水体中有机污染物的分离富集及降解方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分子印迹技术(MIT)是具有特异选择性的新兴识别技术,用分子印迹聚合物(MIP)作为固相萃取柱的固定相可以选择性地分离和富集待测物分子,提高分析方法的灵敏度。内电解法和Fenton氧化法是处理难降解有机废水的有效方法,具有良好的开发应用前景。本文考察了分子印迹固相萃取技术对除草剂阿特拉津的分离富集效能,并系统地研究了增强型内电解法、Fenton氧化法、以及增强型内电解__Fenton法降解有机废水的性能和操作条件,从而为难降解有机废水的治理提供了理论和实践依据。研究结果表明:
     1.分子印迹固相萃取柱的制备及分离富集效能研究:采用阿特拉津为模板制备了分子印迹聚合物,并将其制成固相萃取柱。结合能力实验表明,装柱后分子印迹聚合物的最大吸附量是装柱前的26倍,结合用时仅为装柱前的1/64,装柱过程大大提高了分子印迹聚合物的结合能力和效率。分子印迹固相萃取柱和C。8柱对水质中阿特拉津的分离富集效果的对比研究表明,在相同的实验条件下,与C18柱相比,分子印迹固相萃取柱的萃取效果及样品净化能力优势明显。2.增强型内电解法处理对硝基苯酚废水的研究:采用化学共沉淀法与化学镀法相结合制备了镀铜磁性粒子(CCMPs),并用SEM,XRD和磁强计对其进行表征。采用增强型内电解法,以对硝基苯酚为目标污染物,考察了铁屑与镀铜磁性粒子质量比、磁场强度、初始pH值、曝气量和Na2SO4投加量对COD去除率的影响,并对对硝基苯酚的降解机理进行分析。在铁屑与镀铜磁性粒子质量比为10,磁场强度为0.04 T,初始pH值为4.0,曝气量为15 L/min,Na2SO4投加量为2000 mg/L的条件下,反应3.5 h,对硝基苯酚降解完全,废水COD去除率达到72%。在相同的实验条件下,其处理效果明显优于传统铁屑/活性炭法及铁屑法。
     3.Fenton试剂处理难降解有机废水的影响因素分析:采用Fenton氧化法对硝基苯类化合物废水进行降解研究。运用正交实验确定各操作条件对污染物的降解影响大小顺序依次为:溶液初始pH值>H202投加量>Fe2+投加量>反应温度>反应时间。进一步的单因素实验得出最佳操作条件:H202投加量为80 mmol/L,Fe2+投加量为8 mmol/L,溶液初始pH值为3.0,反应温度为25℃,反应时间为60 min。在此条件下,废水COD去除率达到53.6%。
     4.增强型内电解__Fenton法处理难降解有机废水的研究:采用增强型内电解__Fenton法处理难降解有机废水。以硝基苯类化合物为目标污染物,进行操作参数条件的优化,分析了影响COD去除率的原因,并在最佳操作条件下对比增强型内电解__Fenton法、增强型内电解法、Fenton法以及分子印迹固相萃取技术对水体中有机污染物的降解去除效果。实验结果表明,和其它三种方法相比,增强型内电解Fenton法高效、经济,具有较大优势。
Molecularly imprinting technology (MIT) is a new technology with the characteristics of special selectivity and recognition. Combined the Molecularly imprinted polymer (MIP) with solid phase extraction (SPE), the sensitivity of analytical methods would be improved greatly because of the special capacity of separation and enrichment of MIP. Internal electrolysis and Fenton oxidation processes are effective technologies and have good prospect of development and application for the treatment of refractory organic wastewaters. In present study, the separation and enrichment of atrazine using SPE technique were studied in detail, and the degradation of organic wastewater by Enhanced Internal Electrolysis, Fenton oxidation and Enhanced Internal Electrolysis__Fenton combined process were investigated, the operational parameters and the degradation effect of each process were studied in detail. The results obtained in this study could provide some important theory and practice guides for the treatment of refractory organic wastewaters. All the experimental results were showed as follows:
     1.The preparation and evaluation of separation and enrichment efficiency of molecularly imprinted solid phase extraction (MISPE) column. In this study, MIP using atrazine as the template was prepared, a glass tube packed the particles of the MIP was employed as MISPE column. The test of binding capacity indicated that the maximum of absorption capacity of MISPE column was twenty-six times than that of MIP, and the binding time of MISPE column was cut to about one sixty-fourth of what the MIP had, so the binding performance of MIP was greatly enhanced. The comparative study of MISPE column and C18 column on separation and enrichment of atrazine showed that the MISPE column had distinct advantage for extraction and clean-up samples.
     2.The treatment of p-Nitrophenol (PNP) wastewater using Enhanc-ed Internal Electrolysis process. In this study, the copper-coated magnetic particles (CCMPs) were prepared by the combination of a chemical co-precipitation method with an electroless plating method and characterized by scanning electron microscope, X-ray diffraction and magnetization measurements. The Enhanced Internal Electrolysis process was employed for treating the PNP wastewater. The effects of quality rate of iron scraps to copper-coated magnetic particles, magnetic intensity, initial pH, aeration rate, and Na2SO4 dose on COD removal efficiency have been studied systematically. The degradation mechanism of PNP was also analyzed. The results of bath experiments indicated that with quality rate of iron scraps to copper-coated magnetic particles as 10, magnetic intensity as 0.04 T, initial pH as 4.0, aeration rate as 15 L/min, and Na2SO4 dosage as 2000 mg/L, after a reaction time of 3.5 h, the PNP was completely degraded and the removal efficiency of COD could reach as high as 72%. Under the same conditions, the treating effect of Enhanced Internal Electrolysis process was much better than that of traditional Fe/C process or Zero-valent Iron process.
     3.The analysis of factors influencing the degradation of refractory organic wastewater by Fenton reagent. In this study, Fenton oxidation process have been investigated to degrade NBCs wastewater. The operating conditions for the degradation of pollutants were determined via orthogonal experiment, and the effect of various operating parameters follows in the following decreasing order:initial pH>H2O2 dosage> Fe2+ dosage>temperature>reaction time. The optimal operating parameters were determined by single factor experiment and showed as follows:[H2O2]=80 mmol/L, [Fe2+]=8 mmol/L, initial pH=3.0, tempera-ture=25℃, reaction time=60 min. Under the conditions mentioned above, the removal efficiency of COD could reach 53.6%.
     4. The treatment of refractory organic wastewater using Enhanced Internal Electrolysis__Fenton combined process. In this study, Enhanced Internal Electrolysis__Fenton combined process was employed to treat refractory organic wastewater. The NBCs were used as the target pollutants and the operational parameters were optimized respectively first, and the reasons affecting the COD removal efficiency were analyzed. Experiments were conducted under optimum conditions to compare the difference among the treating effectiveness of the organic pollutants of Enhanced Internal Electrolysis__Fenton combined process, Enhanced Internal Electrolysis process, Fenton oxidation process and MISPE process.The results showed that the Enhanced Internal Electrolysis__Fenton combined process appears superior to other three processes in relation to the treatment efficiency and cost.
引文
[1]张自杰.排水工程(下).北京:中国建筑工业出版社,2000.13-20
    [2]陈颖,沈更新,邵生文,等.分子印迹固相萃取技术在食品安全分析中的应用.中国卫生检验杂志,2008,18(8):1696-1697
    [3]Pauling L. A theory of the structure and process of formation of antibodies. Journal of the American Chemical Society,1940,62(10):2643-2657
    [4]Dichey F H. The preparation of specific adsorbents. Proceedings of the National Academy of Sciences,1949,35:227-229
    [5]Wulff G, Sarhan A. The use of polymers with enzyme-analogues structures for the resolution of racemates. Angewandte Chemie International Edition,1972,11: 341-344
    [6]Wulff G, Sarhan A, Zabrocki K. Enzyme-analogue built polymers and their use for the resolution of racemates. Tetrahedron Letters,1973,44:4329-4332
    [7]Vlatakis G,Andersson L I, Muller R, et al. Drug assay using antibody mimics made by molecular imprinting. Nature,1993,361:645-647
    [8]Watabe Y, Kondo T, Morita M, et al. Determination of bisphenol A in environme-ntal water at ultra-low level by high-performance liquid chromatography with an effective on-line pretreatment device. Journal of Chromatography A,2004,1032(1-2): 45-49
    [9]Matsui J, Miyosh Y, Doblhoff-Die O, et al. A molecularly imprinted synthetic polymer receptor selective for atrazine. Analytical Chemistry,1995,67(23): 4404-4408
    [10]Matsui J, Fujiwara K, Ugata S, et al.Solid-phase extraction with a dibutylmelamine-imprinted polymer as triazine herbicide-selective sorbent. Journal of Chromatography A,2000,889(1-2):25-31
    [11]张立永,成国祥,陆书来,等.悬浮聚合法制备西咪替丁印迹聚合物微球的分子选择性能.分析化学,2003,31(6):655-658
    [12]Ferrer I, Lanza F, Tolokan A, et al. Selective trace enrichment of chlorotriazine pesticides from natural waters and sediment samples using terbuthylazine molecularly imprinted polymers. Analytical Chemistry,2000,72(16):3934-3941
    [13]Bjarnason B, Chimuka L, Ramstrom O. On-line solid-phase extraction of triazine herbicides using a molecularly imprinted polymer for selective sample enrichment. Analytical Chemistry,1999,71(11):2152-2156
    [14]Bastide J, Cambon J P, Breton F, et al. The use of molecularly imprinted polymers for extraction of sulfonylurea herbicides. Analytica Chimica Acta,542(1): 97-103
    [15]曲久辉,刘会娟.水处理电化学原理与技术.北京:科学出版社,2007.336-339
    [16]陈郁,全燮.零价铁处理污水的机理及应用.环境科学研究,2000,13(5):24-26
    [17]张键,季俊杰,徐乃东,等.铁、炭流化床预处理染料废水研究.中国给水排水,2001,17(8):6-9
    [18]周培国,傅大放.微电解工艺研究进展.环境污染治理技术与设备,2001,2(4):18-24
    [19]姚杏明,平新华.微电解催化氧化处理对硝基苯胺系列废水.环境工程,2001,19(3):26-27
    [20]叶亚平,唐牧,钱维兰,等.动态强化微电解法处理染料废水及其机理的研究.环境污染治理技术与设备,2004,5(6):27-32
    [21]肖仙英,陈中豪,陈元彩,等.微电解法处理造纸中段废水及其机理探讨.中国造纸,2005,124(7):14-17
    [22]周迟骏,周洁,赵东霞.偶氮染料曝气微电解脱色过程机理及工艺.化工进展,2005,24(9):1029-1032
    [23]李家珍.染料、染色工业废水处理.北京:化学工业出版社,1997
    [24]Ma L M, Ding Z J, Gao T Y, et al. Discoloration of methylene blue and wastewater from a plant by a Fe/Cu bimetallic system. Chemosphere,2004,55(9): 1207-1212
    [25]蓝连贺.内电解法处理印染废水的效果研究与分析.工业水处理,2004,24(7):24-27
    [26]Liu H, Li G, Qu J, et al. Degradation of azo dye Acid Orange 7 in water by Fe0/granular activated carbon system in the presence of ultrasound. Journal of Hazardous Materials,2007,144(1-2):180-186
    [27]Lin Y T, Wen C H, Chen F Y. Effective removal of AB24 dye by nano/micro-size zero-valent iron. Separation and Purification Technology.2008, 64(1):26-30
    [28]Chang S, Wang K, Chao S, et al. Degradation of azo and anthraquinone dyes by a low-cost Fe0/air Process. Journal of Hazardous Materials,2009,166(2-3): 1127-1133
    [29]王慧娟,黄亮.铁炭内电解法处理染料废水的研究.河南化工,2007,24(11): 25-28
    [30]Ghauch A, Suptil J. Remediation of s-triazines contaminated water in a laboratory scale apparatus using zero-valent iron powder. Chemosphere,2000,41(12): 1835-1843
    [31]Keum Y S, Li Q X. Reduction of nitroaromatic pesticides with zero-valent iron. Chemosphere,2004,54(3):255-263
    [32]Gibb C, Satapanajaru T, Comfort S D, et al. Remediating dicamba-contaminated water with zerovalent iron. Chemosphere,2004,54(7):841-848
    [33]张树艳,程丽华,曹为祥.铁炭微电解处理农药废水的研究.化学工程师,2004,108(9):35-37
    [34]夏静芬,程灵勤.铁炭微电解法处理草甘磷农药废水的研究.浙江万里学院学报,2007,20(5):55-57
    [35]Choe S, Lee S H, Chang Y, et al. Rapid reductive destruction of hazardous organic compounds by nanoscale Fe0. Chemosphere,2001,42(4):367-372
    [36]Mu Y, Yu H Q, Zheng J, et al.Reductive degradation of nitrobenzene in aqueous solution by zero-valent iron. Chemosphere,2004,54(7):789-794
    [37]叶张荣,马鲁铭.曝气催化铁内电解法处理混合化工废水.化工环保,2004,24(6):433-435
    [38]樊金红,徐文英,高廷耀,等.硝基苯类废水的预处理技术研究.环境污染与防治,2005,27(1):8-11
    [39]Wanaratna P, Christodoulatos C, Sidhoum M. Kinetics of RDX degradation by zero-valent iron (ZVI). Journal of Hazardous Materials,2006,136(1):68-74
    [40]袁俊秀,王玉萍.铁炭内电解法处理β-萘酚废水的研究.化学工业与工程技术,2007,28(1):18-21
    [41]Jou C. Degradation of pentachlorophenol with zero-valence iron coupled with microwave energy. Journal of Hazardous Materials,2008,152(2):699-702
    [42]王承智,石荣.含油废水处理方法综述.辽宁师专学报,2002,4(1):104-108
    [43]陈水平.铁屑内电解法处理船舶含油废水的研究.水处理技术,1999,25(5):303-306
    [44]韩洪军.微电池滤床法处理含油废水.化工环保,2000,20(5):19-22
    [45]蒋珍菊,赵立志,陈洪.微电解法在油气田废水治理中的应用.四川师范学院学报(自然科学版),2001,22(4):351-355
    [46]Rima J, Li Q X, Aouezova L. Generation of free radicals, analytical, methods, bacterial, disinfections, and oxidative destruction of organic chemicals using zero valent iron and other metals. US Patent,US 2006/0175266A1,2006-08-10
    [47]张凤娥,谢琦,李宏,等.内电解法处理餐饮废水的试验研究.中国给水排水,2007,23(13):83-86
    [48]祝威,宗华.内电解法处理含聚合物采油污水实验研究.石油规划设计,2006,17(5):20-22
    [49]杨俊,李海燕,方御,等.内电解法处理依诺沙星制药废水.武汉科技学院学报,2004,17(4):15-19
    [50]黄健,张华,杨伟伟.抗生素废水的铁屑微电解预处理研究.工业安全与环保,2007,33(8):1-3
    [51]鲍立新,李建政,刘莹,等.铁碳内电解法预处理安普霉素生产废水.哈尔滨工业大学学报,2007,39(6):883-886
    [52]Ghauch A, Tuqan A. Reductive destruction and decontamination of aqueous solutions of chlorinated antimicrobial agent using bimetallic systems. Journal of Hazardous Materials,2009,164(2-3):665-674
    [53]周丽娜,张志军.微电解法预处理利福平制药废水的试验研究.环境保护科学,2008,34(3):44-46
    [54]Ghauch A, Tuqan A, Assi H A. Antibiotic removal from water:Elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles. Environmental Pollution,2009,157(5):1626-1635
    [55]Fenton H J H. Oxidation of tartaric acid in the presence of iron. Journal of the Chemical Society,1894,65:899-910
    [56]Stanbury D M. Reduction potentials involving inorganic free radicals in aqueous solution. Advances in Inorganic Chemistry,1989,33:69-138
    [57]Legrini O, Oliveros E, Braun A M. Photochemical processes for water treatment. Chemical Reviews,1993,93(22):671-698
    [58]Bremner D H, Mitchell S R, Staines H. Investigation into the effect of ultrasound on the dimerization of pivalic acid using Fenton's reagent. Ultrasonics Sonoche-mistry,1996,3(1):47-52
    [59]Kwon B G, Lee D S, Kang N, et al. Characteristics of p-chlorophenol oxidation by Fenton's reagent. Water Research,1999,33(9):2110-2118
    [60]Fallmann H, Krutzler T, Bauer R, et al. Applicability of the Photo-Fenton method for treating water containing pesticides. Catalysis Today,1999,54(2-3): 309-319
    [61]Duran Moreno A, Frontana-Uribe B A,Ramirez Zamora R M. Electro-Fenton as a feasible advanced treatment process to produce reclaimed water. Water Science and Technology,2004,50(2):83-90
    [62]Haber F, Weiss J J. The catalytic decomposition of hydrogen peroxide by iron salts. Proceedings of the Royal Society A,1934,147:332-352
    [63]Barb W G, Baxendale J H, George P, et al. Reaction of ferrous and ferric ions with hydrogen peroxide. Nature,1949,163:692-694
    [64]Kang N, Lee D S, Yoon J. Kinetic modeling of Fenton oxidation of phenol and monochlorophenols. Chemosphere,2002,47(9):915-924
    [65]Neyens E, Baeyens J. A review of classic Fenton's peroxidation as an advanced oxidation technique. Journal of Hazardous Materials,2003,98(1-3):33-50
    [66]Ghiselli G, Jardim W F, Litter M I, et al. Destruction of EDTA using Fenton and photo-Fenton-like reactions under UV-A irradiation. Journal of Photochemistry and Photobiology A:Chemistry,2004,167(1):59-67
    [67]张乃东,郑威.Fenton法在水处理中的发展趋势.化工进展,2001,20(12):1-3
    [68]朱琳娜,吴超,何争光.Fenton试剂法处理难生物降解有机废水最新进展.能源技术与管理,2006,2:59-61
    [69]Vendevivere P C, Bianchi R, Verstraete W. Treatment and reuse of wastewater from the textile wet-processing industry:review of emerging technologies. Journal of Chemical Technology & Biotechnology,1998,72(4):289-302
    [70]Neppolian B, Jung H, Choi H, et al. Sonolytic degradation of methyl tert-butyl ether:the role of coupled fenton process and persulphate ion. Water Research,2002, 36(19):4699-4708
    [71]Sun J, Sun S, Sun J, et al. Degradation of azo dye Acid black 1 using low concentration iron of Fenton process facilitated by ultrasonic irradiation. Ultrosonics Sonochemistry,2007,14(6):761-766
    [72]Muruganandham M, Swaminathan M. Decolourisation of Reactive Orange 4 by Fenton and photo-Fenton oxidation technology. Dyes and Pigments,2004,63(3): 315-321
    [73]Xu X, Li H, Wang W, et al. Degradation of dyes in aqueous solutions by the Fenton process. Chemosphere,2004,57(7):595-600
    [74]Peternel I T, Koprivanac N, Bozic A M L, et al.Comparative study of UV/TiO2, UV/ZnO and photo-Fenton processes for the organic reactive dye degradation in aqueous solution. Journal of Hazardous Materials,2007,148(1-2):477-484
    [75]Daneshvar N, Aber S,Vatanpour V, et al.Electro-Fenton treatment of dye solution containing Orange II:Influence of operational parameters. Journal of Electroanalytical chemistry,2008,615(2):165-174
    [76]Oezcan A, Oturan M A, Oturan N, et al. Removal of Acid Orange 7 from water by electrochemically generated Fenton's reagent. Journal of Hazardous Materials, 2009,163(2-3):1213-1220
    [77]Zhang H, Zhang J, Zhang C, et al.Degradation of CI Acid Orange 7 by the advanced Fenton process in combination with ultrasonic irradiation. Ultrosonics Sonochemistry,2009,16(3):325-330.
    [78]杨新萍,王世和.Fenton试剂处理有机氯农药废水的研究.环境污染治理技术与设备,2006,7(6):60-64
    [79]Diagne M, Oturan N, Oturan M A. Removal of methyl parathion from water by electrochemically generated Fenton's reagent. Chemosphere,2007,66(5):841-848
    [80]Ozcan A, Sahin Y, Koparal A S, et al. Degradation of picloram by the electro-Fenton process. Journal of Hazardous Materials,2008,153(1-2):718-727
    [81]Abdessalem A K, Oturan N, Bellakhal N, et al. Experimental design methodology applied to electro-Fenton treatment for degradation of herbicide chlortoluron. Applied Catalysis B:Environmental,2008,78(3-4):334-341
    [82]Abdessalem A K, Bellakhal N, Oturan N, et al. Treatment of a mixture of three pesticides by photo-and electro-Fenton processes. Desalination,2010,250(1): 450-455
    [83]Tamimi M, Qourzal S, Barka N, et al. Methomyl degradation in aqueous solutions by Fenton's reagent and the photo-Fenton system. Separation and Purification Technology,2008,61(1):103-108
    [84]Panizza M, Giacomo C. Removal of organic pollutants from industrial wastewater by electrogenerated Fenton's reagent. Water Research,2001,35(16): 3987-3992
    [85]Perez M, Torrades F, Domenech X, et al. Fenton and photo-Fenton oxidation of textile effluents. Water Research,2002,36(11):2703-2710
    [86]Martinez N S S, Fernandez J F, Segura X F, et al. Pre-oxidation of an extremely polluted industrial wastewater by the Fenton's reagent. Journal of Hazardous Materials,2003,101(3):315-322
    [87]Perez-Moya M, Graells M, Del Valle L J, et al. Fenton and photo-Fenton degradation of 2-chlorophenol:Multivariate analysis and toxicity monitoring. Catalysis Today,2007,124(3-4):163-171
    [88]Zhang H, Fei C, Zhang D, et al. Degradation of 4-nitrophenol in aqueous medium by electro-Fenton method. Journal of Hazardous Materials,2007,145(1-2): 227-232
    [89]Bautista P, Mohedano A F, Gilarranz M A, et al. Application of Fenton oxidation to cosmetic wastewaters treatment. Journal of Hazardous Materials,2007,143(1-2): 128-134
    [90]Pimentel M, Oturan N, Dezotti M, et al. Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode. Applied Catalysis B:Environmental,2008,83(1-2):140-149
    [91]Zhou T, Lu X, Lim T, et al. Degradation of chlorophenols (CPs) in an ultrasound-irradiated Fenton-like system at ambient circumstance:The QSPR (quantitative structure-property relationship) study. Chemical Engineering Journal, 2010,156(2):347-352
    [92]Philippopoulos C J, Poulopoulos S G. Photo-assisted oxidation of an oily wastewater using hydrogen peroxide. Journal of Hazardous Materials,2003,98(1-3): 201-210
    [93]李涛,李凡修,胡三清.Fenton试剂法降解油田污水CODCr的技术研究.化学与生物工程,2004,1:45-47
    [94]Galvao S A O, Mota A L N, Silva D N, et al. Application of the photo-Fenton process to the treatment of wastewaters contaminated with diesel. Science of the Total Environment,2006,367(1):42-49
    [95]Mater L, Rosa E V C, Berto J, et al. A simple methodology to evaluate influence of H2O2 and Fe2+ concentrations on the mineralization and biodegradability of organic compounds in water and soil contaminated with crude petroleum. Journal of Hazardous Materials,2007,149(2):379-386
    [96]郦和生,陈新芳,刘伟,等.Fenton试剂处理含油废水的实验研究.北京化工大学学报(自然科学版),2007,34(3):238-240
    [97]Mert B K,Yonar T,Kilic M Y,et al. Pre-treatment studies on olive oil mill effluent using physicochemical, Fenton and Fenton-like oxidations processes.Journal of Hazardous Materials,2010,174(1-3):122-128
    [98]Ravina M, Campanella L, Kiwi J.Accelerated mineralization of the drug Diclofenac via Fenton reactions in a concentric photo-reactor. Water Research,2002, 36(14):3553-3560
    [99]Kajitvichyanukul P, Suntronvipart N. Evaluation of biodegradability and oxidation degree of hospital wastewater using photo-Fenton process as the pretreatment method. Journal of Hazardous Materials,2006,138(2):384-391
    [100]Tekin H, Bilkay O, Ataberk S S, et al. Use of Fenton oxidation to improve the biodegradability of a pharmaceutical wastewater. Journal of Hazardous Materials, 2006,136(2):258-265
    [101]Bautitz I R, Nogueira R F P. Degradation of tetracycline by photo-Fenton process-Solar irradiation and matrix effects. Journal of Photochemistry and Photobiology A:Chemistry,2007,187(1):33-39[102]黄昱,李小明,杨麒,等.电-Fenton法预处理青霉素废水的降解规律研究.环境工程学报,2007,1(8):20-25
    [103]Elmolla E S, Chaudhuri M. Degradation of the antibiotics amoxicillin, ampicillin and cloxacillin in aqueous solution by the photo-Fenton process. Journal of Hazardous Materials,2009,172(2-3):1476-1481
    [104]Sauerbrey G.The use of quartz oscillators for weighting thin layers and for microweighting. Zeitschrift fur Physik,1959,155:206-212
    [105]Koohpaei I R, Shahtaheri S J, Ganjali M R, et al. Optimization of solid-phase extraction using developed modern sorbent for trace determination of ametryn in environmental matrices. Journal of Hazardous Materials,2009,170(6):1247-1255
    [106]Djozan D, Ebrahimi B. Preparation of new solid phase micro extraction fiber on the basis of atrazine-molecular imprinted polymer:Application for GC and GC/MS screening of triazine herbicides in water, rice and onion. Analytica Chimica Acta, 2008,616(2):152-159
    [107]Tamayo F G, Martin-Esteban A. Selective high performance liquid chromatography imprinted-stationary phases for the screening of phenylurea herbicides in vegetable samples. Journal of Chromatography A,2005,1098(1-2): 116-122
    [108]李清波,黄国宏,王颜红,等.土壤和玉米籽粒中阿特拉津残留量的测定方法.分析化学,2003,31(3):383
    [109]顾继东,王莹莹.环境激素类有机污染物的微生物降解和药物类化合物的残留问题.生态科学,2003,22(1):001-005
    [110]Amalric L, Mouvet C, Pichon V, et al. Molecularly imprinted polymer applied to the determination of the residual mass of atrazine and metabolites within an agricultural catchment. Journal of Chromatography A,2008,1206(2):95-104
    [111]Lv Y Q, Lin Z X, Feng W, et al. Selective recognition and large enrichment of dimethoate from tea leaves by molecularly imprinted polymers. Biochemical Engineering Journal,2007,4470:9-161
    [112]Kavitha V, Palanivelu K. Degradation of nitrophenols by Fenton and photo-Fenton processes. Journal of Photochemistry and Photobiology A:Chemistry, 2005,170(1):83-95
    [113]叶张荣,马鲁铭.铁屑内电解法对活性艳红X-3B脱色过程的机理研究.水处理技术,2005,31(8):65-67
    [114]任拥政,章北平,张晓昱,等.铁碳微电解对造纸黑液的脱色处理.水处理技术,2006,32(4):68-70
    [115]Fan J, Ma L. The pretreatment by the Fe-Cu process for enhancing biological degradability of the mixed wastewater. Journal of Hazardous Materials,2009, 164(2-3):1392-1397
    [116]Schrick B, Blough J L, Jones A D, et al. Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chemistry of Materials,2002,14(12):5140-5147
    [117]Lien H, Zhang W. Nanoscale Pd/Fe bimetallic particles:Catalytic effects of palladium on hydrodechlorination. Applied Catalysis B:Environmental,2007, 77(1-2):110-116
    [118]卢永,严莲荷,李兵,等.镀铜铁内电解预处理焦化废水的研究.精细化工,2008,25(3):269-272
    [119]何小娟,汤鸣皋,李旭东,等.镍/铁和铜/铁双金属降解四氯乙烯的研究.环境化学,2003,22(4):334-339
    [120]国家环保总局.GB11914-1989.中华人民共和国国家标准-重铬酸盐法测定化学需氧量.北京:中国标准出版社,1989-12-15
    [121]Craik D J. Magnetic Oxides, Part 2. New York:Wiley,1981.703
    [122]Ma L M, Ding Z G, Gao T Y, et al. Discoloration of methylene blue and wastewater from a plant by a Fe/Cu bimetallic system. Chemosphere,2004,55(9): 1207-1212
    [123]Booker N A, Keir D, Priestley A, et al. Sewage clarification with magnetite particles. Water Science & Technology,1991,23(7-9):1703-1712
    [124]Oliveira L C A, Rios R V R A, Fabris J D, et al. Activated carbon/iron oxide magnetic composites for the adsorption of contaminants in water. Carbon,2002, 40(12):2177-2183
    [125]Zhang H, Choi H J, Huang C P. Optimization of Fenton process for the treatment of landfill leachate. Journal of Hazardous Materials,2005,125(1-3): 166-174
    [126]Li X, Elliott D W, Zhang W. Zero-valent iron nanoparticles for abatement of environmental pollutants:Materials and engineering aspects. Critical Reviews in Solid State and Materials Sciences,2006,31(4):111-122
    [127]Fan J, Guo Y, Wang J, et al. Rapid decolorization of azo dye methyl orange in aqueous solution by nanoscale zerovalent iron particles. Journal of Hazardous Materials,2009,166(2-3):904-910
    [128]冯俊丽,马鲁铭.催化铁内电解法处理含铬废水.水处理技术,2005,31(7):42-45
    [129]Agrawal A, Tratnyek P G. Reduction of nitro aromatic compounds by zero-valent iron metal. Environmental Science & Technology,1996,30(1):153-160
    [130]Satterfield C N. Heterogeneous catalysis in industrial practice,2nd edition. New York:McGraw Hill, Inc.,1991
    [131]Errampalli D, Tresse O, Lee H, et al. Bacterial survival and mineralization of p-nitrophenol in soil by green fluorescent protein-marked Moraxella sp G21 encapsulated cells. Ferns Microbiology Ecology,1999,30(3):229-236
    [132]Dutta K, Mukhopadhyay S, Bhattacharjee S, et al. Chemical oxidation of methylene blue using a Fenton-like reaction. Journal of Hazardous Materials,2001, 84(1):57-71
    [133]Pera T M, Garcia M V, Bafios M A. Degradation of chlorophenols by means of advanced oxidation processes:a general review. Applied Catalysis B:Environmental, 2004,47(4):219-256
    [134]陈传好,谢波,任源,等.Fenton试剂处理废水中各影响因子的作用机制.环境科学,2000,21(3):93-96
    [135]张乃东,黄君礼,郑威.强化UV/Fenton法降解水中苯酚的研究.环境污染治理技术与设备,2002,3(2):20-22
    [136]程丽华,黄君礼,倪福详.Fenton试剂生成·OH的动力学研究.环境污染治理技术与设备,2003,4(5):12-15
    [137]Kitis M, Adams C D, Daigger G T. The effects of Fenton's reagent pretreatm-ent on the biodegradability of nonionic surfactants. Water Research,1999,33(11): 2561-2568
    [138]Kuo W G. Decolorizing dye wastewater with Fenton's reagent. Water Reseach, 1992,26(7):881-886
    [139]Kwon B G, Lee D S, Kang N, et al. Characteristics of p-chlorophenol oxidation by Fenton's reagent. Water Reseach,1999,33(9):2110-2118
    [140]张玲玲,李亚峰.Fenton氧化法处理废水的机理及应用.辽宁化工,2004,33(12):734-737
    [141]Koyama O, Kamagata Y, Nakamura K. Degradation of chlorinated aromatics by Fenton oxidation and methanogenic digester sludge. Water Reseach,1994,28(4): 895-899
    [142]Tang W Z, Huang C P.2,4-Dichlorophenol Oxidation Kinetics by Fenton's Reagent. Environmental Technology,1996,17(12):1371-1378
    [143]赵德明,史惠祥,汪大军.Fe-C微电解法+H202组合工艺处理对氯硝基苯废水.城市环境与城市生态,2002,15(1):32-34
    [144]国家环保总局.HJ:34112-2007.中华人民共和国环境保护行业标准-邻菲啰啉分光光度法测定亚铁(试行).北京:中国标准出版社,2007-08-26
    [145]谭明.微电解-Fenton试剂法预处理难生物降解工业废水的试验研究:[硕士学位论文].吉林:吉林大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700