人体腐蚀环境下TLM钛合金的微磨粒磨损研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工假体植入人体后,在人体内环境下受到腐蚀与磨损的作用,磨损所产生的颗粒小于10μm,属于微磨粒磨损的范畴。目前国内外对于人体植入材料在人体环境下的微磨粒磨损的研究尚处于起步阶段。
     本文以TLM钛合金为主要研究材料,以TAMZ钛合金作对比,通过测量极化曲线和时间电流曲线,研究了不同热处理状态的TLM以及TAMZ钛合金在模拟体液中的电化学腐蚀行为。在TE66微磨粒磨损试验机上系统地研究了钛合金在模拟人体体液中的微磨粒磨损行为。考察了各摩擦因素(浓度、载荷、速度、磨粒的种类、滑移距离和摩擦副等)对TLM钛合金和TAMZ钛合金微磨粒磨损的影响规律,对微磨粒磨损与腐蚀的交互作用进行了探讨,最后建立了材料磨损机制图、材料流失图及选材图。
     通过研究,得到如下主要结论:
     (1)TLM合金在不同模拟体液中腐蚀倾向由大到小依次为含有蛋白质的Hank's溶液、Hank's溶液和Ringer's溶液,且在Hank's溶液中的耐蚀性不如TAMZ钛合金的好。
     (2)随着料浆浓度、摩擦配副硬度增加和磨粒直径的增大,TLM和TAMZ钛合金磨损体积逐渐增大。随着速度增加,钛合金的磨损体积降低。在较低浓度时,磨损体积随着滑移距离的延长先增加后降低;较高浓度时,磨损体积随滑移距离延长而增加;在Hank's溶液中的磨损体积比蒸馏水中的要大。其中料浆浓度和载荷是影响材料磨损的关键因素。
     (3)在模拟人体关节运动摩擦学条件下,TLM和TAMZ钛合金均出现了二体磨损、混合磨损和三体磨损机制。不同磨损机制的出现与材料性能和试验条件有较大的相关性。一般随载荷增加,磨损机制由三体磨损过渡到混合磨损和二体磨损,而当滑行距离和料浆浓度增加时,磨损机制则从二体磨损向混合磨损和三体磨损过渡。钛合金在三体磨损下的磨损体积一般大于二体磨损下的磨损体积。
     (4)通过基于电化学技术的微磨粒磨损—腐蚀交互作用评价手段,对钛合金在模拟体液环境下的腐蚀磨损行为研究表明:钛合金植入磨损行为不但受到合金力学性能的影响,而且受到合金耐蚀性能的影响。从微观上讲磨损和腐蚀的交互作用是导致材料流失的主要原因,且磨损因素是交互作用的控制因素。
     (5)在材料流失率图中,出现了低、中、高流失率区域,并以中低流失率区域为主。中低流失率区域主要发生在中低浓度、中高载荷下,高流失率区域主要发生在高浓度、低载荷下。选材图中TLM钛合金的选择范围大于TAMZ钛合金,鉴于相同条件下TLM钛合金的耐磨性优于TAMZ钛合金,确定TLM钛合金为最佳选择。
When artificial prosthesis were implanted into human body, particles generated by reaction of corrosion and abrasion in human body environment were usually less than 10μm, which belonged to the scope of micro-abrasive wear. The domestic study on micro-scale abrasion wear of implanted materials in body internal environment was still in its starting period at present.
     Vitro electrochemical corrosion behavior in simulated human body fluids of TLM and TAMZ titanium alloys with different heat treatment state were studied through current polarization curve and time curve measurement experiments. Micro-abrasion wear behavior of TLM and TAMZ titanium alloys in simulated human body fluids were studied in this paper on TE66 Micro-Scale Abrasion Tester. The influence of different friction factors (slurry concentration, friction load, friction speed, abrasive type, friction sliding distance and friction pair, etc.) on TLM and TAMZ titanium alloys during micro-abrasive wear process were investigated. The interaction between electrochemical corrosion and micro-abrasive wear were discussed and finally the wear mechanism maps, wastage maps and materials selection maps were established. The mainly results were:
     (1) Among all different simulated body fluids to TLM alloy, Ringer's solution has the highest corrosion properties, the second was Hank's solution and the last was Hank's solution with protein. Corrosion property of TAMZ alloy was better than TLM in Hank's solution.
     (2) The wear volume of TLM and TAMZ alloys were increased with slurry concentration, hardness of friction pairs and diameter of abrasive grain. While wear volume lost of the titanium alloys were decreased when sliding velocity increased. When slurry concentration was low, wear volume lost was increased at first, and then decreased with sliding distance prolonged. When slurry concentration was higher, wear volume lost was increased as sliding distance increased. The wear volume lost of titanium alloys in distilled water was less than that in Hank's solution. The key factor which affected the wear properties of two titanium alloys were slurry concentration and load.
     (3) The two-body mechanism, three-body mechanism and mixed mechanism were found for TLM and TAMZ alloys under the tribological condition simulating the movement of joint. The different wear mechanism had great relevance with the properties of materials and the experiment conditions. As the load was increased, there was transition from three-body rolling abrasion to mixed abrasion or two-body grooving abrasion. With an increase of slurry concentration and sliding distance, there was a transition from two-body grooving wear mechanism to mixed mechanism or three-body rolling mechanism. The wear volume under the three-body wear mechanism was larger than two-body wear mechanism.
     (4) The corrosion-wear behavior of titanium alloys was investigated by corrosion interaction and micro-abrasive wear method based on electrochemical technology. The results showed that wear behavior of implanted used titanium alloys was affected not only by mechanical properties but also by resistance erosion properties of the alloys. The interaction between corrosion and abrasion was the main reason which caused thematerial loss, and abrasive was the control factor during interaction process.
     (5) In wastage maps, there were lower, middle and higher rate loss of the region, the higher rate region mainly occurred while concentration was higher and loading was lower. Considering from the wastage maps, TLM titanium alloy were better than TAMZ titanium alloys under the same conditions.
引文
[1]陈芳萍,刘昌胜.硬组织植入生物材料的研究进展[J].陶瓷学报,2004,25(4):31-32
    [2]魏向东.生物活性硬组织植入材料[J].科技开发动态,2004,3:31-32
    [3]王正平,叶贤富.生物材料的应用及进展[J].应用科技.2002.29(7):68-70
    [4]Zhang Y.Zhang M.Three dimensional macroporous calcium phosphate bioceramies with nested chitosan sponges for load-bearing bone unplants.J Biomed Mater Res,2002,61(1):1-8
    [5]王桂生,朱明.外科植入物用钛合金研究进展和标准化现状[J].稀有金属,2003,27(1):43-48
    [6]R.Banerjee,S.Nagb,H.L.Fraser.A novel combinatorial approach to the development of beta titanium alloys for orthopaedic implants[J].Materials Science and Engineering:C,2005,25(3):282-289
    [7]闫玉华,殷湘慧.人工关节的研究现状和发展趋势[J].生物骨科材料与临床研究,2004,1(4):39-43
    [8]甘洪全,王志强.骨科生物医用材料的研究进展[J].中国骨肿瘤骨病,2007,6(2):114-117
    [9]俞耀庭,王连永,王深琪.生物医学材料发展状况与对策[R].2002高新技术发展报告.北京:科学技术出版社,2003:52-57
    [10]王俊.生物医用复合材料研究现状及发展趋势[J].新材料产业,2007(3):50-53
    [11]王正辉,萧翼之.高分子生物材料的研究进展[J].高分子材料科学与工程,2005,21(5):19-22
    [12]施东辉,廖斌.心血管组织工程支架材料研究进展[J].中国心血管病研究杂志,2005,3(2):155-157
    [13]罗淼良,李明忠.蚕丝生物材料修复股骨缺损[J].国外丝绸,2007,(1):1-2,15
    [14]雷燕湘.聚乳酸技术与市场现状及发展前景[J].当代石油石化,2007,15(1):39-43
    [15]赵铭,郑启新.人工关节材料的研究进展[J].生物骨科材料与临床研究,2004,1(7):53-56
    [16]李俊杰,姚康德.组织工程用生物材料[J].大学化学,2007,22(2):1-6
    [17]于方丽,周永强等.羟基磷灰石生物材料的研究现状、制备及发展前景[J].陶瓷,2006(2):7-12
    [18]张启焕,齐志涛等.β-磷酸三钙陶瓷的制备及应用[J].佛山陶瓷,2004,14(11):4-7
    [19]医用碳素材料[EB/OL].http://www.zhishie.com/baike/kexue/276/203195.htm
    [20]张新风,张志宏.无机诱导成骨材料的研究进展[J].现代生物医学进展,2007,7(5):777-779
    [21]M.P.Ginebra,F.C.M.Driessens,J.A.Planell.Effect of the particle size on the micro and nano-structural features of a calcium phosphate cement:a kinetic analysis[J].Biomaterials,2004,25(17):3453-3462
    [22]王梓壬,陈明晃等.羟基磷灰石骨水泥人工骨及其性能研究[J].福建医药杂志,2003,25(1):120-122
    [23]吕浩,郑启新.可注射性生物降解材料PPF修复骨缺损的研究进展[J].国际生物医学工程杂志,2007,30(2):101-104
    [24]张敏,汪宏斌,全仁夫等.羟基磷灰石-二氧化锆生物复合材料的制备及其生物相容性[J].复合材料学报,2006,23(2):115-122
    [25]曹阳,刘晓荣,汝玲等.纳米羟基磷灰石/聚合物复合生物材料的制备方法研究进展[J].化工时刊,2007,21(2):37-39
    [26]李哲,李佐臣.钛基生物医用复合材料发展现状与进展[J].钛工业进展,2004,21(5):16-18
    [27]常云峰,周晓蓉,邓振华等.人体植入物、移植物损害后人体损伤程度鉴定[J].法律与医学杂志,2005,12(3):220
    [28]顾汉卿,徐国风.生物医学材料学[M].天津:天津科技翻译出版公司
    [29]何宝明.生物医用钛及其合金材料的开发应用进展、市场状况及问题分析[J].新材料产业,2003(7):23-28
    [30]浦素云,金属植入材料及其腐蚀[M],北京航空航天大学出版社,1990
    [31]张宁,强颖怀,张春红等.氮离子注入生物医用金属材料的表面性能研究[J].热加工工艺,2007,36(4):52-55
    [32]王国慧,朱晒红,李益民等.金属粉末注射成型制备316L不锈钢植入材料[J].生物医学工程学杂志,2007,24(2):329-331
    [33]李炎,祝要民,张兴渊等.生物用无镍奥氏体不锈钢的塑性变形以及对耐腐蚀性能的影响[J].河南科技大学学报(自然科学版),2007,28(2):1-3
    [34]孙敬,崔振铎,朱胜利等.生物医用植入钛及钛合金的力学性能研究及进展[J].金属热处理,2005,30(9):59-62
    [35]黄晶晶,杨柯.镁合金的生物医用研究[J].材料导报,2006,20(4):67-69
    [36]吴婕,吴凤鸣.新型口腔生物医用材料-镁及镁合金[J].口腔医学,2007,27(3):159-161
    [37]Mark P Staiger,Alexis M Pietak,Jerawala Huadmai,etal.Magnesium and its alloys as orthopedic biomaterials:a review[J].Biomaterial,2006,27:1013
    [38]宋光铃,宋诗哲.镁在人体模拟液中的腐蚀行为[J].物理化学学报,2006,22(10):1222-1226
    [39]耿芳,谭丽丽,张炳春等.多孔镁作为新型骨组织工程材料的研究探索[J].材料导报,2007,21(5):76-79
    [40]C.莱茵斯,M.皮特尔斯编,陈振华等译.钛与钛合金.北京:化学工业出版社[M],2005:2-3,
    [41]张喜燕,赵永庆,白晨光编著.钛合金及应用.北京:化学工业出版社[M],2005:21-24
    [42]成炜,陈吉华,马楚凡等.纯钛种植体表面不同化学组成微弧氧化膜的结构与成分分析.中国美容医学,2007,16(1):107-110
    [43]Chen Fei,ZhangYuefei,Liu Yu et al.Study on the Tribological Behavior of the Arc-added Glow Discharge PlasmaNon-hydrogen Carburization On Titanium Alloy Surfaces[J].Transactions of Materials and Heat Treatment Proceedings of The 14th Fifths Congress,2004,25(5):401-404
    [44]Mitsuo Niinomi,Toshikazu Akahori,Tsutomu Takeuchi et al.Mechanical properties and cyto-toxicity of new beta type titanium alloy with low melting points for dental applications[J].Materials Science and Engineering:C,2005,25(3):417-425
    [45]Sergio Luiz de Assis,Stephan Wolynec,Isolda Costa.Corrosion characterization of titanium alloys by electrochemical techniques[J].Electrochimica Acta.2006,51(8/9):1815-1819
    [46]于振涛,周廉,王克光.生物医用β型钛合金的设计与开发[J].稀有金属快报,2004,23(1):5-10
    [47]梁锐英,李长义,张连云.齿科用钛合金的研究进展[J].国外医学口腔医学分册,2006,33(1):45-47
    [48]付艳艳,于振涛,周廉等.显微组织对Ti-13Nb-13Zr医用钛合金力学性能的影响[J].稀有金属材料与工程,2005,34(6):882-886
    [49]曾立英.医用低刚度β型钛合金的研发[J].稀有金属快报,2003,6:14-16
    [50]于振涛,周廉,罗丽娟等.新型近β型医用钛合金TLM的加工、组织与性能[J].稀有金 属,2006,30(2):226-230
    [51]罗丽娟,于振涛,周廉.一种生物医用近β钛合金的力学性能和腐蚀性能研究[J].稀有金属,2005,29(2):255-257
    [52]孙荣禄,牛伟,王成扬.钛合金表面激光熔覆TiN-Ni基合金复合涂层的组织和磨损性能[J].稀有金属材料与工程,2007,36(1):8-11
    [53]潘育松,熊党生,马如银.聚乙烯醇水凝胶/钛合金摩擦磨损特性的正交试验研究[J].摩擦学学报,2007,27(2):133-137
    [54]张文光,王成焘,刘维民.钛合金表面改性层的摩擦学性能[J].摩擦学报,2003,23(2):92-95
    [55]K.L.Dahm,P.A.Deamley.Abrasion response and abrasion-corrosion interactions for a coated biomedical stainless steel[J],Wear,2005,259:933-942
    [56]黄伟九,李兆峰.医用钛合金表面改性研究进展[J].材料导报,2006,20:369-373
    [57]李秀燕,范爱兰,唐宾等.Ti6Al4V表面双层辉光离子渗Mo及其摩擦学性能的研究[J].摩擦学学报,2003,23(2):108-111
    [58]秦林,唐宾,赵晋香等.钛合金Ti6Al4V表面渗钼层的摩擦磨损性能[J].中国有色金属学报,2003,13(3):570-573
    [59]秦林,唐宾,刘道新等.钛合金Ti6Al4V表面Mo-N改性层的摩擦性能研究[J].稀有金属材料与工程,2005,34(9):1465-1468
    [60]崔振铎,朱胜利,杨贤金.Ti6Al4V合金激光原位制备TiN枝晶增强梯度复合表面层[J].功能材料,2004,35(6):771-773
    [61]张松,张春华,王强.NiTi形状记忆合金激光气体氮化层组织及磨损性能[J].稀有金属材料与工程,2005,34(6):986-989
    [62]V.Imbeni,C.Martini,D.Prandstraller.Preliminary study of micro-scale abrasive wear of a NiTi shape memory alloy[J].wear,2003,254:1299-1306
    [63]李兆峰,黄伟九,刘明.生物医用钛合金TiN涂层微磨粒磨损及耐蚀性初步研究[J].润滑与密封,2007,32(2):63-65
    [64]郑玉峰,赵连城.生物医用镍钛合金[M].北京:科学出版社,2004:133
    [65]孙秋霞.材料腐蚀与防护[M].北京:冶金工业出版社,2001:101-102
    [66]梁成浩,郭亮,陈婉.Hank's人工模拟体液中离子注氮对4种植入金属材料腐蚀行为的影响[J].稀有金属材料与工程.2002,31(4):274-278
    [67]胡永峰,朱雪梅,朱小鹏等.强流脉冲离子束辐照合金Ti6Al4V的耐蚀性[J].大连铁道学院学报.2002,23(3):84-87
    [68]C.Blanco-Pinzon,Z.Liu,K.Voisey et al.Excimer laser surface alloying of titanium with nickel and palladium for increased corrosion resistance[J].Corrosion Science,2005,47(5):1251-1269
    [69]R.W.Y.Poon,K.W.K.Yeung,X.Y.Liu et al.Carbon plasma immersion ion implantation of nickel-titanium shape memory alloys[J].Biomaterials,2005,26(15):2265-2272
    [70]杜志惠,崔振铎,朱胜利等.钛合金阳极氧化膜在Hank's溶液中的腐蚀行为[J].材料热处理学报.2004,25(6):101-104
    [71]M.F.Lopez,J.A.Jimenez,A.Gutierrez.Corrosion study of surface-modified vanadium-free titanium alloys[J].Electrochimica Acta,2003,48(10):1395-1401
    [72]Sergio Luiz de Assis,Stephan Wolynec b,Isolda Costa.Corrosion characterization of titanium alloys by electrochemical techniques[J].Electrochimica Acta,2006.51(8-9):1815-1819
    [73]李佐臣,周廉,李军等.外科植入物用第三代新型医用钛合金研究[J].钛工业进 展,2003,20(5):46-48
    [74]庞佑霞,黄伟九,谭援强等.工程摩擦学基础[M].北京:煤炭工业出版社,2004:39-40
    [75]I.M.Hutchings.Friction,lubrication and wear of artificial joints[M].Professional Engineering Publishing Limited,2003:10,43
    [76]R.I.Trezona,I.M.Hutchings.Three-body abrasive wear testing of soft materials[J].Wear,1999,233-235:209-221
    [77]J.C.A.Batista,A.Matthews et al.Micro-abrasive wear of PVD duplex and single-layered coatings[J].Surface and Coatings Technology,2001,142-144:1137-1143
    [78]J.C.A.Batista,M.C.Joseph.Micro-abrasion wear testing of PVD TiN coatings on untreated and plasma nitrided AISI H 13 steel[J].Wear,2001,249(10-11):971-979
    [79]J.C.A Batista,C.Godoy.Micro-scale abrasive wear testing of duplex and non-duplex (single-layered) PVD(Ti,Al)N,TiN and Cr-N coatings[J].Tribology International.2002,35(6):363-372
    [80]J.C.A.Batista,C.Godoy et al.An approach to elucidate the different response of PVD coatings in different tribological tests[J].Surface and Coatings Technology,2003,174-175:891-898
    [81]K.Bose,R.J.K.Wood.Influence of load and speed on rolling micro-abrasion of CVD diamond and other hard coatings[J].Diamond and Related Materials,2003,12:753-756
    [82]K.Adachi,I.M.Hutchings.Wear-mode mapping for the micro-scale abrasion test[J].Wear,2003,255(1-6):23-29
    [83]J.Cawley,J.E.P.Metcalf et al.A tribological study of cobalt chromium molybdenum alloys used in metal-on-metal resurfacing hip arthroplasty[J].Wear,2003,255(7-12):999-1006
    [84]R.Colaco,R.Vilar.Abrasive wear of metallic matrix reinforced materials[J].Wear,2003,255:643-650
    [85]V.Imbeni,C.Martini,E.Lanzoni et al.Tribological behavior of multi-layered PVD nitride coatings [J].Wear,2001,251(1-12):997-1002
    [86]V.Imbeni,C.Martini,D.Prandstraller et al.Preliminary study of micro-scale abrasive wear of a NiTi shape memory alloy[J].Wear,2003,254(12):1299-1306
    [87]K.Adachi,I.M.Hutchings.Sensitivity of wear rates in the micro-scale abrasion test to test conditions and material hardness[J].Wear,2005,258:318-321
    [88]Y.Kusano,I.M.Hutchings.Sources of variability in the free-ball micro-scale abrasion test[J].Wear,2005,258:313-317
    [89]M.G.Gee,A.Gant,I.Hutchings et al.Progress towards standardisation of ball cratering[J].Wear,2003,255(1-6):1-13
    [90]M.G.Gee,A.J.Gant,I.M.Hutchings et al.Results from an interlaborat-ory exercise to validate the micro-scale abrasion test[J].Wear,2005,259(1-6):27-35
    [91]J.D.Gates.Two-body and three-body abrasion:A critical discussion[J].Wear,1998,214(1):139-146.
    [92]K.Adachi,I.M.Hutchings.Wear-mode mapping for the micro-scale abrasion test[J].Wear,2003,255(1-6):23-29
    [93]M.M.Stacka,H.Jawan,M.T.Mathew.On the construction of micro-abrasion maps for a steel/polymer couple in corrosive environments[J].Tribology Internationa,2005,1 38:848-856
    [94]C.K.N.Oliveira,R.M.Mu(?)oz Riofano,and L.C.Casteletti.Micro-abrasive wear test of niobium carbide layers produced on AISI H13 and M2 steels[J].Surface and Coatings Technology,2006,200(16-17):5140-5144
    [95]R.C.Cozza,D.K.Tanaka,R.M.Souza.Micro-abrasive wear of DC and pulsed DC titanium nitride thin films with different levels of film residual stresses[J].Surface and Coatings Technology,2006,201(7):4242-4246
    [96]R.C.Cozza,J.D.B.de Mello,D.K.Tanaka,et al.Relationship between test severity and wear mode transition in micro-abrasive wear tests[J].Wear,2007,263(1-6):111-116
    [97]P.H.Shipway,J.J.Hogg.Wear of bulk ceramics in micro-scale abrasion-The role of abrasive shape and hardness and its relevance to testing of ceramic coatings[J].Wear,2007,263(7-12):887-895
    [98]姜晓霞,李诗卓,李曙.金属的腐蚀磨损[M].北京:化学工业出版社,2003:1
    [99]王吉会,姜晓霞,李曙等.腐蚀磨损过程中材料的环境脆性[J].材料研究学报,2003,17(5):449-458
    [100]王安东,戴起勋.生物医用材料316L不锈钢的磨损腐蚀特性研究[J].金属热处理,2005,30(3):33-36
    [101]S.Das,Y.L.Saraswathi,D.P.Mondal.Erosive-corrosive wear of aluminum alloy composites:Influence of slurry composition and speed[J].Wear,2006,261(2):180-190
    [102]周广宏,戴起勋.13Cr-24Mn-0.44N奥氏体不锈钢在体液中腐蚀磨损特性研究[J].润滑与密封,2006,(1):100-101
    [103]王勇,任平弟,朱曼昊等.纯钛在蒸馏水和Saline溶液中的微动腐蚀行为[J].上海交通大学学报,2005,39(9):1437-1440
    [104]M.R.Bateni,J.A.Szpunar,X.Wang et al.Wear and corrosion wear of medium carbon steel and 304stainless steel[J].Wear,2006,260(1-2):116-122
    [105]Bertram Mallia and Peter A.Dearnley.the corrosion-wear response of Cr-Ti coatings[J].Wear,2007,263(1-6):679-690
    [106]杨雪梅.Cu-Cr合金在NaCl+NH_3溶液中腐蚀磨损行为[J].上海有色金属,2004,25(3):106-108
    [107]李金波,舒欣欣,郑茂盛.N80油套管在油田采出液中的腐蚀与磨损协同作用研究[J].石油工程建设,2007,33(2):26-30
    [108]A.Iwabuchi,J.W.Lee and M.Uchidate.Synergistic effect of fretting wear and sliding wear of Co-alloy and Ti-alloy in Hanks' solution[J].Wear,2007,263(1-6):492-500
    [109]Jun Komotori,Noriyuki Hisamori and Yosuke Ohmori.The corrosion/wear mechanisms of Ti-6Al-4V alloy for different scratching rates[J].Wear,2007,263(1-6):412-418
    [110]Xi-Jin Li,Guo-An Cheng,Wen-Bin Xue,Rui-Ting Zheng and Yun-Jun Cheng.Wear and corrosion resistant coatings formed by microarc oxidation on TiAl alloy[J].Materials Chemistry and Physics.2008,107(1):148-152
    [111]V.Imbeni,C.Martini,D.Prandstraller et al.Preliminary study of micro-scale abrasive wear of a NiTi shape memory alloy[J].WEAR,2003,254:1299-1306
    [112]P.E.S innett-Jones,J.A.Wharton,R.J.K.Wood.Micro-abrasion-corrosion of a CoCrMo alloy in simulated artificial hip joint environments.Wear,2005,259:898-909
    [113]张玉梅,王勤涛,赵铱民等.新型医用Ti75,TiZr合金的生物腐蚀行为研究[J].稀有金属材料与工程,2004,33(1):19-22
    [114]李佐臣,李军,周廉等.新型医用钛合金TZNT的耐蚀性[J].稀有金属快报,2004,23(9): 31-33
    [115]田甜,肖秀峰,刘榕芳.电化学阳极氧化自组织TiO_2纳米管阵列的研究[J].传感技术学报,2006,19(5):2310-2313
    [116]李兆峰,黄伟九,刘明.人体用金属植入材料的研究进展[J].重庆工学院学报,2006,20(5):42-46
    [117]牟战旗,梁成浩.钛生物医学材料耐蚀性能研究进展[J].腐蚀科学与防护技术,1998,10(2):103-108
    [118]郑自芹,黄伟九,王国.医用TZNT钛合金微磨粒磨损研究[J].润滑与密封,2008,33(2):47-49
    [119]郑修麟.材料力学性能[M],西安:西北工业大学出版社,2004,148
    [120]黄智文.谈谈磨粒磨损[J].表面技术,2000,29(4):34-36
    [121]梁小平,杨正方,赵世海等.磨粒对ADZ复合陶瓷材料磨损性能的影响[J].润滑与密封,2004,3:18-20
    [122]秦林,唐宾,赵晋香等.钛合金Ti6AI4V表面渗钼层的摩擦磨损性能[J].中国有色金属学报,2003,13(3):570-573
    [123]黎军.SiC表面处理对Si_3N_4-SiC材料显微结构的影响[J].佛山陶瓷,2004,10:7-8
    [124]赵国鹏,于欣伟,吴荫顺等.腐蚀磨损协同作用率的研究[J].摩擦学学报,1998,18(2):157-161
    [125]J.O.Bello,R.J.K.Wood,J.A.Wharton.Synergistic effects of micro-abrasion-corrosion of UNS S30403,S31603 and S32760 stainless steels[J].Wear,2007,263:149-159
    [126]黄伟九,刘明,李兆峰.一种腐蚀与磨损交互作用动态测量装置[P].中国专利CN200620111395.3,2007-09-26
    [127]Liang Chenghao,Guo Haixia,Zheng Runfen.The Effect of Fibrinogen on the Corrosion Behavior of CoCrNi Alloys in PBS Simulated Body Fluid[J].RARE METAL MATERIALS AND ENGINEERING,2006,35(4):528-532

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700