,(John Wiley & Sons,Inc.,1991).
    22.Mike Salib,Ling Liao,Richard Jones,Mike Morse,Ansheng Liu,Dean Samara-Rubio,Drew Alduino,and Mario Paniccia,"Silicon Photonics,"Intel Technology Journal 8,143-160(2004).
    23.Vilson R.Almeida,Carlos A.Barrios,Roberto R.Panepucci,and Michal Lipson,"All-optical control of light on a silicon chip," Nature 431,1081-1084(2004).
    24.D.J.Lockwood and L.Pavesi,"Silicon fundamentals for photonics applications," Silicon Photonics,Topics of Applied Physics,L.Pavesi and D.J.Lockwood, eds., (Springer-Verlag Berlin Heidelberg, 2004), 1-52.
    25. L.Pavesi, "Routes toward silicon-based lasers," Materials Today 8, 18-25 (2005).
    26. R.A.Smith, Semiconductors, (Cambridge University Press, 1978).
    27. D.K.Schroder, "Carrier lifetimes in Silicon," IEEE Transactions on Electron Devices 44, 160-170 (1997).
    28. W.Shockley and W.T.Read, "Statistics of the recombinations of holes and electrons," Physical Review 87, 835-842 (1952).
    29. Martin A.Green, Jianhua Zhao, Ihua Wang, Peter J.Reece, and Michael Gal, "Efficient silicon light-emitting diodes," Nature 412, 805-808 (2001).
    30. L.T.Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers," Applied Physics Letters 57, 1046-1048(1990).
    31. A.G.Cullis and L.T.Canham, "Visible light emission due to quantum size effects in highly porous crystalline silicon," Nature 353, 335-338 (1991).
    32. William L.Wilson, P.F.Szajowshi, and L.E.Brus, "Quantum Confinement in Size-Selected, Surface-Oxidized Silicon Nanocrystals," Science 262, 1242-1244(1993).
    33. Z.H.Lu, D.J.Lockwood, and J.M.Baribeau, "Quantum confinement and light emission in SiO_2/Si superlattices," Nature 378, 258-260 (1995).
    34. K.D.Hirschman, L.Tsybeskov, S.P.Duttagupta, and P.M.Fauchet, "Silicon-based visible light-emitting devices integrated into microelectronic circuits," Nature 384, 338-341 (1996).
    35. D.Leong, M.Harry, K.J.Reeson, and K.P.Homewood, "A silicon/iron-disilicide light-emitting diode operating at a wavelength of 1.5 mm," Nature 387, 686-688 (1997).
    36. L.Pavesi, L.Dal Negro, C.Mazzoleni, GFranzo, and F.Priolo, "Optical gain in silicon nanocrystals," Nature 408,440-444 (2000).
    37. Wai Lek Ng, M.A.Lourenco, R.M.Gwilliam, S.Ledain, GShao, and K.P.Homewood, "An efficient room-temperature silicon-based light-emitting diode," Nature 410,192-194 (2001).
    38. Xiangfeng Duan, Yu Huang, Ritesh Agarwal, and Charles M.Lieber, "Single-nanowire electrically driven lasers," Nature 421, 241-245 (2003).
    39. Robert J.Walters, George I.Bourianoff, and Harry A Atwater, "Field-effect electroluminescence in silicon nanocrystals," Nature Materials 4,143-146(2005).
    40.Ansheng Liu,Richard Jones,Ling Liao,Dean Samara-Rubio,Doron Rubin,Oded Cohen,Remus Nicolaescu,and Mario Paniccia,"A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor," Nature 427,615-618(2004).
    41.Graham T.Reed,"The optical age of silicon," Nature 427,595-596(2004).
    42.Haisheng Rong,Ansheng Liu,Richard Jones,Oded Cohen,Dani Hak,Remus Nicolaescu,Alexander Fang,and Mario Paniccia,"An all-silicon Raman laser," Nature 433,292-294(2005).
    43.Haisheng Rong,Richard Jones,Ansheng Liu,Oded Cohen,Dani Hak,Alexander Fang,and Mario Paniccia,"A continuous-wave Raman silicon laser," Nature 434,1-3(2005).
    44.A.W.Fang,Hyundai Park,Oded Cohen,Richard Jones,Mario Paniccia,and John E.Bowers,"Electrically pumped hybrid AlGaInAs-silicon evanescent laser," Optics Express 14,9203-9210(2006).
    45.王启明,成步文.突破间接带的局限,创新Si基激光器.2005.2005硅基光电子国际会议,杭州,中国.Ref Type:Slide
    46.D.J.Lockwood,"Light emission in silicon nanostructures," Proceedings of SPIE 4808,1-12(2002).
    47.S.Ossicini,L.Pavesi,and F.Priolo,Light Emitting Silicon for Microphotonics,(Springer,2003).
    48.V.V.Kveder,M.badylevich,E.A.Steinman,and A.Lzotov,"Room-temperature silicon light-emitting diodes based on dislocation luminescence," Applied Physics Letters 84,2106-2108(2004).
    49.A.T.Blumenau,R.Jones,S.Oberg,P.R.Briddon,and T.Frauenheim,"Dislocation related photoluminescence in silicon," Physical Review Letters 87,187404-1-187404-4(2001).
    50.S.Binetti,R.Somaschini,A.Le Donne,E.Leoni,S.Pizzini,D.Li,and D.Yang,"Dislocation luminescence in nitrogen-doped Czochralski and float zone silicon," Journal of Physics:Condensed Matter 14,13247-13254(2002).
    51.E.A.Steinman and H.G.Grimmeiss,"Dislocation-related luminescence properties of silicon," Semiconductor Science and Technology 13,124-129 (1998).
    52. Einar O.Sveinbjornsson and Jorg Weber, "Room temperature electroluminescence from dislocation-rich silicon," Applied Physics Letters 69,2686-2688 (1996).
    53. N.A.Drozdov, A.A.Partin, and V.D.Tkachev, "Recombination radiation of dislocations in silicon," Sov. Phys. -JETP letter 23, 579-599 (1976).
    54. V.V.Kveder, E.A.Steinman, S.A.Shevchenko, and H.G.Grimmeiss, "Dislocation-related electroluminescence at room temperature in plastically deformed silicon," Physical Review B 51, 10520-10526 (1995).
    55. R.Sauer, J.Weber, J.Stolz, E.R.Weber, K.-H.Kusters, H.Alexander, "Dislocation-related photoluminescence in silicon," Applied Physics A 36, 1-13(1985).
    56. D.Leong, M.Harry, K.J.Reeson, and K.P.Homewood, "On the origin of the 1.5 micron luminescence in ion beam synthesized beta-FeSi2," Applied Physics Letters 68, 1649-1650(1996).
    57. Z.Yang, K.P.Homewood, M.S.Finney, M.Harry, and K.J.Reeson, "Optical absorption study of ion beam synthesized polycrystalline semiconducting FeSi_2," Journal of Applied Physics 78, 1958-1963 (1995).
    58. H.Katsumata, Y.Makita, N.Kobayashi, and H.Shibata, "Optical absorption and photoluminescence studies of beta-FeSi_2 prepared by heavy implantation of Fe~+ ions into silicon," Journal of Applied Physics 80, 5955-5962(1996).
    59. C.Spinella, S.Coffa, C.Bongiorno, S.Pannitteri, and M.G.Grimaldi, "Origin and perspectives of the 1.54 μm luminescence from ion-beam-synthesized β-FeSi_2 precipitates in Si," Applied Physics Letters 76, 173-175 (2000).
    60. Y.Ozawa, T.Ohtsuka, C.Li, T.Suemasu, and F.Hasegawa, "Influence of beta-FeSi_2 particle size and Si growth rate on 1.5 μm photoluminescence from Si/beta-FeSi_2-particles/Si structures grown by molecular-beam epitaxy," Journal of Applied Physics 95, 5483-5486 (2004).
    61. C.Li, T.Suemasu, and F.Hasegawa, "Room-temperature electroluminescence of a Si-based p-i-n diode with β-FeSi_2 particles embedded in the intrinsic silicon," Journal of Applied Physics 97, 043529-1-043529-3(2005).
    62. J.R.Haynes and W.C.Westphal, "Radiation resulting from recombination of holes and electrons in silicon," Physical Review 101, 1676-1678 (1956).
    63. J.R.Haynes, M.Lax, and W.F.Flood, "Analysis of intrinsic recombination radiation from silicon and germanium," Journal of Physics and Chemistry of Solids 8, 392-396 (1959).
    64. Roger Newman, "Visible Light from a Silicon p-n Junction," Physical Review 100,700-703 (1955).
    65. Monuko du Plessis, Herzl Aharoni, and Lukas W.Snyman, "Silicon LEDs Fabricated in Standard VLSI Technology as Components for All Silicon Monolithic Integrated Optoelectronic Systems," IEEE Journal of Selected Topics in Quantum Electronics 8,1412-1419 (2002).
    66. M.A.Lourenco, Wai Lek Ng, G.Shao, R.M.Gwilliam, and K.P.Homewood, "Dislocation engineered silicon light emitting diodes," Proceedings of SPIE 4654,138-144(2002).
    67. Philippe M.Fauchet, "Monolithic Silicon Light Sources," Silicon Photonics, Topics of Applied Physics, L.Pavesi and D.J.Lockwood, eds., (Springer-Verlag Berlin Heidelberg, 2004), 177-199.
    68. J.M.Sun, T.Dekorsy, W.Skorupa, B.Schmidt, and M.Helm, "Origin of anomalous temperature dependence and high efficiency of silicon light-emitting diodes," Applied Physics Letters 83,3885-3887 (2003).
    69. M.A.Lourenco, R.Gwilliam, M.Milosavljevic, K.P.Homewood, and GShao, "Dislocation engineering for silicon-based light emitting diodes," Materials Science and Engineering B 124-125, 86-92 (2005).
    70. M.Milosavljevic, G.Shao, M.A.Lourenco, R.M.Gwilliam, and K.P.Homewood, "Engineering of boron-induced dislocation loops for efficient room-temperature silicon light-emitting diodes," Journal of Applied Physics 97,073512-1-073512-7 (2005).
    71. Tu Hoang, Phuong LeMinh, Jisk Holleman, and Jurriaan Schmitz, "The effect of dislocation loops on the light emission of silicon LEDs," IEEE Electron Device Letters 27,105-107 (2006).
    72. Phuong LeMinh, "Silicon Light Emitting Devices for Integrated Applications," (University of Twente, 2003).
    73. S.Chaudry, "Analysis and modeling of stress related effects in scaled silicon technology," Ph.D (University of Florida, 1996).
    74. N.A.Sobolev, A.M.Emel'yanov, E.I.Shek, and V.I.Vdovin, "Effect of the post implantation-annealing temperature on the properties of silicon light-emitting diodes fabricated through boron ion implantation into n-Si," Physics of the Solid State 46, 35-39 (2004).
    75. N.A.Sobolev, A.M.Emel'yanov, E.I.Shek, and V.I.Vdovin, "Influence of extended structural defects on the characteristics of electroluminescence in efficient silicon light-emitting diodes," Solid State Phenomena 95-96, 283-288 (2004).
    76. N.A.Sobolev, A.M.Emel'yanov, E.I.Shek, and V.I.Vdovin, "Extended structural defects and their influence on the electroluminescence in efficient Si light-emitting diodes," Physica B 340-342,1031-1035 (2003).
    77. A.M.Emel'yanov, N.A.Sobolev, T.M.Mel'nikova, and S.Pizzini, "Efficient silicon light-emitting diode with temperature-stable spectral characteristics," Semiconductors 37,730-735 (2003).
    78. A.M.Emel'yanov, Yu.A.Nikolaev, N.A.Sobolev, and T.M.Mel'nikova, "Kinetics of electroluminescence in an efficient silicon light-emitting diode with thermally stable spectral characteristics," Semiconductors 38, 634-638 (2004).
    79. A.M.Emel'yanov, N.A.Sobolev, and E.I.Shek, "Silicon LEDs emitting in the band-to-band transition region: effect of temperature and current strength," Physics of the Solid State 46,40-44 (2004).
    80. M.Kittler, M.Reiche, T.Arguirov, W.Seifert, and X.Yu, "Silicon-based light emitters," Physica Status Solidi (a) 203, 802-809 (2006).
    81. Thorsten Trupke, Jianhua Zhao, Aihua Wang, Richard Corkish, and Martin A.Green, "Very efficient light emission from bulk crystalline silicon," Applied Physics Letters 82,2996-2998 (2003).
    82. J.Zhao, A.Wang, and M.A.Green, "24.5% efficiency silicon PERT cells on MCZ substrates and 24.7% efficiency PERL cells on FZ substrates," Progress in photovoltaics: research and applications 7, 471-474 (1999).
    83. J.Potfajova, J.M.Sun, S.Winnerl, T.Dekorsy, W.Skorupa, and B.Schmidt, "Silicon-based electrically driven microcavity LED," Electronics Letters 40, 904-906 (2004).
    84. T.Trupke and M.A.Green, "Optical gain in materials with indirect transitions," Journal of Applied Physics 93, 9058-9061 (2003).
    85. M.J.Chen, J.L.Yen, J.Y.Li, J.F.Chang, S.C.Tsai, and C.S.Tsai, "Stimulated emission in a nanostructured silicon pn junction diode using current injection," Applied Physics Letters 84, 2163-2165 (2004).
    86. S.G.Cloutier, P.A.Kossyrev, and Jimmy Xu, "Optical gain and stimulated emission in periodic nanopatterned crystalline silicon," Nature Materials 4, 887-891 (2005).
    87. A.M.Emel'yanov, N.A.Sobolev, T.M.Mel'nikova, and N.V.Abrosimov, "SiGe Light-emitting Diodes and Their Characteristics in the Region of Band-to-Band Transitions," Solid State Phenomena 108-109, 761-766 (2005).
    88. T.Stoica and L.Vescan, "Quantum efficiency of SiGe LEDs," Semiconductor Science and Technology 18,409-416 (2003).
    89. M.A.Lourenco, R.M.Gwilliam, G.Shao, and K.P.Homewood, "Dislocation engineered β-FeSi_2 light emitting diodes," Nuclear Instruments and Methods in Physics Research B 206,436-439 (2003).
    90. M.A.Lourenco, M.Milosavljevic, S.Galata, M.S.A.Siddiqui, G.Shao, R.M.Gwilliam, and K.P.Homewood, "Silicon-based light emitting devices," Vacuum 78,551-556 (2005).
    91. M.A.Lourenco, M.S.A.Siddiqui, G.Shao, R.M.Gwilliam, and K.P.Homewood, "Ion beam fabricated silicon light emitting diodes," Phys. Status Solidi (a) 201, 239-244 (2004).
    92. H.Ennen, J.Schneider, G.Pomrenke, and A.Axmann, "1.54-μm luminescence of erbium-implanted III-V semiconductors and silicon," Applied Physics Letters 43,943-945 (1983).
    93. D.Pacifici, G.Franzo, F.Iacona, S.Boninelli, A.Irrera, M.Miritello, and F.Priolo, "Er doped Si nanostructures," Materials Science and Engineering B 105,197-204 (2003).
    94. F.Priolo, G.Franzo, S.Coffa, and A.Carnera, "Erbium implantation in silicon: from materials properties to light emitting devices," Materials Chemistry and Physics 54,273-279 (1998).
    95. J.M.Sun, W.Skorupa, T.Dekorsy, and M.Helm, "Efficient ultraviolet electroluminescence from a Gd-implanted silicon metal-oxide-semiconductor device," Applied Physics Letters 85, 3387-3389 (2004).
    96. J.Michel, J.L.Benton, R.F.Ferrante, D.C.Jacobson, and D.J.Eaglesham, "Impurity enhancement of the 1.54-μm Er~(3+) luminescence in silicon," Journal of Applied Physics 70, 2672-2678 (1991)
    97. P.N.Favennec, H.L.Haridon, M.Salvi, D.Moutonnet, and Y.Le.Guillou, "Luminescence of erbium implanted in various semiconductors: IV, III-V and II-VI materials," Electronics Letters 25, 718-719 (1989).
    98. A.Polman, "Erbium implanted thin film photonic materials," Journal of Applied Physics 82,1-39 (1997).
    99. A.R.Zanatta, C.T.M.Ribeiro, and U.Jahn, "Visible luminescence from a-SiN films doped with Er and Sm," Applied Physics Letters 79, 488-490 (2001).
    100. Stefan Schmitt-Rink, C.M.Varma, and A.F.Levi, "Excitation mechanisms and optical properties of rare-earth ions in semiconductors," Physical Review Letters 66,2782-2785 (1991).
    101. I.N.Yassievich and L.C.Kimerling, "The mechanisms of electronic excitation of rare earth impurities in semiconductors," Semiconductor Science and Technology 8, 718-727 (1993).
    102. Ei Ei Nyein, U.Hommerich, J.Heikenfeld, D.S.Lee, A.J.Steckl, and J.M.Zavada, "Spectral and time-resolved photoluminescence studies of Eu-doped GaN," Applied Physics Letters 82,1655-1657 (2003).
    103. G.Franzo, F.Priolo, S.Coffa, A.Polman, and A.Carnera, "Room-temperature electroluminescence from Er-doped crystalline Si," Applied Physics Letters 64,2253-2237 (1994).
    104. M.E.Castagna, S.Coffa, M.Monaco, L.Caristia, A.Messina, R.Mangano, and C.Bongiorno, "Si-based materials and devices for light emission in silicon," Physica E 16, 547-553 (2003).
    105. G.Franzo, V.Vinciguerra, and F.Priolo, "The excitation mechanism of rare-earth ions in silicon nanocrystals," Applied Physics A 69,3-12 (1999).
    106. G.Franzo, D.Pacifici, V.Vinciguerra, F.Priolo, and F.Iacona, "Er~(3+) ions-Si nanocrystals interactions and their effects on the luminescence properties," Applied Physics Letters 16-2167 (2000).
    107. D.Pacifici, G.Franzo, F.Priolo, F.Iacona, and L.Dal Negro, "Modeling and perspectives of the Si nanocrystals-Er interaction for optical amplification," Physical Review B 67,245301-1-245301-13 (2003).
    108. J.M.Sun, W.Skorupa, T.Dekorsy, M.Helm, and A.N.Nazarov, "On the mechanism of electroluminescence excitation in Er-doped SiO_2 containing silicon nanoclusters," Optical Materials 27,1050-1054 (2005).
    109. M.E.Castagna, S.Coffa, M.Monaco, A.Muscara, L.Caristia, S.Lorenti, and A.Messina, "High efficiency light emitting devices in silicon," Materials Science and Engineering B 105, 83-90 (2003).
    110. Se-Young Seo, Jung H.Shin, Byeong-Soo Bae, Namkyoo Park, J.J.Penninkhof, and A.Polman, "Erbium-thulium interaction in broadband infrared luminescent silicon-rich silicon oxide," Applied Physics Letters 82,3445-3447 (2003).
    111. A.R.Zanatta, C.T.M.Ribeiro, and U.Jahn, "Photo and electron excitation of rare-earth-doped amorphous SiN films," Journal of Non-Crystalline Solids 338-340,473-476 (2004).
    112. A.R.Zanatta and L.A.O.Nunes, "Green photoluminescence from Er-containing amorphous SiN thin films," Applied Physics Letters 72, 3127-3129(1998).
    113. A.R.Zanatta, M.J.V.Bell, and L.A.O.Nunes, "Visible photoluminescence from Er3+ ions in a-SiN alloys," Physical Review B 59, 10091-10098 (1999).
    114.苏锵,稀土化学,(河南科学技术出版社,1993).
    115. W.T.Carnall, P.R.Fields, and K.Rajnak, "Electronic Energy Levels of the Trivalent Lanthanide Aquo Ions. III. Tb~(3+)," Journal of Chemical Physics 49,4447-4449(1968).
    116. B.R.Judd, "Optical absorption intensities of rare-earth ions," Physical Review 127, 750-761 (1962).
    117. G.S.Ofelt, "Intensities of crystal spectra of rare-earth ions," Journal of Chemical Physics 37,511-520 (1962).
    118. M.Yoshihara, A.Sekiya, T.Morita, K.Ishii, S.Shimoto, and S.Sakai, "Rare-earth-doped SiO_2 films prepared by plasma-enhanced chemical vapaor deposition," Journal of Physics D: Applied Physics 30, 1908-1912 (1997).
    119. S.Wang, S.Coffa, R.Carius, and Ch.Buchal, "Efficient electroluminescence from rare earth doped MOS diodes," Materials Science and Engineering B 81,102-104(2001).
    120. H.Amekura, A.Eckau, R.Carius, and Ch.Buchal, "Room-temperature photoluminescence from Tb ions implanted in SiO_2 on Si," Journal of Applied Physics 84, 3867-3871 (1998).
    121. K. Tonooka, N. Kamata, K. Yamada, K. Matsumoto, and F. Maruyama, "An estimation of the distribution functions of doped Tb~(3+) and Nd~(3+) in glasses by fluorescence measurements," Journal of Non-Crystalline Solids 150, 185-191(1992).
    122. L.F.Bian, C.G.Zhang, W.D.Chen, C.C.Hsu, and Tongfei Shi, "Local environment of Er~(3+) in Er-doped Si nanoclusters embedded in SiO_2 films," Applied Physics Letters 89, 231927-3 (2006).
    123. A.N.Nazarov, J.M.Sun, W.Skorupa, R.A.Yankov, I.N.Osiyuk, I.P.Tiagulskii, V.S.Lysenko, and T.Gebel, "Light emission and charge trapping in Er-doped silicon dioxide films containing silicon nanocrystals," Applied Physics Letters 86, 151914-151916 (2005).
    124. Minoru Fujii, Masato Yoshida, Shiji Hayashi, and Keiichi Yamamoto, "Photoluminescence from SiO_2 films containing Si nanocrystals and Er: Effects of nanocrystalline size on the photoluminescence efficiency of Er~(3+)," Journal of Applied Physics 84,4525-4531 (1998).
    125. G.Franzo, S.Boninelli, D.Pacifici, F.Priolo, F.Iacona, and C.Bongiorno, "Sensitizing properties of amorphous Si clusters on the 1.54-μm luminescence of Er in Si-rich SiO_2," Applied Physics Letters 82, 3871-3873(2003).
    126. C.C.Kao, C.Barthou, B.Gallas, S.Fisson, G.Vuye, and J.Rivory, "Photoluminescence study of erbium doped SiO_2 thin films containing Si nanocrystals," Materials Science and Engineering B 105,226-229 (2003).
    127. A.Polman, D.C.Jacobson, D.J.Eaglesham, R.C.Kistler, and J.M.Poate, "Optical doping of waveguide materials by MeV Er implantation," Journal of Applied Physics 70, 3778-3784 (1991).
    128. N.Can, P.D.Townsend, D.E.Hole, H.V.Snelling, J.M.Ballesteros, and C.N.Afonso, "Enhancement of luminescence by pulse laser annealing of ion-implanted europium in sapphire and silica," Journal of Applied Physics 78, 6737-6744 (1995).
    129. R.H.Fowler and L.Nordheim. Electron Emission in Intense Electric Fields. 119(No.781), 173-181. 1928. Proceedings of the Royal Society of London. Series A. Ref Type: Conference Proceeding
    130. B.Stannowshi, J.K.Rath, and R.E.I.Schropp, "Growth process and properties of silicon nitride deposited by hot-wire chemical vapor deposition," Journal of Applied Physics 93, 2618-2625 (2003).
    131. John Robertson and Martin J.Powell, "Gap states in silicon nitride," Applied Physics Letters 44,415-417 (1984).
    132. V.A.Gritsenko and P.A.Punder, "Cathodolumines cence of amorphous silicon nitride," Soviet Physics Solid State 25,901-902 (1983).
    133. A.Iqbal, W.B.Jackson, C.C.Tsai, J.W.Allen, and C.W.Bates, "Electronic structure of silicon nitride and amorphous silicon/silicon nitride band offsets by electron spectroscopy," Journal of Applied Physics 61, 2947-2954(1987).
    134. D.J.Dimaria and P.C.Arnett, "Hole injection into silicon nitride: Interface barrier energies by internal photoemission," Applied Physics Letters 26, 711-713(1975).
    135. Hoon Jeong, Se-Young Seo, and Jung H.Shin, "Excitation mechanism of visible, Tb~(3+) photoluminescence from Tb-doped silicon oxynitride," Applied Physics Letters 88,161910-1-161910-3 (2006).
    136. Mun-Jun Kim, G.K.Mebratu, Joo-Yeon Sung, and Jung H.Shin, "Er-doped hydrogenated amorphous silicon: structrural and optical properties," J 315, 312-320(2003).
    137. D.F.Crabtree, "Luminescence and charge compensation in SnO_2-Tb~(3+)," Journal of Physics D: Applied Physics 8, 2097-2102 (1975).
    138. D.F.Crabtree, "Cathodoluminescence of tin oxide doped with terbium," Journal of Physics D: Applied Physics 7, L22-L26 (1974).
    139. H.Elhouichet, L.Othman, A.Moadhen, M.Oueslati, and J.A.Roger, "Enhanced photoluminescence of Tb~(3+) and Eu~(3+) induced by energy transfer from SnO_2 and Si nanocrystallites," Materials Science and Engineering B 105, 8-11 (2006).
    140. H.Elhouichet, A.Moadhen, M.Ferid, M.Oueslati, B.Canut, and J.A.Roger, "High luminescent Eu~(3+) and Tb~(3+) doped SnO_2 sol-gel derived films deposited on porous silicon," Physica Status Solidi (a) 197, 350-354 (2003).
    141. A.Moadhen, H.Elhouichet, S.Romdhane, M.Oueslati, J.A.Roger, and H.Bouchriha, "Structural, optical and electrical properties of SnO_2:Sb:Tb~(3+)/porous silicon devices," Semiconductor Science and Technology 18, 703-707 (2003).
    142. Stephen A.Campbell, "Ion Implantation," The Science and Engineering of Microelectronic Fabrication, (Oxford University Press, Inc. U.S.A., 2001).
    143. Michael Quirk and Julian Serda, "Ion implantation," Semiconductor Manufacturing Technology, (Pearson Education, 2001).
    144. Michel Bruel, Bernard Aspar, and Andre-Jacques Auberton-Herve, "Smart-Cut: A New Silicon On Insulator Material Technology Based on Hydrogen Implantation and Wafer Bonding," Japanese Journal of Applied Physics 36, 1636-1641(1997).
    145. K.J.Reeson, "Fabrication of buried layers of SiO_2 andSi_3N_4 using ion beam synthesis," Nuclear Instruments and Methods in Physics Research B19/20, 269-278(1987).
    146. K.Izumi, M.Doken, and H.Ariyoshi, "CMOS devices fabricated on buried SiO layers formed by oxygen implantation into silicon," Electronics Letters 14, 593-594 (1978).
    147. M.A.Foad and D.Jennings, "Formation of ultra-shallow junction by ion implantation and RTA," Solid State Technology 41,43-54 (1998).
    148. J.W.Mayer, L.Erickson, and J.A.Davies, Ion Implantation in Semiconductors, Silicon and Germanium, (Academic Press, New York, 1970).
    149. J.M.Sun, T.Dekorsy, W.Skorupa, B.Schmidt, A.Mucklich, and M.Helm, "Below-band-gap electroluminescence related to doping spikes in boron-implanted silicon pn diodes," Physical Review B 70, 155316-1-155316-11 (2004).
    150. W.Kern and D.A.Puotinen, "Cleaning Solutions Based on Hydrogen Peroxide for Use in Silicon Semiconductor Technology," RCA Review 31, 187-206(1970).
    151. Dieter K.Schroder, "Carrier lifetimes in silicon," IEEE Transactions on Electron Devices 44, 160-170 (1997).
    152. T.E.Seidel and A.U.Macrae. Isothermal Annealing of B Implanted Si. F.Eisen and L.Chadderton. 1971. New York, Gordon and Breach. First International Conference on Ion Implantation. Ref Type: Conference Proceeding
    153. G.Z.Pan, R.P.Ostroumov, Y.G.Lian, K.N.Tu, and K.L.Wang, "{113} Defect-engineered silicon light-emitting diodes," Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International 343-346 (2004).
    154. K.S.Jones, S.Prussin, and E.R.Weber, "A systematic analysis of defects in ion implanted silicon," Applied Physics A45,1-34 (1988).
    155. G.Davies, "The optical properties of luminescence centers in silicon," Physics Reports 176, 83-187 (1989).
    156. O.o.Awadelkarim, A.Henry, and B.Monemar, "Photoluminescence study of radiative channels in ion-implanted silicon," Physical Review B 42, 5635-5640(1990).
    157. C.J.L.Moore and C.J.Miner, "A spatially resolved spectrally resolved photoluminescence mapping system," Journal of Crystal Growth 103, 21-27(1990).
    158. G.Davies, E.C.Lightowlers, and Z.E.Ciechanowsta, "The 1018 meV (W or I1) vibronic band in silicon," Journal of Physics: Condensed Matter 20, 191-205 (1987).
    159. P.K.Giri, S.Coffa, and E.Rimini, "Evidence for small interstitial clusters as the origin of photoluminescence W band in ion-implanted silicon," Applied Physics Letters 78,291-293 (2001).
    160. Orven F.Swenson, Theodore E.Luke, and Robert L.Hengehold, "Luminescence study of thallium implanted silicon," Journal of Applied Physics 54, 6329-6335 (1983).
    161. Peter J.Schultz, T.D.Thompson, and R.GElliman, "Activation energy for the photoluminescence W center in silicon," Applied Physics Letters 60, 59-61 (1992).
    162. Lei Zhong, Zhanguo Wang, Shouke Wan, and Lanying Lin, "On the correlation between high-order bands and some photoluminescence lines in neutron-irradiated FZ silicon," Journal of Applied Physics 66, 3787-3791 (1989).
    163. Henning Feick and E.R.Weber, "Annealing of the photoluminescence W-center in proton-irradiated silicon," Physica B 273-274, 497-500 (1999).
    164. R.J.Davis, H.U.Habermeier, and J.Weber, "Photoluminescence of low-energy ion bombarded silicon," Applied Physics Letters 47, 1295-1297(1985).
    165. M.Singh, J.Weber, and M.Konuma, "Evidence for intrinsic point defect generation during hydrogen-plasma treatment of silicon," Physica B 170, 218-222(1991).
    166. C.G.Kirkpatrick, J.R.Noonan, and B.G.Streetman, "Recombination luminescence from ion implanted silicon," Radiation Effects 30, 97-106 (1976).
    167. J.F.Ziegler, J.P.Biersack, and U.Littmark, The stopping and range of ions in solids, (Pergamon Press, New York, 1985).
    168. B.N.Brockhouse, "Lattice Vibrations in Silicon and Germanium," Physical Review Letters 2,256-258 (1959).
    169. P.J.Dean, J.R.Haynes, and W.F.Flood, "New Radiative Recombination Processes Involving Neutral Donors and Acceptors in Silicon and Germanium," Physical Review 161, 711-729 (1967).
    170. M.A.Vouk and E.C.Lightowlers, "Two-phonon assisted free exciton recombination radiation from intrinsic silicon," Journal of Physics C: Solid State Physics 10,3689-3699 (1977).
    171. W.P.Dumke, "Two-Phonon Indirect Transitions and Lattice Scattering in Si," Physical Review 118, 938-939 (1960).
    172. M.Nakamura, S.Nagai, Y.Aoki, and H.Naramoto, "Oxygen participation in the formation of the photoluminescence W center and the center's origin in ion-implanted silicon crystals," Applied Physics Letters 72, 1347-1349 (1998).
    173. V.D.Tkachev and A.V.Mudryi. Radiation Effects in Semiconductors. N.B.Urli and J.W.Corbett. 31, 231. 1977. London, Institute of physics. Ref Type: Conference Proceeding
    174. Wei-Kuo Wu and Jack Washburn, "On the climb of dislocations in boron-ion-implanted silicon," Journal of Applied Physics 48, 3747-3751 (1977).
    175. J.J.Comer, "Electron microscope study of stacking fault formation in boron implanted silicon," Radiation Effects 36, 57-61 (1978).
    176. S.Pizzini, M.Guzzi, E.Grilli, and G.Borionetti, "The photoluminescence emission in the 0.7-0.9 eV range from oxygen precipitates, thermal donors and dislocations in silicon," Journal of Physics: Condensed Matter 12, 10131-10143 (2000).
    177. N.S.Minaev, A.V.Mudrii, and V.D.Tkachev, "Symmetry and nature of the 1.0186 eV luminescence centre in neutron-irradiated silicon," Phys. Status Solidi B 108, K89-K94(1981).
    178. M.Milosavljevic, M.A.Lourenco, G.Shao, R.M.Gwilliam, and K.P.Homewood, "Optimising dislocation-engineered silicon light-emitting diodes," Applied Physics B: Lasers and Optics (2006).
    179. M.A.Lourenco, M.S.A.Siddiqui, R.M.Gwilliam, G.Shao, and K.P.Homewood, "Efficient silicon light emitting diodes made by dislocation engineering," Physica E 16,376-381 (2003).
    180. M.A.Lourenco, R.Gwilliam, M.Milosavljevic, K.P.Homewood, and G.Shao, "Dislocation engineering for silicon-based light emitting diodes," Materials Science and Engineering B 124-125, 86-92 (2005).
    181. M.A.Lourenco, M.Milosavljevic, R.M.Gwilliam, and K.P.Homewood, "On the role of dislocation loops in silicon light emitting diodes," Applied Physics Letters 87,201105-1-201105-3 (2005).
    182. J.M.Sun, T.Dekorsy, W.Skorupa, B.Schmidt, and M.Helm, "Bound-exciton-induced current bistability in a silicon light-emitting diode," Applied Physics Letters 82, 2823-2825 (2003).
    183. J.M.Sun, T.Dekorsy, W.Skorupa, A.Mucklich, and B.Schmidt, "Efficient silicon light emitting diodes by boron implantation: the mechanism," Optical Materials 27,1041-1045 (2005).
    184. T.Dekorsy, J.M.Sun, W.Schmidt, and M.Helm, "Light-emitting silicon pn diodes," Applied Physics A 78,471-475 (2004).
    185. M.Helm, J.M.Sun, J.Potfajova, T.Dekorsy, B.Schmidt, and W.Skorupa, "Efficient silicon based light emitters," Microelectronics Journal 36, 957-962 (2005).
    186. A.M.Emel'yanov, "The Mechanism of Radiative Recombination in the Region of Interband Transitions in Single Crystal Silicon," Technical Physics Letters 30,964-966 (2004).
    187. M.Kittler, T.Arguirov, and W.Seifert, "Silicon-based light emission after ion implantation," Proceeding of SP1E 5357,164-171 (2004).
    188. T.Arguirov, M.Kittler, W.Seifert, D.Bolze, K.-E.Ehwald, P.Formanek, and J.Reif, "Luminescence of silicon implanted with phosphorus," Solid State Phenomena 95-96, 289-294 (2004).
    189. M.Kittler, T.Arguirov, A.Fischer, and W.Seifert, "Silicon-based light emission after ion implantation," Optical Materials 27,967-972 (2005).
    190. M.Kittler, T.Arguirov, W.Seifert, X.Yu, and M.Reiche, "Silicon Based Light Emitters for on-chip optical interconnects," Solid State Phenomena 108-109,749-754(2005).
    191. T.Arguirov, M.Kittler, W.Seifert, and X.Yu, "Enhanced silicon band edge related radiation: Origin and applicability for light emitters," Materials Science and Engineering B 124-125,431-434 (2005).
    192. Jun Chen, T.Seikiguchi, Rongguo.Xie, P.Ahmet, T.Chikyo, Deren.Yang, S.Ito, and F.Yin, "Electron-beam-induced current study of small-angle grain boundaries in multicrystalline silicon," Scripta Materialia 52, 1211-1215(2005).
    193. J.P.Hirth and J.Lothe, Theory of Dislocations, (John Wiley & Sons, Inc., New York, 1982).
    194. B.Welber, C.K.Kim, M.Cardona, and S.Rodriguez, "Dependence of the indirect energy gap of silicon on hydrostatic pressure," Solid State Communications 17, 1021-1024(1975).
    195. H.F.Sterling and R.C.G.Swann, "Chemical vapor deposition promoted by RF discharge," Solid State Electron 8,653-654 (1965).
    196. T.H.Ning, C.M.Osburn, and H.N.Yu, "Effect of electron trapping on IGFET characteristics," Journal of Electronic Materials 6,65-76 (1977).
    197. T.L.Chu, J.R.Szedon, and C.H.Lee, "Preparation and C-V characteristics of Si-Si_3N_4 and Si-SiO_2-Si_3N_4 structures," Solid State Electronics 10, 897-905 (1967).
    198. P.G.LeComber and W.E.Spear, Semconductors and semimetals, J.I.Pankove, ed., (Academic, New York, 1984).
    199. R.Schorner and R.Hezel, "High efficiency inversion layer solar cells on polycrystalline silicon by the application of silicon nitride," Electron Devices, IEEE Transactions on 28,1466-1469 (1981).
    200. Chimei Mo, Lide Zhang, Cunyi Xie, and Tao Wang, "Luminescence of nanometer-sized amorphous silicon nitride solids," Journal of Applied Physics 73, 5185-5188 (1993).
    201. Li Wang, Zhongyuan Ma, Xinfan Huang, Zhifeng Li, Jian Li, Yun Bao, Jun Xu, Wei Li, and Kunji Chen, "The room-temperature visible photoluminescence from nanocrystalline Si in Si/SiN_x superlattices," Solid State Communications 117, 239-244 (2001).
    202. ZingWay Pei and H.L.Hwang, "Formation of silicon nano-dots in luminescent silicon nitride," Applied Surface Science 212-213, 760-764 (2003).
    203. Y.Q.Wang, Y.G.Wang, L.Cao, and Z.X.Cao, "High-efficiency visible photoluminescence from amorphous silicon nanoparticles embedded in silicon nitride," Applied Physics Letters 83,3474-3476 (2003).
    204. MinDai, Kai Chen, Xinfan Huang, Liangcai Wu, Lin Zhang, Feng Qiao, Wei Li, and Kunji Chen, "Formation and charging effect of Si nanocrystals in a-SiN_x/a-Si/a-SiN_x structures," Journal of Applied Physics 95, 640-645 (2004).
    205. R.A.R.Oliveira, M.Ribeiro, I.Pereyra, and M.I.Alayo, "Silicon clusters in PECVD silicon-rich SiO_xN_y," Materials Characterization 50, 161-166 (2003).
    206. Nae-Man Park, Tae-Soo Kim, and Seong-Ju Park, "Band gap engineering of amorphous silicon quantum dots for light-emitting diodes," Applied Physics Letters 78, 2575-2577 (2001).
    207. Nae-Man Park, Chel-Jong Choi, Tae-Yeon Seong, and Seong-Ju Park, "Quantum confinement in amorphous silicon quantum dots embedded in silicon nitride," Physical Review Letters 86,1355-1357 (2001).
    208. Liang-Yih Chen, Wen-Hua Chen, and Franklin Chau-Nan Hong, "Visible electroluminescence from silicon nanocrystals embedded in amorphous silicon nitride matrix," Applied Physics Letters 86, 193506-1-193506-3 (2005).
    209. Minghua Wang, Dongsheng Li, Zhizhong Yuan, Deren Yang, and Duanlin Que, "Photoluminescence of Si-rich silicon nitride: Defect-related states and silicon nanoclusters," Applied Physics Letters 90, 131903-1-131903-3 (2007).
    210. Hiromitsu Kato, Akira Masuzawa, Takashi Nowa, Kwang Soo Seol, and Yoshimichi Ohki, "Thermally induced photoluminescence quenching centre in hydrogenated amorphous silicon oxynitride," Journal of Physics: Condensed Matter 13, 6541-6549 (2001).
    211. M.J.V.Bell, L.A.O.Nunes, and A.R.Zanatta, "Optical excitation of Er~(3+) ions in a-SiN alloys," Journal of Applied Physics 86, 338-341 (1999).
    212. S.Hasegawa, L.He, Y.Amao, and T.Inokuma, "Analysis of SiH and SiN vibrational absorption in amorphous SiN_x:H films in terms of a chare transfer model," Physical Review B 48, 5315-5325 (1993).
    213. D.T.Krick, P.M.Lenahan, and J.Kanichi, "Nature of the dominant deep trap in amorphous silicon nitride," Physical Review B 38, 8226-8229 (1988).
    214. S.V.Deshpande, E.Gulari, S.Brown, and S.Rand, "Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition," Journal of Applied Physics 77, 6534-6541 (1995).
    215. W.L.Warren, John Robertson, and J.Kanichi, "Si and N dangling bond creation in silicon nitride thin films," Applied Physics Letters 63, 2685-2687(1993).
    216. Lide Zhang, Chimei Mo, Tao Wang, and Cunyi Xie, "Strong polarity and bond characterization of nanostructured silicon nitride solids," Materials Research Society Symposium Proceedings 286, 107-112 (1993).
    217. Hiromitsu Kato, Norihide Kashio, Yoshimichi Ohki, Kwang Soo Seol, and Takashi Nowa, "Band-tail photoluminescence in hydrogenated amorphous silicon oxynitride and silicon nitride films," Journal of Applied Physics 93, 239-244 (2003).
    218. D.T.Krick, P.M.Lenahan, and J.Kanicki, "Electrically active point defects in amorphous silicon nitride: An illumination and charge injection study," Journal of Applied Physics 64, 3558 (1988).
    219. E.O'Reilly and John Robertson, "Theory of defects in vitreous silicon dioxide," Physical Review B 27,3780-3795 (1983).
    220. W.L.Warren, P.M.Lenahan, and Sean E.Curry, "First observation of paramagnetic nitrogen dangling-bond centers in silicon nitride," Physical Review Letters 65,207-210 (1990).
    221. D.V.Tsu, G.Lucovsky, and M.J.Mantini, "Local atomic structure in thin films of silicon nitride and silicon dioxide produced by remote plasma-enhanced chemical-vapor deposition," Physical Review B 33, 7069-7076(1986).
    222. F.Demichelis, F.Giorgis, and C.F.Pirri, "Compositional and structural analysis of hydrogenated amorphous silicon-nitrogen alloys prepared by plasma-enhanced chemical vapour deposition," Philosophical Magazine Part B 74,155-168(1996).
    223. F.Giorgis, C.F.Pirri, and E.Tresso, "Structural properties of a-Si_(1-x)N_x:H films grown by plasma enhanced chemical vapour deposition by SiH_4+NH_3+H_2 gas mixtures," Thin Solid Films 307,298-305 (1997).
    224. J.Tauc, Amorphous and liquid semiconductors, (Springer, London, New York, Plenum, 1974).
    225. C.Kilic and Alex Zunger, "Origins of Coexistence of Conductivity and Transparency in SnO_2," Physical Review Letters 88, 095501-1-095501-4 (2002).
    226. C.Terrier, J.P.Chatelon, R.Berjoan, and J.A.Roger, "Sb-doped SnO_2 transparent conducting oxide from the sol-gel dip-coating technique," Thin Solid Films 263, 37-41 (1995).
    227. K.B.Sundaram and G.K.Bhagavat, "Optical absorption studies on tin oxide films," Journal of Physics D: Applied Physics 14,921-925 (1981).
    228. R.Summitt, J.A.Marley, and N.F.Borrelli, "The ultraviolet absorption edge of stannic oxide," The Journal of Physics and Chemistry of Solids 25, 1465-1469(1964).
    229. Baolong Yu, Congshan Zhu, and Fuxi Gan, "Exciton spectra of SnO_2 nanocrystals with surficial dipole layer," Optical Materials 7, 15-20 (1997).
    230. Matthias Batzill and Ulrike Diebold, "The surface and materials science of tin oxide," Progress in Surface Science 79,47-154 (2005).
    231. K.C.Mishra, K.H.Johnson, and P.C.Schmidt, "Electronic structure of antimony-doped tin oxide," Physical Review B 51,13972-13976 (1995).
    232. Noboru Yamazoe, "New approaches for improving semiconductor gas sensors," Sensors and actuators B: Chemical 5,7-19 (1991).
    233. Celine Nayral, Eric Viala, Vincent Colliere, Pierre Fau, Francois Senocq, Andre Maisonnat, and Bruno Chaudret, "Synthesis and use of a novel SnO_2 nanomaterial for gas sensing," Applied Surface Science 164, 219-226(2000).
    234. S.Samson and C.G.Fonstad, "Defect structure and electronic donor levels in stannic oxide crystals," Journal of Applied Physics 44, 4618-4621 (1973).
    235. W.Spence, "The uv Absorption Edge of Tin Oxide Thin Films," Journal of Applied Physics 38, 3767-3770 (1967).
    236. H.He, H.Wu, Cheng L.Hsin, Kun M.Li, Lih J.Chen, Yu L.Chueh, Li J.Chou, and Zhong L.Wang, "Beaklike SnO_2 Nanorods with Strong Photoluminescent and Field-Emission Properties," Small 2, 116-120 (2006).
    237. Junqing Hu, Yoshio Bando, Quanlin Liu, and Dmitri Golberg, "Laser-ablation growth and optical properties of wide and long single-crystal SnO_2 ribbons," Advanced Functional Materials 13, 493-496 (2003).
    238. G.Faglia, C.Baratto, E.Comini, M.Ferroni, M.Zha, G.Salviati, A.Zappettini, and G.Sberveglieri. Visible photoluminescence and conductometric response of tin oxide nanobelts to NO_2: toward a selective gas sensor. 431-434. 2004. 4th IEEE Conference on Nanotechnology. Ref Type: Conference Proceeding
    239. Xiaochun Wu, Bingsuo Zou, Jiren Xu, Baolong Yu, Guoqing Tang, Guilan Zhang, and Wenju Chen, "Structural characterization and optical properties of nanometer-sized SnO_2 capped by stearic acid," Nanostructured Materials 8,179-189(1997).
    240. J.X.Zhou, M.S.Zhang, J.M.Hong, and Z.Yin, "Raman spectroscopic and photoluminescence study of single-crystalline SnO_2 nanowires," Solid State Communications 138, 242-246 (2006).
    241. Yue-Song He, J.C.Cambell, R.C.Murphy, M.F.Arendt, and J.S.Swinnea, "Electrical and optical characterization of Sb:SnO_2, " Journal of Materials Research 8, 3131-3134 (1993).
    242. Taneo Nishino and Yoshihiro Hamakawa, "Electrical and optical properties of Si-SnO_2 Heterojunctions," Japanese Journal of Applied Physics 9, 1085-1090(1970).
    243. U.Kuxmann and R.Dobner, "Investigations on the Tin--Tin(IV) Oxide System in the Temperature Range of the Miscibility Gap," Metall 34, 821-827(1980).
    244. J.Tauc, R.Grigorovici, and A.Vancu, "Optical properties and electronic structure of amorphous germanium," Physica Status Solidi 15, 627-631 (1966).
    245. J.L.Jacquemin and G.Bordure, "Band structure and optical properties of intrinsic tetragonal dioxides of groups-IV elements," Journal of Physics and Chemistry of Solids 36,1081-1087 (1975).
    246. T.S.Moss, "The interpretation of the properties of indium antimonide," Proceedings of the Physical Society, Section B 67, 775-782 (1954).
    247. Elias Burstein, "Anomalous optical absorption limit in InSb," Physical Review 93, 632-633 (1954).
    248. Jin Jeong, Seong-Pyung Choi, Cha Ik Chang, Dong Chan Shin, Jin Sung Park, B-T Lee, Yeong-Jun Park, and Ho-Jun Song, "Photoluminescence properties of SnO_2 thin films grown by thermal CVD," Solid State Communications 127,595-597 (2003).
    249. G.Blattner and C.Klingshirn, "Impurity transitions in the photoluminescence spectra of SnO_2," Solid State Communications 33, 341-344(1980).
    250. T.W.Kim, D.U.Lee, and Y.S.Yoon, "Microstructural, electrical, and optical properties of nanocrystalline thin films grown on InP (100) substrates for applications as gas sensor devices," Journal of Applied Physics 88, 3759-3761 (2000).
    251. T.W.Kim, D.U.Lee, J.H.Lee, D.C.Choo, M.Jung, and Y.S.Yoon, "Stuctrual, electrical, and optical properties of SnO_2 nanocrystalline thin films grown on p-InSb (111) substrates," Journal of Applied Physics 90, 175-180 (2001).
    252. Yuheng Wang, Jin Ma, Feng Ji, Xuhu Yu, and Honglei Ma, "Structural and photoluminescence characters of SnO_2:Sb films deposited by RF magnetron sputtering," Journal of Luminescence 114, 71-76 (2005).
    253. N.Chiodini, A.Paleari, D.DiMartino, and G.Spinolo, "SnO_2 nanocrystals in SiO_2: A wide-band-gap quantum-dot system," Applied Physics Letters 81, 1702-1704 (2002).
    254. V.T.Agekyan, "Spectroscopic properties of semiconductor crystals with direct forbidden energy gap," Physica Status Solidi (a) 43, 11-42 (1977).
    255. Matti A.Maki-Jaskari and Tapio T.Rantala, "Theoretical study of oxygen-deficient SnO_2 (110) surfaces," Physical Review B 65, 245428-1-245428-8 (2002).
    256. E.J.H.Lee, C.Ribeiro, T.R.Giraldi, E.Longo, E.R.Leite, and J.A.Varela, "Photoluminescence in quantum-confined SnO_2 nanocrystals: Evidence of free exciton decay," Applied Physics Letters 84, 1745-1747 (2004).
    257. K.Von Rottkay and M.Rubin, "Optical indices of pyrolytic tin-oxide glass," Materials Research Society Symposium Proceeding 426, 449-1-449-7(1996).
    258. T.J.Godin and John P.LaFemina, "Surface atomic and electronic structure of cassiterite SnO_2 (110)," Physical Review B 47, 6518-6523 (1993).
    259. Lizi Yang, Zhitong Sui, and Chanzheng Wang, "A Thermodynamic Study of Tin Oxides by Coulometric Titration," Journal of Solid State Chemistry 113,221-224(1994).
    260. Masahiro Nagasawa and Shigeo Shionoya, "Properties of oxidized SnO_2 single crystals," Japanese Journal of Applied Physics 10, 727-731 (1971).
    261. M.N.Islam and M.O.Hakim, "Electron affinity and work function of polycrystalline SnO_2 thin film," Journal of Materials Science Letters 5, 63-65(1986).
    262. Kenneth J.Button, Clifton G.Fonstad, and Wolfgang Dreybrodt, "Determination of the electron masses in stannic oxide by submillimeter cyclotron resonance," Physical Review B 4,4539-4542 (1971).
    263. Feng Gu, Shufen Wang, Mengkai Lu, Yongxin Qi, Guangjun Zhou, Dong Xu, and Duorong Yuan, "Luminescent characteristics of Eu~(3+) in SnO_2 nanoparticles," Optical Materials 25, 59-64 (2004).
    264. D.F.Crabtree, "The luminescence of SnO_2-Eu~(3+)," Journal of Physics D: Applied Physics 8,107-116 (1975).
    265. D.F.Crabtree, "Luminescence and charge compensation in SnO_2 doped with rare-earth ions," Journal of Physics D: Applied Physics 11, 1543-1551 (1978).
    266. E.A.Morais, L.V.A.Scalvi, V.Geraldo, R.M.F.Scalvi, S.J.L.Ribeiro, C.V.Santilli, and S.H.Pulcinelli, "Electro-optical properties of Er-doped SnO_2 thin films," Journal of the European Ceramic Society 24, 1857-1860 (2004).
    267. J.H.Van Vleck, "The puzzle of rare-earth spectra in solids," Journal of Physical Chemistry 41,67-80 (1937).
    268. Takao Tohda, Kiyotaka Wasa, and Shigeru Hayakawa, "The crystallographic site of cosputered Eu in RF-Sputtered SnO_2 films," Journal of the Electrochemical Society: Solid-State Science and Technology 123,1719-1720 (19760).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700