用户名: 密码: 验证码:
玉米苗期耐渍相关性状的QTL定位和功能标记的开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
渍害是影响作物生长、生物学产量以及籽粒产量的重要的非生物逆境胁迫因子之一。世界范围内农业生产因受其影响每年造成大量的减产;随着全球气候的不断变化,渍水胁迫日渐频发,因此培育具有高产潜力的耐渍玉米新品种也成为玉米主要育种目标之一。本研究在使用耐渍性自交系(HZ32)和敏感性自交系(K12)构建含有266个单株的高代回交作图群体(AB-QTL)的基础上,利用混合线性模型和完备区间作图的方法,重定位玉米苗期耐渍性相关的数量性状位点(QTLs),相关性状主要包括株高(PH)、根长(RL)、茎鲜重(SFW)、根鲜重(RFW)、根干重(RDW)、茎干重(SDW)、总干重(TDW)以及各性状相应的耐渍系数。另一方面,在前人鉴定的玉米苗期耐渍性相关的候选基因的基础上,应用SSR标记锚定的区域开发与耐渍性主效QTL共定位的功能标记。主要结果总结如下:
     1.七个耐渍性相关性状的正态性检验表明,在两个环境下,除渍害胁迫条件下SDW和RDW两性状外,BC2F2:3家系各性状频率分布均呈现正态分布。各性状偏度和峰度均小于1.0,表明各性状均表现为数量遗传效应。
     2.在两个试验环境下,大多数性状的广义遗传力(矿)较高,茎干重和总干重耐渍系数遗传力最低为0.62,渍害胁迫下根鲜重遗传力最高为0.83。较高的遗传力意味着各性状大部分的表型变异都是受遗传控制,并且能够通过选择育种程序得以有效地改良。
     3.在两个实验环境下,分别计算七个苗期性状在渍害胁迫、正常条件和耐渍系数的成对相关系数表明:在各实验环境下,根干重、根鲜重和茎干重以及它们的耐渍系数之间具有显著的相关性,而根长和根干重之间具有较弱的相关性。
     4.利用12个功能性分子标记(3个来源于EST标记和9个来源于miRNA标记)和155对多态性的SSR标记,构建了一张新的连锁图,连锁图谱总长1797.6cM,标记间平均间距为10.8cM。各标记在连锁图谱上的线性顺序与IBM2008参考图谱基本一致。
     5.EXP.1和EXP.2各定位到53和68个QTLs。其中,水分胁迫和正常条件下分别定位到56和34个QTLs,耐渍系数定位到31个QTLs。这些QTL分布在玉米的10条染色体上,LOD值变幅为从2.58到14.74,单个QTL位点可解释的表型变异为3.77到31.44%。其中30个主效QTL分别被定位到第1,2,3,4,6,7和9染色体上,单个QTL解释表型变异至少为15%,这些QTLs主要与根长(RL),株高(PH),茎干重(SDW),根干重(RDW),总干重(TDW)和根鲜重(RFW)等性状相关
     6.定位EST和miRNA标记表明,10个候选基因与已经鉴定的QTLs分别共定位于染色体1、2、4、6、7和9上,它们很可能是玉米耐渍性重要的候选基因。
     本研究结果表明前人定位到的主效QTL能够被AB-QTL重定位,并且能够在回交群体中选择用于精细定位。主效QTL与功能性标记的共定位也表明一些miRNA可能调控与耐渍性相关的代谢通路和直接相应耐渍胁迫。虽然这些基因的功能需要进一步通过转基因和关联分析确认,但是本研究为发掘和定位渍害响应基因提供了新的策略。这些结果为玉米苗期渍害响应的分子机理提供了新的视角,并为分子标记辅助选择提供了有用的分子标记。
Waterlogging stress, negatively affect plant growth, biomass production, and potential yield. This stress affects agriculture in many countries, causing multi-million dollar losses for farmers and the agriculture industry and contributing to poverty worldwide. Incidence of waterlogging stress is increasing due to the effects of climate change. The development of waterlogging-tolerant varieties with high yield potential should be one of the main goals of the maize breeding program. Our study aimed to remap the quantitative trait loci (QTLs) associated with waterlogging tolerance related traits, including plant height (PH), root length (RL), shoot fresh weight (SFW), root fresh weight (RFW), root dry weight (RDW), shoot dry weight (SDW), total dry weight (TDW) and their waterlogging tolerance coefficient (WTC) during maize seedling stage by using advanced backcross QTL (AB-QTL) analysis approach in a mixed linear model and inclusive composite interval mapping method under waterlogging and control conditions. On the other hand, based on earlier studies results of candidate genes detected associated with waterlogging tolerance at the seeding stage, functional markers co-localized with major waterlogging tolerant QTLs were developed using the simple sequence repeat markers flanking target regions. A266BC2F2population derived from a cross between a waterlogging-tolerant'HZ32'and a susceptible 'K12' was used. Results summary are as follows:
     1. Normality tests performed on the seven waterlogging-related traits, showed that the frequency distributions of the BC2F2:3families were normal over two seasons except of SDW and RDW under waterlogging stress. Both skew and kurtosis values of each trait were<1.0, suggesting that these traits were quantitative genetic effects.
     2. The broad sense heritability's (h2) of the various phenotypic traits were relatively high across the two pot experiments, ranging from0.62for the WTC of shoot dry weight and total dry weight to0.83for root fresh weight under waterlogging stress. The high h2implied that most of the phenotypic variance for each trait was genetic and could be effectively improved by selective breeding programs.
     3. Correlation coefficients between pairs of all seven seedling traits were calculated under waterlogged, normal conditions and their WTC in the two seasons separately. Highly significant correlations were observed in both Experiments, for root dry weight, root fresh weight, shoot dry weight and their WTC. While, a weak relationship was observed between root length and root dry weight.
     4. A new linkage map constructed for the BC2F2population, consisting of three ESTs, nine miRNA and155polymorphic SSR markers, spanned1797.6cM in length across a maize genome, with an average distance of10.8cM between adjacent markers. The linear order of markers on the linkage map was a good agreement with IBM2008Neighbors.
     5. A total of fifty-three and sixty-eight QTLs were detected in EXP.1and EXP.2, separately. Of these,56and34putative QTLs were detected under waterlogging treatment and control conditions, respectively.31putative QTLs were detected for waterlogging treatment coefficient. These QTLs were distributed over all10chromosomes, and had LOD scores ranging from2.58to14.74, explaining3.77to31.44%phenotypic variation in the individual traits. Out of which, thirty major QTLs individually accounted for more than15%of the phenotypic variation; they were governed traits associated with RL, PH, SDW, RDW, TDW and RFW were mapped in the different genomic region on chromosomes1,2,3,4,6,7and9.
     6. In order to provide additional evidence regarding the role of corresponding genes in waterlogging tolerance, mapping of Expressed Sequence Tags (EST) markers and micro RNAs were conducted. Ten candidate genes were observed to co-localize with the identified QTLs on chromosomes1,2,4,6,7and9, and may important candidate genes for waterlogging tolerance.
     The study results reveal that the former major QTL remapped by AB-QTL, could be selected in backcross population for fine mapping of waterlogging tolerance. The co-localization of major QTL and developmental markers indicated that some miRNA may be contributed to waterlogging tolerance pathways and directly response for waterlogging related traits. Although the functions of these genes need to be confirmed deeply through transgenic and association analysis, the strategy used in the current study is a good starting point for the discovery and mapping of waterlogging-responsive genes. The results may provide new insight into the molecular basis of the waterlogging response of seedlings stage and useful markers for MAS.
引文
1. Abler SB, Edwards MD, Stuber CW. Isoenzymatic identification of quantitative trait loci in crosses of elite maize inbreds. Crop Sci,1991,31:267-274.
    2. Ahmed F, Rafii MY, Ismail MR, Juraimi AS, Rahim HA, Asfaliza R, Latif MA. Waterlogging Tolerance of Crops:Breeding, Mechanism of Tolerance, Molecular Approaches, and Future Prospects. BioMed Research International,2013, doi:10.1155/2013/963525.
    3. Alam I, Lee DG, Kim KH, Park CH, Sharmin SA, Lee H, Oh KW, Yun BW, Lee BH. Proteome analysis of soybean roots under waterlogging stress at an early vegetative stage. Journal of Bioscience,2010,35,49-62.
    4. Alamgir H and Uddin SN. Mechanisms of waterlogging tolerance in wheat: morphological and metabolic adaptations under hypoxia or anoxia. Australian Journal of Crop Science,2011,9:1094-1110.
    5. Albrecht G, Mustroph A. Localization of sucrose synthase in wheat roots:increased in situ activity of sucrose synthase correlates with cell wall thickening by cellulose deposition under hypoxia. Planta,2003,217:252-260.
    6. Ali ML, Pathan MS, Zhang J, Bai G, Sarkarung S, Nguyen HT. Mapping QTLs for root traits in a recombinant inbred population from two indicia ecotypes in rice. Theoretical and Applied Genetics,2000,101:156-166.
    7. Andersen JR, Ubberstedt TL. Functional markers in plants. Trends Plant Sci.,2003,8: 554-560.
    8. Anjos e Silva S D dos, Sereno MJC de M, Lemons e Silva CF, Oliveira AC de, Barbosa Neto JF. Genetic parameters and QTL for tolerance to flooded soils in maize. Crop Breed Appl Biotechnol,2005,5:287-293.
    9. Anjos e Silva SD dos, Sereno MJC de M, Lemons e Silva CF, Barbosa Neto JF. Combining ability of maize genotypes for flooding tolerance. Ciencia Rural,2006, 36:391-396.
    10. Anonymous. Studies on physio-genetic mechanism of excess soil moisture tolerance in maize.2003, National Agricultural Technology Project, Department of Agricultural Research and Education:Indian Council of Agricultural Research (India) Wisard Project Information.
    11. Areshchenkova T, Ganal MW. Comparative analysis of polymorphism and chromosomal location of tomato microsatellite markers isolated from different sources. Theor Appl Genet,2002,104:229-235.
    12. Armstrong J, Armstrong W. Phragmites:a preliminary study of soil oxidizing sites and internal gas transport pathways, New Phytologist,1988,108:373-382.
    13. Ashraf M, Rehman H. Interactive effects of nitrate and long term waterlogging on growth, water relation and gaseous exchange properties of maize (Zea mays L.). Plant Sci,1999,144:35-43.
    14. Austin DF, Lee M. Comparative mapping in F2=3 and F6:7 generations of quantitative trait loci for grain yield and yield components in maize. Theor Appl Genet.,1996, 92:817-826.
    15. Austin DF, Lee M. Detection of quantitative trait loci for grain yield and yield components in maize across generations in stress and non-stress environments. Crop Sci.,1998,38:1296-1308.
    16. Bacanamwo M, Purcell LC. Soybean root morphological and anatomical traits associated with acclimation to flooding, Crop Science,1999,39:143-149.
    17. Bailey-Serres J, Chang R. Sensing and signalling in response to oxygen deprivation in plants and other organisms. Ann Bot.,2005,96:507-518.
    18. Bailey-Serres J, Voesenek L. Flooding stress:acclimations and genetic diversity. Annu Rev Plant Biol,2008,59:313-339.
    19. Balram M, Smriti G, Trilochan M, Rajender P, Nagarajan M, Vinod KK, Salwandir SA, Kumble VP, Nagendra KS, Ashok KS. QTL analysis of novel genomic regions associated with yield and yield related traits in new plant type based recombinant inbred lines of rice (Oryza sativa L.) BMC Plant Biology,2012,12:137 doi: 10.1186/1471-2229-12-137.
    20. Baxter-Burrell A, Chang R, Springer P, Bailey-Serres J. Gene and enhancer trap transposable elements reveal oxygen deprivation-regulated genes and their complex patterns of expr ession in Arabidopsis. Annals of Botany,2003,91:129-141.
    21. Bernacchi D, Beck Bunn T, Emmatty D, Eshed Y, Inai S, Lopez J, Petiard V, Sayama H, Uhlig J, Zamir D, Tanksley S. Advanced backcross QTL analysis of tomato. Ⅱ. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L. pimpinellifolium. Theor Appl Genet,1998b,97:170-180.
    22. Bemacchi D, Beck Bunn T, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley S. Advanced backcross QTL analysis in tomato. I. Identification of QTLs for traits of agronomic importance from. Lycopersicon hirsutum. Theor Appl Genet,1998a, 97:381-397.
    23. Bonnet E, Van de Peer Y, Rouz P. The small RNA world of plants. New Phytologist, 2006,171:451-468.
    24. Boru G, van Ginkel M, Kronstad WE, Boersma L. Expression and inheritance of tolerance to waterlogging stress in wheat Euphytica,2001,117:91-98.
    25. Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms Am. J. Hum. Genet,1980, 32:314-331.
    26. Bozhko M, Riegel R, Schubert R, Muller-Starck GA. A cyclophilin gene marker confirming geographical differ-entiation of Norway spruce populations and indicating viability response on excess soil-born salinit. Mol Ecol,2003,12:3147-3155.
    27. Bradford KJN, Yang SF. Xylem transport of 1-aminocyclopropane-l-carboxylic acid, an ethylene precursor, in waterlogged tomato plants," Plant Physiology,1980,65: 322-326.
    28. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O. Widespread translational inhibition by plant miRNAs and siRNAs. Science,2008,320:1185-1190.
    29. Brookes G, Barfoot, P. Global Impact of Biotech Crops:Socio-Economic and Environmental Effects in the First Ten Years of Commercial Use. Ag BioForum, 2006,9:139-151.
    30. Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, Page T, Pink D: The molecular analysis of plant senescence-a genomics approach. Plant Biotechnol J.,2003,1:3-22.
    31. Burgos M, Messmer M, Stamp P, Schmid J. Flooding tolerance of spelt (Triticum spelta L.) compared to wheat (Triticum aestivum L.) a physiological and genetic approach. Euphytica,2001,122:287-295.
    32. Cai W, Morishima H. QTL clusters reflect character associations in wild and cultivated rice. Theoretical and Applied Genetics,2002,104:1217-1228.
    33. Chen J, Xu L, Cai Y, Xu J. QTL mapping of phosphorus efficiency and relative biologic characteristics in maize (Zea maysL.) at two sites. Plant Soil,2008,313:251-266.
    34. Chen M, Presting G, Barbazuk W, Goicoechea J, Blackmon B, Fang G, Kim H, et al. An integrated physical and genetic map of the rice genome. Plant Cell,2002,14:537-545.
    35. Collaku A, Harrison SA:Heritability of waterlogging tolerance in wheat. Crop Sci., 2005,45:722-727.
    36. Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK:An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement:The basic concepts. Euphytica,2005,142:169-196.
    37. Colmer TD, Voesenek LACJ. Flooding tolerance:suites of plant traits in variable environments. Funct Plant Biol,2009,36:665-681.
    38. Cornelious B, Chen P, Chen Y, De Leon N, Shannon J, Wang D. Identification of QTLs underlying waterlogging tolerance in soybean. Mol Breed,2005,16:103-112.
    39. Cornelious B, Chen P, Hou A, Shi A, Shannon J. Yield potential and waterlogging tolerance of selected near-isogenic lines and recombinant inbred lines from two southern soybean populations. J Crop Improv.,2006,16:97-111.
    40. Delourme R, Eber F. Linkage between an isozymemarker and a restorer gene in radish cytoplasmic male sterility of rapeseed (Brassica napus L.). Theor Appl Genet, 1992,85:222-228.
    41. Dennis E S, Dolferus R, Ellis M, Rahman M, Wu Y, Hoeren F U, Grover A, Ismond K P, Good A G, Peacock W J. Molecular strategies for improving waterlogging tolerance in plants. J Exp Bot.,2000,51:89-97.
    42. Doerge RW, Zeng ZB, Weir BS. Statisticalissues in the search for genes affecting quantitative traits in experimental populations. Statistical Science,1997,12:195-219.
    43. Falconer DS, Mackay T. Introduction to Quantitative Genetics,1996.
    44. Food and Agriculture Organization of the United Nations. Maize in Human Nutrition. 2013 Available from (http://www.fao.org/docrep).
    45. Fukao T, Harris T, Bailey-Serres J. Evolutionary analysis of the subl gene cluster that confers submergence tolerance to domesticated rice. Ann Bot,2009,103:143-150.
    46. Fukao T, Xu KN, Ronald PC, Bailey-Serres J. A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submer-gence in rice. Plant Cell,2006,18:2021-2034.
    47'. Fulton TM, Beck Bunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD. QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor Appl Genet.,1997,95:881-894.
    48. Ghassemi F, Jakeman AJ, Nix HA. Salinisation of Land and Water Resources, Human Causes, Extent, Management and Case Studies. University of New South Wales Press, Sydney,1995. pp.1-526.
    49. Gibberd MR, Gray JD, Cocks PS, Colmer TD. Waterlogging tolerance among a divers range ofTrifoliumaccessions is related to root porosity, lateral root formation and 'aerotropic rooting'. Ann Bot,2001,88:579-589.
    50. Githiri S, Watanabe S, Harada K, Takahashi R. QTL analysis of flooding tolerance in soybean at an early vegetative growth stage. Plant Breed,2006,125:613-618.
    51. Greenway H, Armstrong W, Colmer TD. Conditions leading to high CO2 (>5 kPa) in waterlogged-flooded soils and possible effects on root growth and metabolism. Annals of Botany,2006,98:9-32.
    52. Greenway H, Gibbs J, Mechanisms of anoxia tolerance in plants. Ⅱ. Energy requirements for maintenance and energy distribution to essential processes. Fund Plant Biol,2003,30:999-1036.
    53. Gregersen PK, Brehrens TW. Fine mapping them phenotype in autoimmune disease: the promise and pitfalls of DNA microarray technologies. Genes and Immunity,2003 4:175-176.
    54. GuangHeng Z, DaLi Z, ShiKai H, Yan S, LaTie A, LongBiao G, Qian Q. QTL analysis of traits concerned submergence tolerance at seedling stage in rice (Oryza sativa L.). Acta Agron Sin,2006,32:1280-1286.
    55. Gunawardena AH, Pearce DM, Jackson MB, Hawes CR, Evans DE. "Characterisation of programmed cell death during aerenchyma formation induced by ethylene or hypoxia in roots of maize (Zea mays L.)," Planta,2001,212:205-214.
    56. Guo J, Su G, Zhang J, Wang G. Genetic analysis and QTL mapping of maize yield and associate agronomic traits under semi-arid land condition. African Journal of Biotechnology,2008,7:1829-1838.
    57. Gupta M, Chourey PS, Burr B, Still PE. cDNAs of two nonallelic sucrose synthase genes in maize:cloning, expression, characterization and molecular mapping of the sucrose synthase-2 gene. Plant Molecular Biology,1988,10:215-224.
    58. Gupta PK, Rustgi S, Reyazul RM. Molecular markers:principles and methodology. Jain SM, (Ed.) et al, Molecular Techniques in Crop Improvement, Kluwer Academic Publishers,2002, pp.9-54.
    59. Hattori Y, Miura K, Asano K, Yamamoto E, Mori H, Kitano H, MatsuokaM, Ashikari M. A major QTL confers rapid internode elongation in response to water rise in deepwater rice. Breed Sci.,2007,57:305-314.
    60. Hattori Y, Nagai K, Furukawa S, Song XJ, Kawano R, Sakakibara H, Wu J, Matsumoto T, Yoshimura A, Kitano H, Matsuoka M, Mori H, Ashikari M. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water. Nature, 2009,460:1026-1030
    61. Hattori Y, Nagai K, Mori H, Kitano H, Matsuoka M, Ashikari M. Mapping of three QTLs that regulate internode elongation in deepwater rice. Breed Sci.,2008,58:39-46.
    62. Henry RJ. Ed. Plant Genotyping,2001, CABI Publishing.
    63. Hossain F. Studies on combining ability for waterlogging tolerance in Maize (Zea mays L.) Thesis, M.Sc.(Ag), GBPU-AT, Pantnagar, Distt. U.S. Nagar, India 2001.
    64. Huang BR, Johnson JW, Nesmith S, Bridges DC:Root and shoot growth of wheat genotypes in response to hypoxia and subsequent resumption of aeration. Crop Sci., 1994,34:1538-1544.
    65. Huang J, Sun S, Xu D, Lan H, Sun H, Wang Z, Bao Y, Wang J, Tang H, Zhang H. A TFIIIA-type zinc finger protein confers multiple abiotic stress tolerances in transgenic rice (Oryza sativa L.). plant molecular biology,2012,80:337-350.
    66. Hund A, Fracheboud Y, Soldati A, Frascaroli E, Salvi S, Stamp P. QTL controlling root and shoot traits of maize seedlings under cold stress. Theoretical and Applied Genetics,2004,109,618-629.
    67. Hyne V, Kearsey Mj, Pike DJ, Snape JW. QTL Analysis-Unreliability and Bias in Estimation Procedures. Molecular Breeding,1995,1:273-282.
    68. Jackson M, Ishizawa K, Ito O. Evolution and mechanisms of plant tolerance to flooding stress. Jinn Bot,2009,103:137-142.
    69. Jackson MB, Armstrong W. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol,1999,1:274-287.
    70. Jackson MB, Drew MC. Effects of flooding on growth and metabolism of herbaceous plants, in Flooding and Plant Growth,1984, T. T. Kozlowsky, Ed, Academic Press, Orlando, Fla, USA.
    71. Jackson MB. Ethylene and responses of plants to soil waterlogging and submergence, Annual Reviews of Plant Physiology,1985,36:145-174.
    72. Jansen RC, Stam P. High-Resolution of Quantitative Traits into Multiple Loci Via Interval Mapping. Genetics,1994136:1447-1455.
    73. Jeppe R, Thomas L. Functional markers in plants. Trends in Plant Science,2003,8, 552-560.
    74. Jermstad K, Bassoni D, Jech K, Ritchie G, Wheeler N, Neale D. Mapping of quantitative trait loci controlling adaptive traits in coastal Douglas fir. Ⅲ. Quantitative trait loci-by-environment interactions. Genetics,2003,165:1489-1506.
    75. Jeuken M, Van Wijk R, Peleman J, Lindhout P. An integrated interspecific AFLP map of lettuce (Lactuca) based on two L. sativa x L. saligna F2 populations. Theor. Appl. Genet,2001,103:638-647.
    76. Justin SH, Armstrong W. Evidence for the involvement of ethene in aerenchyma formation in adventitious roots of rice (Oryza sativa), New Phytologist,2003,118:49-62.
    77. Kao CH, Zeng ZB, Teasdale DT. Multiple intervals mapping for quantitative trait loci. Genetics,1999,152:1203-1216.
    78. Karimova M, Abi-Ghanem J, Berger N, Surendranath V, Pisabarro MT, Buchholz F. Vika/vox, a novel efficient and specific Cre/IoxP-like site-specific recombination system. Nucleic Acids Research,2012,41:e37-e37.
    79. Kawano N, Ito O, Sakagami J. Morphological and physiological responses of rice seedlings to complete submergence (flash flooding). Ann Bot,2009,103:161-169.
    80. Kearsey MJ, Hyne V. Qtl Analysis-a Simple Marker-Regression Approach. Theoretical and Applied Genetics,1994,89:698-702.
    81. Kearsey MJ, Luo WZ. Mapping, characterization and deployment of quantitative trait loci, in H. j. Newbury, ed. Plant molecular breeding.2003, Pp.1-29.
    82. Kearsey MJ, Pooni, HS, Syed, NH. Genetics of quantitative traits in Arabidopsis thaliana. Heredity,2003,91:456-464.
    83. Kearsey, MJ, Pooni, HS. The Genetical Analysis of Quantitative Traits. Chapman and Hall,1996, London.
    84. Kennedy RA., Rumpho ME, Fox TC. Anaerobic metabolism in plants. Plant Physiol., 1992,100:1-6.
    85. Khabaz-Saberi H, Setters TL, Waters I. Waterlogging induces high to toxic concentrations of iron, aluminum and manganese wheat varieties on acidic soil. J Plant Nutr.,2006,29:899-911.
    86. Kota R, Varshney RK, Thiel T, Dehmer KJ, Graner A. Generation and comparison of EST-derived SSRs and SNPs in barley (Houdeum Vulgare L.). Hereditas,2001, 135:145-151.
    87. Kottapalli KR, Sarla N, Kikuchi S. In silico insight into two rice chromosomal regions associated with submergence tolerance and resistance to bacterial leaf blight and gall midge. Biotechnol,2006,24:561-589.
    88. Koumproglou R, Wilkes TM, Townson P, Wang XY, Beynon J, Pooni HS, Newbury HJ, Kearsey MJ. STAIRS:a new genetic resource for functional genomic studies of Arabidopsis. Plant Journal,2002,31:355-364.
    89. Lan JH, Li XH, Gao SR, Zhang BS, Zahng SH. QTL analysis of yield components in maize under different environments. Acta Agron Sin,2005,31:1253-1259.
    90. Lander ES, Botstein D. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics,1989,121:185-199.
    91. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg LA. MAPMAKER:an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics,1987,1:174-181.
    92. Landi P, Giuliani S, Salvi S, Ferri M, Tuberosa R, Sanguineti MC. Characterization of root-yield-1.06, a major constitutive QTL for root and agronomic traits in maize across water regimes. JExp Bot,2010,61:3553-3562.
    93. Li H, Ye G, Wang J. A modified algorithm for the improvement of composite interval mapping. Genetics,2007,175,361-374.
    94. Li HB, Vaillancourt R, Mendham NJ, Zhou MX. Comparative mapping of quantitative trait loci associated with waterlogging tolerance in barley(Hordeum vulgare L.). BMC Genomics,2008,9:401.
    95. Li HM, Liang H, Tang ZX, Zhang HQ, Yan BJ, Ren ZL. QTL Analysis for grain pentosans and hardness index in a Chinese 1RS.1BL x non-1RS.1BL wheat cross. Plant Mol Biol Report,2012, doi:10.1007/s11105-012-0517-4.
    96. Li WX, Oono Y, Zhu J, He XJ, Wu JM, Iida K, Lu XY, Cui X, Jin H, Zhu JK. The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell,2008,20:2238-2251.
    97. Li YL, Dong YB, Cui DQ, Wang YZ, Liu YY, Wei MG, Li XH. The genetic relationship between popping expansion volume and two yield components in popcorn using unconditional and conditional QTL analysis. Euphytica,2008, 162:345-351.
    98. Li YL, Niu SZ, Dong YB, Cui DQ, Wang YZ, Liu YY, Wei MG. Identification of trait-improving quantitative trait loci for grain yield components from a dent corn inbred line in an advanced backcross BC2F2 population and comparison with its F2:3 population in popcorn. Theoretical and Applied Genetics June,2007,115:129-140.
    99. Liao CT, Lin CH. Physiological adaptation of crop plants to flooding stress. Proceedings of the National Science Council ROC (B),2001,25:148-157.
    100. Littel R, Freund R, Spector P. SAS system for Linear Models.1991, SAS Institute Inc Third Edition edition.1.
    101. Liu J, Chen F, Olokhnuud C, Glass ADM, Tong Y, Zhang F, Mi G. Root size and nitrogen-uptake activity in two maize (Zea mays L.) inbred lines differing in nitrogen-use efficiency. J Plant Nutri. Soil Sci.,2009,172:230-236.
    102. Liu J, Li J, Chen F, Zhang F, Ren T, Zhuang Z, Mi G. Mapping QTLs for root traits under different nitrate levels at the seedling stage in maize (Zea mays L.). Plant Soil, 2008,305:253-265.
    103. Liu JC, Cai HG, Chu Q, Chen XH, Chen FJ, Yuan LX, Mi GH, Zhang FS. Genetic analysis of vertical root pulling resistance (VRPR) in maize using two genetic populations. Mol Breed,2011,28:463-474.
    104. Liu RH, Meng JL. MapDraw:a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data. Yi Chuan,2003,25,317-321.
    105. Liu YZ, Tang B, Zheng YL, Ma KJ, Xu SZ, Qiu FZ. Screening methods for waterlogging tolerance at Maize (Zea mays L.) seedling stage. Agric Sci China,2010, 9:362-369.
    106. Liu Z, Kumari S, Zhang L, Zheng Y, Ware D. Characterization of miRNAs in response to short-term waterlogging in three inbred lines of Zea mays. PLoS One, 2012,7,e39786.
    107. Lopez CE, Quesada-Ocampo LM, Bohorquez A, Duque MC, Vargas J, Tohme J, Verdier V. Mapping EST-derived SSRs and ESTs involved in resistance to bacterial blight in Manihot esculenta. Genome,2007,50,1078-1088.
    108. Luo ZW, Woolliams JA. Estimation of Genetic-Parameters Using Linkage between a Marker Gene and a Locus Underlying a Quantitative Character in F2 Populations. Heredity,1993,70:245-253.
    109. Lynch M, Walsh B. Genetics and Analysis of Quantitative traits.1998.
    110. Malik AI, Colmer TD, Lambers H, Setter TL, Schortemeyer M:Short-term waterlogging has long-term effects on the growth and physiology of wheat. New Phytol 2002,153:225-236.
    111. Manavalan LP, Guttikonda SK, Tran LS, Nguyen HT. Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol,2009, 50:1260-1276.
    112. Mano Y, Muraki M, Fujimori M, Takamizo T, Kindiger B. AFLP-SSR maps of maize × teosinte and maize × maize:comparison of map length and segregation distortion. Plant Breeding,2005a,124:432-439.
    113. Mano Y, Muraki M, Fujimori M, Takamizo T, Kindiger B. Identification of QTL controlling adventitious root formation during flooding conditions in teosinte(Zea mays ssp. huehuetenangensis) seedlings. Euphytica,2005b,142:33-42.
    114. Mano Y, Muraki M, Fujimori M, Takamizo T. Identification of QTL controlling flooding tolerance in reducing soil conditions in maize(Zea mays L.) seedlings. Plant Production Science,2006,9:176-181.
    115. Mano Y, Muraki M, Komatsu T, Fujimori M, Akiyama F, Takamizo T. Varietal difference in pre-germination flooding tolerance and waterlogging tolerance at the seedling stage in maize inbred lines. Jpn J Crop Sci,2002,71:361-367.
    116. Mano Y, Omori F, Kindiger B, Takahashi H. A linkage map of maize× teosinte Zea luxurians and identification of QTLs controlling root aerenchyma formation. Mol Breeding,2008,21:327-337.
    117. Mano Y, Omori F, Loaisiga CH, Bird RM. QTL mapping of above-ground adventitious roots during flooding in maize x teosinte "Zea nicaraguensis" backcross population. Plant Root,2009,3:3-9.
    118. Mano Y, Omori F, Muraki M, Takamizo T. QTL mapping of adventitious root formation under flooding conditions in tropical maize(Zea mays L.) seedlings. Breeding Sci.,2005c,55:343-347.
    119. Mano Y, Omori F, Takamizo T, Kindiger B, Bird RM, Loaisiga CH, Takahashi H. QTL mapping of root aerenchyma formation in seedlings of a maize × rare teosinte "Zea nicaraguensis" cross. Plant Soil,2007,295:103-113.
    120. Mano Y, Omori F, Takeda K. Construction of intraspecific linkage maps, detection of a chromosome inversion, and mapping of QTL for constitutive root aerenchyma formation in the teosinte "Zea nicaraguensis". Mol Breeding,2012,29:137-146.
    121. Mano Y, Omori F. Verification of QTL controlling root aerenchyma formation in a maize × teosinte "Zea nicaraguensis" advanced backcross population. Breeding Sci, 2008,58:217-223.
    122. Mano Y, Omori F. High-density linkage map around the root aerenchyma locus Qaerl.06 in the backcross populations of maize Mi29 × teosinte "Zea nicaraguesis". Breeding Sci.,2009,59:427-733.
    123. Marathi B, Guleria S, Mohapatra T, Parsad R, Mariappan N, Kurungara VK, Atwal SS, Prabhu KV, Singh NK, Singh AK. QTL analysis of novel genomic regions associated with yield and yield related traits in new plant type based recombinant inbred lines of rice (Oryza sativa L.). BMC Plant Biol,2012,12:137.
    124. Martin N, Bouck A, Arnold M. Detecting adaptive trait introgression betweenlris fulvaand I. brevicaulisin highly selective field conditions. Genetics,2006,172:2481-2489.
    125. Materechera SA, Alston AM, Kirky J M, Dexter AR. Influence of root diameter on the penetration of seminal roots into a compacted subsoil. Plant and Soil,1992,144:297-303.
    126. Mather K, Jinks JL. Biometrical Genetics.3rd edition. London:Chapman and Hall; 1982.
    127. McCallum CM. Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol,2000,123:439-442.
    128. McCarty DR, Shaw JR, Hannah LC. The cloning, genetic mapping, and expression of the constitutive sucrose synthase locus of maize. Proceedings of the National Academy of Sciences of the USA,1986,83:9099-9103.
    129. Messmer R, Fracheboud Y, Banziger M, Vargas M, Stamp P, Ribaut JM. Drought stress and tropical maize:QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theoretical and Applied Genetics,2009,119,913-930.
    130. Mikkilineni V, Rocheford TR. Sequence variation and genomic organization of fatty acid desaturase-2 (fad2) and fatty acid desaturase-6 (fad6) cDNAs in maize. Theoretical and Applied Genetics,2003,106:1326-1332.
    131. Mollard F, Striker G, Ploschuk E, Vega A, Insausti P. Flooding tolerance ofPaspalum dilatatum(Poaceae:Paniceae) from upland and lowland positions in a natural grassland. Flora,2008,203:548-556.
    132. Mukhtars JL, Bakler RS, Kanwar, Maize growth as affected by excess soil water. Trans. ASAE,1990,33:437-442.
    133. Musgrave A, Jackson MB, Long E, "Gallitriche stem elongation is controlled by ethylene and gibbcrellin," Nature New Biology,1972,238:93-96.
    134. Mustroph A, Boamfa El, Laarhoven LJJ, Harren FJM, Pors Y, Grimm B. Organ specific analysis of the anaerobic primary metabolism in rice and wheat seedlings II:Light exposure reduces needs for fermentation and extends survival during anaerobiosis. Planta 2006,225:139-152.
    135. Nandi S, Subudhi PK, Senadhira D, Manigbas NL, SenMandi S, Huang N. Mapping QTLs for submergence tolerance in rice by AFLP analysis and selective genotyping. Mol Gen Genet,1997,255:1-8.
    136. Pang JY, Cuin T, Shabala L, Zhou M, Mendham N, Shabala S. Effect of secondary metabolites associated with anaerobic soil conditions on ion fluxes and electrophysiology in barley roots. Plant Physiol,2007,145:266-267.
    137. Pang JY, Newman I, Mendham N, Zhou MX, Shabala S. Microelectrode ion and O2 flux measurements reveal differential sensitivity of barley root tissues to hypoxia. Plant Cell Environ.,2006,29:1107-1121.
    138. Pang JY, Zhou MX, Mendham N, Shabala S. Growth and physiological responses of six barley genotypes to waterlogging and subsequent recovery. AustJAgric Res,2004, 55:895-906.
    139. Paran I, Zamir D. Quantitative traits in plants:beyond the QTL. Trends in Genetics, 2003,19:303-306.
    140. Parelle J, Zapater M, Scotti-Saintagne C, Kremer A, Jolivet Y, Dreyer E, Brendel O. Quantitative trait loci of tolerance to waterlogging in a european oak (Quercus roburL):physiological relevance and temporal effect patters. Plant Cell Environ., 2007,30:422-434.
    141. Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science,2009,324:1068-1071.
    142. Parolin P. Submerged in darkness:adaptations to prolonged submergence by woody species of the Amazonian floodplains. Ann Bot,2009,103:359-376.
    143. Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature,1988,335:721-726.
    144. Patterson C. A new gun in town:the U box is a ubiquitin ligase domain. Science STKE,2002,116,4.
    145. Pezeshki SR. Wetland plant responses to soil flooding. Environ Exp Bot,2001, 46:299-312.
    146. Phang TH, Shao G, Lam HM. Salt tolerance in soybean. J Integr Plant Biol,2008, 50:1196-1212.
    147. Pingali PL, Pandey S. World maize needs meeting:technological opportunities and priorities for the public sector. In:Pingali P (ed) CIMMYT,2001, CIMMYT, Mexico City, pp 1-3.
    148. Poehlman JM, Sleper DA. Breeding Field Crops, Iowa State University Press (1995).
    149. Qiu FZ, Zheng YL, Zhang ZL, Xu SZ. Mapping of QTL associated with waterlogging tolerance during the seedling stage in maize. Ann Bot-London,2007,6:1067-1081.
    150. Rae AM, Street NR, Robinson KM, Harris N, Taylor G:Five QTL hotspots for yield in short rotation coppice bioenergy poplar:The poplar biomass loci. BMC PI Bio., 2009,9:23.
    151. Rahman H, Pekic S, Lazic-Jancic V, Quarrie SA, Shah SM, Pervez A, Shah MM. Molecular mapping of quantitative trait loci for drought tolerance in maize plants. Genetics and Molecular Research,2011,10:889-901
    152. Rathore TR, Warsi MZK, Lothrop JE, Singh NN. Production of maize under excess soil moisture (waterlogging) conditions. In:1st Asian Regional Maize Work-shop, P.A.U., Ludhiana.10-12 Feb 1996, pp.56-63
    153. Rathore TR, Warsi MZ. Production of maize under excess soil moisture (waterlogging) conditions. In:Proceedings of the 2nd Asian Regional Maize Workshop PACARD. Laos Banos, Phillipines, Feb 23-27,1998. p.23.
    154. Rathore TR, Warsi MZK, Zaidi PH, Singh NN, Waterlogging problem for maize production in Asian region. TAM-NET News Letter 1997,4:13-14.
    155. Reyna N, Cornelious B, Shannon JG, Sneller CH. Evaluation of a QTL for waterlogging tolerance in Southern soybean germplasm. Crop Sci,2003,43:2077-2082.
    156. Ricard B, VanToai T, Chourey P, Saglio P. Evidence for the critical role of sucrose synthase for anoxic tolerance of maize roots using a double mutant. Plant Physiol, 1998,116:1323-1331.
    157. Risch NJ. Searching for genetic determinants in the new millennium. Nature,2000, 405:847-856.
    158. Ruanjaichon V, Sangsrakru D, Kamolsukyunyong W, Siangliw M, Toojinda T, Tragoonrung S,Vanavichit A (2004) Small GTP-binding protein gene is associated with QTL for submergence tolerance in rice. Russ JPlant Physiol.,2004,51:648-657.
    159. Rubinigg M, Stulen I, Elzenga JTM, Colmer TD. Spatial patterns of radial oxygen loss and nitrate net flux along adventitious roots of rice raised in aerated or stagnant solution. Fund Plant Biol,2002,29:1475-1481.
    160. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW. Ribosomal DNA spacer-length polymorphisms in barley:mendelian inheritance, chromosomal location, and population dynamics. Proceeding of the National Academy of Sciences United States of America,1984,81:8014-8018.
    161. Sairam RK, Kumutha D, Ezhilmathi K, Deshmukh PS, Srivastava GC. Physiology and biochemistry of waterlogging tolerance in plants. Biologia Plantarum,2008,52:401-412.
    162. Salvi S, Tuberosa R, Chiapparino E, Maccaferri M, Veillet S, van Beuningen L, Issac P, Edwards K, Phillips RL. Towards positional cloning of Vgtl, a QTL controlling the transition from the vegetative to the reproductive phase in maize. Plant Mol Biol., 2002,48:601-613.
    163. Sayama T, Nakazaki T, Ishikawa G, Yagasaki K, Yamada N, Hirota N, Hirata K, Yoshikawa T, Saito H, Teraishi M, Okumoto Y, Tsukiyama T, Tanisaka T. QTL analysis of seed-flooding tolerance in soybean (Glycine max[L.]Merr.). Plant Sci., 2009,176:514-521.
    164. Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Collnayo V, Ruff TG, Milligan SB, Lamb JR, Cavet G, Linsley PA, Mao M, Stoughton RB, Friend SH. Genetics of gene expression surveyed in maize, mouse and man. Nature 2003,422:297-302.
    165. Schubert R, Mueller-Starck G, Riegel R. Development of EST-PCR markers and monitoring their intrapopula-tional genetic variation in Picea abies(L.) Karst. Theor Appl Genet,2001,103:1223-1231. doi:10.1007/s001220000501.
    166. Setter TL, Waters I, Sharma SK, Singh KN, Kulshreshtha N, et al. Review of wheat improvement for waterlogging tolerance in Australia and India:the importance of anaerobiosis and element toxicities associated with different soils. Ann Bot.,2009, 103:221-235.
    167. Setter TL, Waters I. Review of prospects for germ plasm improvement for waterlogging tolerance in wheat, barley and oats. Plant soil,2003,253:1-34.
    168. Sripongpangkul K, Posa G, Senadhira D, Brar D, Huang N, Khush G, Li Z. Genes/QTLs affecting flood tolerance in rice. Theor Appl Genet.,2000,101:1074-1081.
    169. Stack S, Campbell L, Henderson K, Eujayl I, Hanafey M, Powell W et al. Development of EST-derived microsatellite markers for mapping and germplasm analysis in wheat. Plant & Animal Genome VIII Conference January,2000,9-12.
    170. Steffens B, Sauter M. G. proteins as regulators in ethylene-mediated hypoxia signaling. Plant Signal Behav.,2010,5:375-378.
    171. Stunzi JT, Kende H. Gas composition in the internal air spaces of deepwater rice in relation to growth induced by submergence, Plant and Cell Physiology,1989,30:49-56.
    172. Subbaiah CC, Sachs MM. Molecular and cellular adaptations of maize to flooding stress. Annals of Botany,2003,91:119-127.
    173. Sunkar R, Chinnusamy V, Zhu J, Zhu JK. Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends in Plant Science,2007,12:301-309.
    174. Tang B, Xu SZ, Zou XL, Zheng YL, Qiu FZ. Changes of Antioxidative Enzymes and Lipid Peroxidation in Leaves and Roots of Waterlogging-Tolerant and Waterlogging-Sensitive Maize Genotypes at Seedling Stage. Agricultural Sciences in China,2010,9:651-661.
    175. Tang H, Yan JB, Huang YQ, Zheng YL, Li JS, QTL mapping of five agronomic traits in maize. Acta Genet Sin,2005,32:203-209.
    176. Tang W H, Zhang Z X, Zou X L, Zheng Y L. Functional genomics of maize submergence tolerance and cloning of the related gene Sicyp51. Sci China Ser C, 2005,48:337-345.
    177. Tanksley SD, Nelson JC. Advanced backcross QTL analysis:a method for simultaneous discovery and transfer of valuable QTL from unadapted germ plasm into elite breeding lines. Theor Appl Genet 1996,92:191-203.
    178. Tanksley SD. Mapping polygenes. Annu. Rev. Genet,1993,27:205-233.
    179. Thiel T, Michalek W, Varshney R, Graner A, Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeutn vulgare L.) Theor. Appl. Genet,2003,106:411-422.
    180. Thomas L, Ubbersted t, Imad Z, Jeppe RA, Gerhard W, Birte K, Joachim E, Milena O, Shi C. Development and application of functional markers in maize. Euphytica,2003, 146:101-108.
    181. Thorns berry, J.M. et al. (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat. Genet,2001,28,286-289.
    182. Toojinda T, Siangliw M, Tragoonrung S, Vanavichit A. Molecular genetics of submergence tolerance in rice:QTL analysis of key traits. Ann Bot.,2003,91:243-253.
    183. Torbert A, Hoeft RG, Vanden-Heuvel RM, Mulvaney RL, Hollinger SE, Short-term excess water impact on corn yield and nitrogen recovery. J. Prod. Agric.1993,6:337-344.
    184. Tran LS, Nguyen HT. Future Biotechnology of Legumes. In:Emerich WD, Krishnan H (eds) Nitrogen fixation in crop production. ASA-CSA-SSSA, Madison,2009, pp 265-308.
    185. Tuberosa R, Salvi S, Sanguineti MC, Landi P, Maccaferri M, Conti S. Mapping QTLs regulating morpho-physiological traits and yield:case studies, shortcomings and perspectives in drought-stressed maize. Annals of Botany,2002b,89:941-963.
    186. Tuberosa R, Salvi S, Sanguined MC, Maccaferri M, Giuliani S, Landi P. Searching for quantitative trait loci controlling root traits in maize:a critical appraisal. Plant Soil, 2003,255:35-54.
    187. Tuberosa R, Salvi S. Cereal genomics. In:Gupta P, Varshney R (eds) Springer, Netherlands,2004, pp 253-315.
    188. Tuberosa R, Sanguineti MC, Landi P, Giuliani MM, Salvi S, Conti S. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol Biol, 2002a,48:697-712.
    189. Vantoai T, St Martin S, Chase K, Boru G, Schnipke V, Schmitthenner A, Lark K. Identification of a QTL associated with tolerance of soybean to soil waterlogging. Crop Sci.,200141:1247-1252.
    190. Vartapetian B. Plant anaerobic stress as a novel trend in ecological physiology, biochemis-try, and molecular biology.2. Further development of the problem. Russ J Plant Physiol,2006,53:711-738.
    191. Vazquez F. Arabidopsis endogenous small RNAs:highways and byways. Trends in Plant Science,2006,11:460-468.
    192. Veldboom LR, Lee M, Woodman WL. Molecular-marker facilitated studies in an elite maize population. I. Linkage analysis and determination of QTL for morphological traits. Theor Appl Genet.,1994a,88:7-16.
    193. Veldboom LR, Lee M. Molecular-marker facilitated studies of morphological traits in maize. II. Determination of QTLs for grain yield and yield components. Theor Appl Genet.,1994b,88:451-458.
    194. Visser EJW, Nabben RHM, Blom CWP, Voesenek LAC, "Elongation by primary lateral roots and adventitious roots during conditions of hypoxia and high ethylene concentrations," Plant, Cell and Environment,1997,20:647-653.
    195. Voesenek LACJ, Colmer TD, Pierik R, Millenaar FF, Peeters AJM. How plants cope with complete submergence. New Phytol,2006,170:213-226.
    196. Vuong T, Wu X, Pathan MS, Valliyodan B, Nguyen HT. Genomics approaches to soybean improvement. In:Varshney PK, Tuberosa R (eds) Genomics-assisted crop improvement Genomics applications in crops. Springer, USA,2007,2:243-279.
    197. Wang F, Zhao TJ, Yu DY, Chen SY, Gai JY. Inheritance and QTL analysis of submergence tolerance at seedling stage in soybean [Glycine max (L.) Merr.]. Acta Agron Sinica.,2008,34:748-753.
    198. Wang Z, Cheng J, Chen Z, Huang J, Bao Y, Wang J, Zhang H. Identification of QTLs with main, epistatic and QTL x environment interaction effects for salt tolerance in rice seedlings under different salinity conditions. Theoretical and Applied Genetics,2012,125,807-815.
    199. Watkin ELJ, Thomson CJ, Greenway H. "Root development and aerenchyma formation in two wheat cultivars and one Triticale cultivar grown in stagnant agar and aerated nutrient solution," Annals of Botany,1998,81:349-354.
    200. Wenzl P, Li HB, Carling J, Zhou MX, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesna'J, Cakir M, Poulsen D, Wang JP, Raman R, Smith PK, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, Kilian A. A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genomics,2006,7:206-227.
    201. Wu XL, Jannink JL, Optimal sampling of a population to determine QTL location, variance, and allelic number. Theor. Appl. Genet.,2004,108:1434-1442.
    202. Xu K, Mackill DJ. "A major locus for submergence tolerance mapped on rice chromosome 9," Molecular Breeding,1996,2:219-224.
    203. Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ. SublA is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature,2006,442:705-708.
    204. Xu K, Xu X, Ronald PC, Mackill DJ, A high-resolution linkage map of the vicinity of the rice submergence tolerance locus subl. Mol Gen Genet,2000,263:681-689.
    205. Xu KN, Mackill DJ. A major locus for submergence tolerance mapped on rice chromosome 9. Mol Breed,1996,2:219-224.
    206. Yamauchi T, Rajhi I, Nakazono M. Lysigenous aerenchyma formation in maize root is confined to cortical cells by regulation of genes related to generation and scavenging of reactive oxygen species. Plant Signal Behav.,2011,6.
    207. Yang JP, Rong TZ, Xiang DQ, Tang HT, Huang LJ, Dai JR. QTL mapping of quantitative traits in maize. Acta Agron Sin,2005,314:188-196.
    208. Yano M, Sasaki T:Genetic and molecular dissection of quantitative traits in rice. Pl Mol Bio 1997,35:145-153.
    209. Yeboah MT, Chen XH, Chen RF, Alfandi M, Liang GH, Gu MH. Mapping Quantitative Trait Loci for Waterlogging Tolerance in Cucumber Using SRAP and ISSR Markers. Biotechnology,2008b,7:157-167.
    210. Yeboah MA, Chen XH, Liang GH, GuMH, Xu CW. Inheritance of waterlogging tolerance in cucumber (Cucumis sativus L.). Euphytica,2008a,1620:145-154.
    211. Zaidi P H, Maniselvan P, Srivastava A, Yadav P, Singh RP. Genetic Analysis of Water-Logging Tolerance in Tropical Maize (Zea Mays L.). Maydica,2010,55:17-26.
    212. Zaidi PH, Maniselvan P, Sultana R, Yadav M, Singh RP, Singh SB, Dass S, Srinivasan G. Importance of secondary traits in improvement of maize(Zea mays L.) for enhancing tolerance to excessive soil moisture stress. Cereal Res Commun,2007b, 35:1427-1435.
    213. Zaidi PH, Maniselvan P, Sultana R, Yadav M, Singh RP, Singh SB, Dass S, Srinivasan G Association between line per se and hybrid performance under excessive soil moisture stress intropical maize (Zea mays L.).Field Crop Res.,2007a,101:117-126.
    214. Zaidi PH, Mehrajuddin ML, Pixley Jk, Singh RP, Dass S.2009 Resilient maize for improved and stable productivity of rain-fed environment of South and South-East Asia. Maize for Asia-Emerging Trends and Technologies. Proc.10 th Asian Regional Maize Workshop,20-23 October,2008, Makassar, Indonesia (in press).
    215. Zaidi PH, Rafique S, Rai P, Singh N, Srinivasan G. Tolerance to excess moisture in maize (Zea mays L.):susceptible crop stages and identification of tolerant genotypes. Field Crop Res,2004,90:189-202.
    216. Zaidi PH, Singha NN. Identification of morpho-physiological traits for excess soil moisture tolerance in maize. In:Stress and Environmental Physiology. Scientific publishers, Jodhpur,2002, India. pp.172-183.
    217. Zhai L, Liu Z, Zou X, Jiang Y, Qiu F, Zheng Y, Zhang Z. Genome-wide identification and analysis of microRNA responding to long-term waterlogging in crown roots of maize seedlings. Physiologia Plantarum,2012, doi:10.1111/j.1399-3054.
    218. Zhang X, Tang B, Yu F, Liu L, Wang M, Xue Y, Zhang Z, Yan J, Bing Y, zheng Y, Qiu F. Identification of Major QTL for Waterlogging Tolerance Using Genome- Wide Association and Linkage Mapping of Maize Seedlings. Plant Molecular Biology Report,2012, DOI 10.1007/s11105-012-0526-3.
    219. Zhang Z, Tang W, Tao Y, Zheng Y. cDNA microarray analysis of early response to submerging stress in Zea mays roots. RUSS JPLANT PHYSL,2005,52:43-49.
    220. Zhang Z, Wei L, Zou X, Tao Y, Liu Z, Zheng Y. Submergence-responsive microRNAs are potentially involved in the regulation of morphological and metabolic adaptations in maize root cells. Annals of Botany,2008,102:509-519.
    221. Zhao Z, Wu L, Nian F, Ding G, Shi T, Zhang D, Shi L, Xu F, Meng J. Dissecting quantitative trait loci for boron efficiency across multiple environments in Brassica napus. PLoS One,2012,7, e45215.
    222. Zheng B, Yang L, Zhang W, Mao C, Wu Y, Yi K, Liu F, Wu P. Mapping QTLs and candidate genes for rice root traits under different water-supply conditions and comparative analysis across three populations. Theor Appl Genet,2003,107:1505-1515.
    223. Zhou L, Wang J, Yi Q, Wang Y, Zhu Y, Zhang Z. Quantitative trait loci for seedling vigor in rice under field conditions. Field Crops Res.,2007a,100:294-301.
    224. Zhou MX, Li HB, Mendham NJ. Combining ability of waterlogging tolerance in barley. Crop Sci.,2007b,47:278-284.
    225. Zhu J, Mickelson SM, Kaeppler SM, Lynch JP. Detection of quantitative trait loci for seminal root traits in maize (Zea mays L.) seedlings grown under differential phosphorus levels. Theor Appl Genet.,2006,113:1-10.
    226. Zou X, Jiang Y, Liu L, Zhang Z, Zheng Y. Identification of transcriptome induced in roots of maize seedlings at the late stage of waterlogging. BMC Plant Biology,2010,10, 189.
    227. Zou XL, Jiang YY, Zheng YL, Zhang MD, Zhang ZX. Prolyl 4-hydroxylase genes are subjected to alternative splicing in roots of maize seedlings under waterlogging. Ann Bot.,2011,108:1323-1335.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700