相变致冷凝固的铝合金及铜基大块非晶组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相变致冷技术是一种新的凝固技术,它是采用铜模铸造的方法,用相变材料作为冷却介质,利用相变材料在相变过程中吸收的潜热对熔体进行冷却的一种技术。本文采用此种凝固技术,制备了铸造A356铝合金和铜基大块非晶合金。
     本文利用Ansys软件对相变致冷技术中的铸件和铸型温度场进行模拟。模拟结果表明,熔体的冷却速度随着相变介质的种类和体积的变化而变化。对于Na、Sn和Zn三种相变介质来说,采用介质Na使熔体获得的冷却速度最高,Sn次之,Zn最弱,这些是由介质不同的热物性所造成的。铸件冷却曲线和介质升温曲线的模拟结果与实验结果相比基本吻合。
     对A356合金的研究结果表明,凝固条件对合金的组织是有影响的。介质对合金的细化效果依Na、Sn、Zn的次序依次减弱,而铜模对铸件的细化能力在Na和Sn之间。铸件与介质体积比不同,细化效果也不同。随着铸件与介质体积比的增加,合金的组织先逐渐细化,而后又逐渐粗化,介质与铸件的体积比对合金的细化效果存在一个最佳值。当其体积比为5.25时,合金的组织最细小。变质剂与细化剂对合金的组织也有影响。对于采用相变致冷方法制备的A356合金,单独加入Al-10%Sr变质剂(加入量为0.04%)及单独加入Al-5%Ti-B细化剂(加入量为0.03%)时,合金的组织显著细化,显微硬度也明显提高。与单独加入变质剂和细化剂相比,同时加入变质剂和细化剂时,加入量的最佳值发生变化,这是由于变质剂和细化剂形成了化合物,合金组织的细化效果减弱。
     与铜模冷却方法相比,相变致冷方法可以细化合金的铸态组织。DSC和XRD的研究结果表明,在用铜模冷却方法制备的样品中,Si在α-Al中的固溶度为2.4 at.%,在用相变致冷方法制备的样品中,Si在α-Al中的固溶度为2.7 at.%,合金的强度提高了22.9%,伸长率提高了33.3%。对合金的热处理研究结果表明,传统的T6和T5工艺可以不经过固溶处理,而是直接对合金进行时效处理,最佳的T6处理工艺为:175℃×8h,最佳的T5处理工艺为:140℃×4h,其断裂强度分别320MPa和305MPa。
     对铜基大块非晶的研究结果表明,用相变致冷方法可以制备出Φ4 mm的Cu50Zr40Ti10和Φ5 mm的Cu47.5Zr47.5Al5大块非晶合金。差示扫描量热分析研究结果表明,这两种大块非晶合金的晶化过程都是一种依赖于升温速率的动力学过程。
     采用原位高温X射线衍射分析对Cu50Zr40Ti10大块非晶合金在连续加热条件下的晶化过程进行了研究,结果表明:Cu50Zr40Ti10大块非晶合金在连续加热的过程中首先析出了一种单斜CuZr固熔体相,该相为亚稳相,晶化结束后的稳定相为正交Cu10Zr7相、正交Cu8Zr3相和四方Cu3Ti2相。
     对两种大块非晶合金的室温压缩力学性能进行了研究,结果表明:Cu50Zr40Ti10大块非晶合金在压缩过程中具有较高的强度和良好的塑性。
A new rapid-cooling technology using a copper mould cooled by a phase-transition medium was used to prepare cast aluminium-A356 alloy and Cu-based bulk metallic glass by solidification of the melt in this paper.
     The temperature fields of the casting and the mould with phase-transition cooling were simulated using the Ansys software package. The simulated results showed that the cooling rates of the melt could be controlled by using different phase-transition materials and their volumes. Sodium, tin and zinc were selected as the phase-transition materials in this paper. The cooling rate of melt obtained by using Sodium as phase-transition medium is the highest one of these three media, followed by tin, zinc. This was caused by their different thermal physical properties. The simulated curves of melt and media were in good agreement with the experiment curves.
     The microstructures and mechanical properties of aluminium-A356 alloy cast with this technology were studied in this paper. The results showed that the solidification conditions affected the microstructures of this alloy. The effect of refining on the microstructures was weakened in the order: sodium, tin, and then zinc. The refining ability of copper was between sodium and tin. The different ratios of volumes between the casting and the media also affected the microstructures of this alloy. The microstructure was refined as the ratios increasing. The microstructure was the finest when the ratio was 5.25, and when higher than this ratio the microstructure became coarser. The microstructure was modified by adding Al-10%Sr and refined by adding Al-5%Ti-B to the melt. The microstructure was refined obviously and the microhardness was improved when the amount of Al-Sr10% was 0.04% or the amount of Al-5%Ti-B was 0.03%. However, the microstructure became coarser when both Al-10% Sr and Al-5%Ti-B were added in the melt, and the microhardness decreased. Compounds formed by the combination of modifier and refiner weakened the effect of refining on the microstructure.
     The microstructures of the casting solidifying with a phase-transition material and copper were investigated by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and X-rays diffraction (XRD). The results showed that the microstructure obtained by the phase-transition cooling method was finer than that obtained by copper mould. The solubility of silicon inα-Al was 2.7 at. % in specimens solidifying in phase transition cooling medium and 2.4 at. % in specimens solidifying in copper mould. The ultimate tensile strengths (UTS) and elongation of A356 alloy cast by phase-transition cooling method were improved 22.9 % and 33.3%, respectively. The optimal heat treatment of T6 is 175℃×8h and the UTS is 320MPa. The optimal heat treatment of T5 is 140℃×4h and the UTS is 305MPa.
     Bulk metallic glasses of Cu50Zr40Ti10 with a diameter of 4 mm and Cu47.5Zr47.5Al5 with a diameter of 5 mm were prepared by using phase-transition cooling methods and their crystallization kinetics and mechanical properties have also been investigated in this paper. The crystallization kinetics of these two kinds of bulk metallic glasses was investigated by means of DSC under nonisothermal conditions. The results showed that the crystallization process of these two kinds of bulk metallic glasses could be regarded as a kinetically modified thermodynamic phase transformation process.
     Real-time detection of the crystallization behavior of Cu50Zr40Ti10 bulk metallic glass from the glassy state was studied using X-ray diffraction during in-situ heat treatment. The results showed that monoclinic CuZr metastable phase is firstly precipitated in the glassy matrix during the continuous heating process, and the equilibrium phases were orthorhombic Cu10Zr7, orthorhombic Cu8Zr3 and triclinic Cu3Ti2 at the final stage of crystallization.
     The compressive deformation behaviors of these two kinds of bulk metallic glasses at room temperature were investigated at strain rate of 10-4 s-1. The results showed that both the strength and the strain of Cu50Zr40Ti10 bulk metallic glass are much high than those of Cu47.5Zr47.5Al5 bulk metallic glasses.
引文
1 W. A. Tiller, K.A. Jackon, J.W. Rutter, B. Chalmers. The redistribution of solute atoms during the solidification of metals. Acta Metallurgica.1953,1(4):428~437
    2 H. J. Wood, J. D. Hunt, P. V. Evans. Modeling the growth of feather crystals. Acta Metallurgical.1997,45(2):569~574
    3 M. C. Flemings, J. Szekely, N. El-Kaddah, Y. Shiohara, R. T. Frost. Electromagnetic containerless undercooling facility and experiments for the shuttle. Advances in Space Research.1984,4(5):99~103
    4 P. K. Rohatgi, E. J. Brush, S. M. Jain, C. M. Adams. Dendritic structures produced on solidification of multicomponent aqueous solutions. Materials Science and Engineering.1974,13(1):3~18
    5 A. V. Sameljuk, O. D. Neikov, A. V. Krajnikov, Y. V. Milman, G. E. Thompson, X. Zhou. Effect of rapid solidification on the microstructure and corrosion behaviour of Al–Zn–Mg based material. Corrosion Science.2007,49(2):276~286
    6 F. J. Hong, H. H. Qiu. Experimental study on rapid solidification process using a novel ultrasound technique. Experimental Thermal and Fluid Science.2005,30(1):17~26
    7 J. T. E. Galindo, J. A. M. Aquino, H. A. Davies, Z. Liu. Magnetic and structural study of melt-spun YCo5 ribbons. Journal of Magnetism and Magnetic Materials.2005,294(2):e137~e140
    8 X. L. Sheng, C. Mackie, C. A. Hall. Heat transfer characterization of the solidification process resulting from a spray forming process. International Communications in Heat and Mass Transfer.2005,32(7):872~883
    9 J. D. Hong, K. E. Spear, V. S. Stubican. Directional solidification of SiC-B4C eutectic: Growth and some properties. Materials Research Bulletin.1979,14(6):775~783
    10 K. A. Gudgel, K. A. Jackson. Oscillatory growth of directionally solidifiedammonium chloride dendrites. Journal of Crystal Growth. 2001, 225(2-4):264~267
    11 A. M. Figueredo, M. J. Cima, M. C. Flemings, J. S. Haggerty, T. Hara, H. Ishii, T. Ohkuma, S. Hirano. Properties of Ba2YCu3O7-δ filaments directionally solidified by the laser-heated floating zone technique. Physica C: Superconductivity.1995,241(1-2):92~102
    12 P. K. Seo, D. U. Kim, C. G. Kang. The Effect of the gate shape on the microstructural characteristic of the grain size of Al–Si alloy in the semi-solid die casting process. Materials Science and Engineering.2007,A445-446(15):20~30
    13 S. Nafisi, R. Ghomashchi. Combined grain refining and modification of conventional and rheo-cast A356 Al–Si alloy. Materials Characterization.2006,57(4-5):371~385
    14 S. Nafisi, R. Ghomashchi. Effect of stirring on solidification pattern and alloy distribution during semi-solid-metal casting. Materials Science and Engineering.2006,A437(2):388~395
    15 S. Nafisi, R. Ghomashchi. Effects of modification during conventional and semi-solid metal processing of A356 Al-Si alloy. Materials Science and Engineering.2006,A415(1-2):273~285
    16 E. J. Zoqui, M. Paes, M. H. Robert. Effect of macrostructure and microstructure on the viscosity of the A356 alloy in the semi-solid state. Journal of Materials Processing Technology.2004,153-154:300~306
    17 W.J. Yao, X.J. han, B. Wei. Microstructural evolution during containerless rapid solidification of Ni-Mo eutectic alloys. Journal of Alloys and Compounds.2003,348:88~99
    18 P. Boutron. More Accurate Determination of the quantity of Ice crystallized at low cooling rates in the glycerol and 1, 2-propanediol aqueous solutions: comparison with equilibrium. Cryobiology1984,21(2):183~191
    19 R. F. Sekerka, S. R. coriell, G. B. Mcfadden. The effect of container size on dendritic growth in microgravity. Journal of Crystal growth. 1997,171:303~306
    20 J. B. Andrews, L. J. Hayes, Y. Arikawa, S. R. Coriell. Microgravityprocessing of immiscible aluminum-indium alloys. Advances in Space Research. 1998,22(8):1241~1244
    21 M. H. McCay, T. D. McCay. The influence of microgravity on the dendritic growth rates of NH 4 Cl-H2O: an international microgravity laboratory experiment. Journal of Crystal Growth.1994,135(3-4):594~600
    22 J?rg F. L?ffler, Atakan Peker, Sven Bossuyt and William L. Johnson. Processing of metallic glass-forming liquids under ultra-high gravity. Materials Science and Engineering.2004,A375-377(15):341~345
    23 D. Kyoi, N. Kitamura, H. Tanaka, A. Ueda, S. Tanase, T. Sakai. Hydrogen desorption properties of FCC super-lattice hydride Mg7NbHx prepared by ultra-high pressure techniques. Journal of Alloys and Compounds.2007, 428(1-2):268~273
    24 Q. Wei, H.T. Zhang, B.E. Schuster, K.T. Ramesh, R.Z. Valiev, L.J. Kecskes, R.J. Dowding, L. Magness, K. Cho. Microstructure and mechanical properties of super-strong nanocrystalline tungsten processed by high-pressure torsion. Acta Materialia.2006,54(15):4079~4089
    25 R. Xu. The effect of high pressure on solidification microstructure of Al–Ni–Y alloy. Materials Letters.2005,59(22):2818~2820
    26 沈宁福,汤亚力,关绍康,张东捷. 凝固理论进展与快速凝固. 金属学报,1996,(32):673
    27 K. A. Blackmore, K. M. Beatty, M. J. Hui, K. A. Jackson. Growth behavior of NH4Cl-H2O mixtures. Journal of Crystal Growth. 1997,174(1-4):76~81
    28 H. Y. Li, W. Q. Jie, K. W. Xu. Growth of ZnSe single crystals from Zn–Se–Zn(NH4)3Cl5 system. Journal of Crystal Growth.2005,279(1-2): 5~12
    29 X. Y. Wang, W. Q. Jie. Controlled melting process of off-eutectic alloy. Acta Materialia.2004,52(2):415~422
    30 W. Q. Jie. Solute redistribution and segregation in solidification processes. Science and Technology of Advanced Materials.2001,2(1):29~35
    31 程天一,章守华. 快速凝固技术与新型合金. 宇航出版社,1990:75~83
    32 H. Jones. Observation on a structural transition in aluminium alloys hardened by rapid solidification. Materials Science andEngineering.1969,5(1):1~18
    33 S. R. Coriell and D. Turnbull. Relative roles of heat transport and interface rearrangement rates in the rapid growth of crystals in undercooled melts. Acta Metallurgica.1982,30(12):2135~2139
    34 M. H. Burden, H. Jones. A metallographic study of the effect of more rapid freezing on the cast structure of aluminum-iron alloys. Metallography.1970,3(3):307~326
    35 N. Jacobson. Rapid solidification of Ag-Cu and Ag-Pb alloys. Materials Science and Engineering.1991,133(15):574~576
    36 张荣生,刘海洪. 快速凝固技术. 冶金工业出版社,1994:23
    37 M. V. Rooyen, N. M. V. Pers, T. H. D. Keijser, E. J. Mittemeijer. Structure refinement and improved mechanical properties of Al-20wt.%Si by rapid solidification in conjunction with strontium modification. Materials Science and Engineering.1987,96:17~25
    38 P. Tsakiropoulos, R. C. Pratt, H. Jones, J. E. Restall, R. W. Gardiner. Development of Al-Cr-X and Al-Cr-Zr-X alloys by rapid solidification from the melt. Materials Science and Engineering.1988,98:143~147
    39 胡汉起. 金属凝固原理. 机械工业出版社,2005:185~187
    40 M. Zimmermann, M. Carrard, M. Gremaud, W. Kurz. Characterization of the banded structure in rapidly solidified Al-Cu alloys. Materials Science and Engineering.1991,134(25):1278~1282
    41 S. C. Gill, M. Zimmermann, K. Kurz. Laser resolidification of the Al-Al2Cu eutectic: the coupled zone. Acta Metallurgica et Materialia.1992,40(11):2895~2906
    42 R. G. Song, K. Zhang, G. N. Chen. Electron beam surface treatment. Part Ⅱ: microstructure evolution of stainless steel and aluminum alloy during electron beam rapid solidification. Vacuum.2003,69(4):517~520
    43 C. J. Kong, P. D. Brown, S. J. Harris, D. G. Mccartney. The microstructure of a thermally sprayed and heat treated Al-20wt..%Sn-3wt.%Si alloy. Materials Science and Engineering.2005,403(1-2):205~214
    44 J. Q. Li, Y. L. Tang, N. F. Shen, W. Pan. Effects of solidification kinetics on phase seletion of Ni-Al alloys. Journal of Alloys and Compounds.2001,329(1-2):157~161
    45 H. Jones. Cooling rates during rapid solidification from a chill surface. Materials Letters.1996,26:133~136
    46 O. D. Neikov, G. I. Vasilieva, A. V. Samejuk, A. V. Krajnikov. Water atomized aluminium alloy powders. Materials Science and Engineering.2004,383(1):7~13
    47 T. E. Strangman, T. Z. Kattamis. Crystal multiplication in undercooled H2O-NH 4 Cl solutions. Journal of Crystal Growth.1973,18(3):209~211
    48 Z. Y. Jian, K. Kuribayashi, W. Q. Jie. Critical undercoolings for the transition from the lateral to continuous growth in undercooled silicon and germanium. Acta Materialia.2004,52(11):3323~3333
    49 J.H. Perepezko. Kinetic processes in undercooled melts. Materials Science and Engineering.1997,A226-228:374~382.
    50 T. Z. Kattamis. Mechanism of establishment of cast microstructure during solidification of highly undercooled melts. Journal of Crystal Growth.1976,34(2):215~220
    51 周尧和,胡壮麒,介万奇. 凝固技术. 机械工业出版社,1998:8~9
    52 熊艳才,刘伯操. 铸造铝合金现状及未来发展. 特种铸造及有色合金.1998,(4):1~5
    53 吕 杰 , 刘 伯 操 , 杨 凯 , 戴 圣 龙 . 高 强 韧 铸 造 铝 合 金 . 铸造.2000,49(2):66~69
    54 李元元,郭国文,罗宗强,龙雁. 高强韧铸造铝合金材料研究进展. 特种铸造及有色合金.2000,(6):45~47
    55 V. H. López, A. Scoles, A. R. Kennedy. The thermal stability of TiC particles in an Al7wt.%Si alloy. Materials Science Engineering.2003,A356:316~325
    56 A. M. Gokhale, G. R. Patel. Analysis of variability in tensile ductility of a semi-solid metal cast A356 Al-alloy. Materials Science Engineering.2005,A392:184~190
    57 K. Li, H.J. Ni, D. Shu, J. Wang, B. D. Sun, Y. H. Zhou.Trans. Continuous cleaning of A356 alloy melt using high frequency electromagnetic field. Transactions of Nonferrous Metals Society of China.2004,14:82~87
    58 S. Nafisi, R. Ghomashchi. Grain refining of conventional and semi-solid A356 Al-Si alloy. Journal of Materials Processing Technology.2006,174:371~383
    59 D. G. Eskin, V. Massardier, P. Merie. A study of high-temperature precipitation in Al-Mg-Si alloys with an excess of silicon. Journal of Materials Science.1999,34:811~820
    60 H.K. Jung, C.G. Kang. Induction heating process of an Al–Si aluminum alloy for semi-solid die casting and its resulting microstructure. Journal of Materials Processing Technology.2002,120:355~364
    61 J. C. Choi, H. J, Park, B. M. Kim. The influence of induction heating on the microstructure of A356 for semi-solid forging. Journal of Materials Processing Technology.1999,87:46~52
    62 A.M. Kliauga, M. Ferrante. Liquid formation and microstructural evolution during re-heating and partial melting of an extruded A356 aluminium alloy. Acta Materialia.2005,53:345~356
    63 Y. B. Yu, P. Y. Song, S. S. Kim, J. H. Jee. Possibility of improving tensile strength of semi-solid processed A356 alloy by a post heat treatment at an extremely high temperature. Scripta Materialia.1999,41:767~771
    64 邵光杰,张恒华,许路萍. 汽车用铝合金材料及热处理进展. 金属热处理.2004,29(1):29~32
    65 K. Matsuda, S. Tada, S. Ikeno, T. Sato, A. Kamio. Crystal system of rod-shaped precipitates in an Al-1.0mass%Mg2Si-0.4mass%Si alloy. Scripta Metallurgica et Materialia.1995,32(8):1175~1180
    66 R. Haghayeghi, E.J. Zoqui, A. Halvaee, M. Emamy. An investigation on semi-solid Al–7Si–0.3Mg alloy produced by mechanical stirring. Journal of Materials Processing Technology.2005,169(3):382~387
    67 X. H. Lin, W. L. Johnson. Formation of Ti-Zr-Cu-Ni bulk metallic glasses. Journal of Apply Physics. 1995, (78):6514~6519
    68 C. Li, J. Saida, M. Kiminami, A. Inoue. Dynamic crystallization process in a supercooled liquid region of Cu40Ti30Ni15Zr10Sn5. Journal of Non-crystalline Solids. 2000,(261): 108~114
    69 A. Inoue, W. Zhang, T. Zhang, K. Kurosaka. High-strength Cu-based bulk glassy alloys in Cu-Zr-Ti and Cu-Hf-Ti ternary systems. Acta Materialia. 2001,(49):2645~2652
    70 A. Inoue, W. Zhang, T. Zhang, K. Kurosaka. Formation and mechanicalproperties of Cu-Hf-Ti bulk glassy alloys. Journal of Materials Research. 2001,(16):2836~2844
    71 J. Saida, T. Osuna, M. Ohnuma, E. Matsubara, A. Inoue. Nano structure of rapidly quenched Cu-(Zr or Hf)-Ti alloys and their devitrification process. Advanced Materials. 2003,(4):311~318
    72 M. Kasai, E. Matsubara, J. Saida, M. Nakayama, K. Uematsu, T. Zhang, A. Inoue. Crystallization behavior of Cu60Zr30Ti10 bulk glassy alloy. Materials Science and Engineering. 2004, A 375-377:744~748
    73 A. S. Aronin, G. E. Abrosimova, A. F. Gruov, Y. V. Kir’yanov, V V. Molokanov. Nanocrystallization of bulk Cu-Zr-Ti metallic glass. Materials Science Engineering. 2004, A 304-306:375~379
    74 D. V. Louzguine, A. Inoue. Influence of a supercooled liquid on deritrification of Cu-, Hf- and Ni- based metallic glasses. Materials Science Engineering. 2004, A 375-377:346~350
    75 K. Lad, M. Maaroof, K. G. Raval, A. Pratap, K. G. Raval. Fractal growth kinetics during crystallization of amorphous Cu50Zr50. Progress in Crystal Growth and Characterization of Materials. 2002, (28): 15~19
    76 M. Calin, M. Stoica, J. Eckert, A. R. Yavari, L. Schultz. Glass formation and crystallization of Cu47Ti33Zr11Ni8X1(X=Fe, Si, Sn, Pb) alloys. Materials Science Engineering. 2005, A 392:169~178
    77 Z. X. Wang, D. Q. Zhao, M. X. Pan, W. H. Wang, T. Okada, W. Utsumi. Formation and crystallization of CuZrHfTi bulk metallic glass under ambient and high pressures. J. Phys. Condens. Matter.. 2003,(15): 5923~5932
    78 S. C. Glade, J. F. L?ffler, S. Bossuyt, W. L. Johnson, M. K. Miller. Crystallization of amorphous Cu47Ti34Zr11Ni8. Journal of Apply Physics.2001,(89):1579~1579
    79 M. K. Miller, S. C. Glade, W. L. Johnson. Phase separation in Cu47Ti33Zr11Ni8Sn1+. Surface and Inteface Analysis.2004,(36):598~600
    80 J. C. Oh, T. Ohkubo, Y. C. Kim, E. Fleury, K. Hono. Phase separation in Cu43Zr43Al7Ag7 bulk metallic glass. Scripta. Materialia.2005,(53): 165~169
    81 A. Concustell, G. Alcal, S. Mato, T. G. Woodcock, A. Gebert, J. Eckert, M.D. Bar. Effect of relaxation and primary nanocrystallization on the mechanical properties of Cu60Zr22Ti18 bulk metallic glass. Intermetallics. 2005, (15):1214~1219
    82 A. Inoue, W. Zhang. Bulk glassy Cu-based alloys with a large supercooled liquid region of 110K. Apply Physics Letter. 2003, 83(12):2351~2353
    83 Z. X. Wang, D. Q. zhao, M. X. Pan, P. Wen, W. H. Wang. Crystallization mechanism of Cu-based supercooled liquid under ambient and high pressure. Physics Review B. 2004, 69: 092202-1~092202-4
    84 K. Asami, C. L. Qin, T. Zhang, A. Inoue. Effect of additional elements on the corrosion behavior of a Cu-Zr-Ti bulk metallic glass. Materials Science Engineering. 2004, A 375-377: 235~239
    85 C. Fan, C. Li, A. Inoue, V. Haas. Deformation behavior of Zr-based bulk nanocrystalline amorphous alloys. Physics Review B. 2000, 61: R3761~R3763
    86 R. Doglione, S. Spriao, L. Battezzati. Static mechanical characterization of a bulk amorphous and nanocrystalline Zr40Ti14Ni11Cu10Be25 alloy. Nanostructured Materials. 1997, 8: 447~456
    87 S. Venkataraman, E. Rozhkova, J. Eckert, L. Schultz, D. J. Sordelet. Thermal stability and crystallization kinetics of Cu-reinforced Cu47Ti33Zr11Ni8Si1 metallic glass composite powders synthesized by ball milling: the effect of particulate reinforcement. Intermetallics.2005,(13): 833~840
    88 S. Deledda, J. Eckert, L. Schultz. Thermal stability of mechanically alloyed Zr-Cu-Al-Ni glass composites containing ZrC particles as a second phase. Scripta Materialia.2002,(46):31~35
    89 J. Eckert, M. Seidel, A. Kübler, U. Klement, L. Schultz. Oxide dispersion strengthened mechanically alloyed amorphous Zr-Al-Cu-Ni composites. Scripta Materialia.1998,(38):595~602
    90 P. K. Deshpande, R. Y. Lin. Wear resistance of WC particle reinforced copper matrix composites and the effect of porosity. Materials Science and Engineering.2004,(A 418):137~145
    91 R. B. Dandliker, R. D. Conner, W. L. Johnson. Melt infiltration casting of bulk metallic glass matrix composites. Journal of Materials Research.1998,(13): 2896~2901
    92 C. C. Hays, C. P. Kim, W. L. Johnson. Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Physical Review Letters.2000,(84):2901~2904
    93 M. Calin, J. Eckert, L. Schultz. Improved mechanical behavior of Cu-Ti-based bulk metallic glass by in situ formation of nanoscale precipitates. Scripta Materialia.2003,(48):653~658
    94 U. Eühn, J. Eckert, N. Mattern, L. Schultz. ZrNbCuNiAl bulk metallic glass matrix composites containing dendritic bcc phase precipitates. Applied Physics Letters.2002, (80): 2478~2480
    95 P. Yu, H. Y. Bai, M. B. Tang, W. L. Wang. Excellent glass-forming ability in simple Cu50Zr50-based alloys. Journal of Non-Crystalline Solids. 2005, (351): 1328~1332
    96 L. Q. Xing, P. Ochin, J. Bigot. Effect of Al on the glass-forming ability of Cu-Zr based alloys. Journal of Non-Crystalline Solids. 1996, (205-207): 637~640
    97 J. Das, M. B. Tang, K. B. Kim, R. Theissmann, F. Baier, W. H. Wang, J. Eckert. “Work-hardenable” ductile bulk metallic glass. Physical Review Letters.2005,(94):205501-1~205501-4
    98 J. C. Lee, Y. C. Kim, J. P. Ahn, H. S. Kim, S. H. Lee, B. J. Lee. Deformation-induced nanocrystallization and its influence on work hardening in a bulk amorphous matrix composite. Acta Materialia.2004, (52):1525~1533
    99 J. C. Lee, Y. C. Kim, J. P. Ahn, H. S. Kim. Enhanced plasticity in a bulk amorphous matrix composite: macroscopic and microscopic viewpoint studies. Acta Materialia.2005,(53):129~139
    100 E. S. Park, D. H. Kim, T. Ohkubo, K. Hono. Enhancement of glass forming ability and plasticity by addition of Nb in Cu-Ti-Zr-Ni-Si bulk metallic glasses. Journal of Non-Crystalline Solids.2005,351:1232~1238
    101 C. L. Chiang, J. P. Chu, C. T. Lo, T. G. Nieh, Z. X. Wang, W. H. Wang. Homogeneous plastic deformation in a Cu-based bulk amorphous alloy. Intermetallics.2004,(12):1057~1061
    102 A. Inoue. Bulk amorphous alloys with soft and hard magnetic properties. Materials Science and Engineering.1997,A226-228:357~363
    103 王庆,夏雷,肖学山,李维火,董远达.大块非晶合金的研究进展.自然杂志.2001,(3):145~148
    104 李日,王友序,杨根仓,高庆华,李梅娥.铝合金活塞铸件的温度场数值模拟研究.特种铸造及有色合金.2001,(5):22~25
    105 李静,董丽娜,韩逸,王平.半固态A356铝合金二次加热温度场有限元模拟.东北大学学报(自然科学版).2005,26(5):440~443
    106 A. Venkatesan, V.M. Gopinath and A. Rajadurai. Simulation of casting solidification and its grain structure prediction using FEM. Journal of Materials Processing Technology.2005,168(1):10~15
    107 J. J. Li, J. C. Wang, Q. Xu, G. C. Yang. Comparison of Johnson-Mehl-Avrami-Kologoromov (JMAK) kinetics with a phase field simulation for polycrystalline solidification. Acta Materialia,2007,55(3):825~832
    108 刘伯操. 铸造手册-铸造非铁合金. 第2版第3次印刷. 机械工业出版社,2001:5~9
    109 张恒华,许珞萍,邵光杰.A356铝合金半固态重熔温度场的有限元模拟.材料热处理学报.2002,23(2):37~43
    110 李建超,谢麒麟,王宝峰,麻永林,崔建忠.铸造铝合金圆锭温度场试验研究和数值模拟.特种铸造及有色合金.2006,26(6):337~340
    111 赵建华,桑宝光,龙思远.基于ANSYS的磨球金属型铸造工艺优化设计.铸造.2006,55(2):201~203
    112 刘兴龙,曲仕尧,邹增大,王新洪.基于ANSYS的中厚板补焊焊接温度场的数值模拟. 焊接技术.2005,34(1):14~16
    113 向华,曲选辉,郭剑锋,郑州顺.基于ANSYS的硬质合金MIM充模数值模拟.稀有金属材料与工程.2004,33(8):815~818
    114 齐慧,杨屹,蒋玉明.基于ANSYS铸件充型与凝固数值模拟的研究.铸造技术.2002,23(4):216~218
    115 M. Janik, H. Dyja. Modeling of three-dimensional temperature field inside the mould during continuous casting of steel. Journal of Materials Processing Technology.2004,157-158:177~182
    116 H. Zhang, H. Nagaumi, Y. Zuo, J. Cui. Couplped modeling ofelectromagnetic field, fluid folw, heat transfer and solidificaiotn during low frequency electromagnetic casting of 7XXX aluminum alloys Part 1: development of a mathematical model and comparison with experimental results. Materials Science and Engineering.2006
    117 张朝晖,范群波,贵大勇,张淑玲,刘颖. Ansys 8.0 热分析教程与实例解析. 中国铁道出版社,2005:2~5
    118 P. Bergese. Specific Heat, Polarization and heat conduction in microwave heating systems: A nonequilibrium thermodynamic point of view. Acta Materialia.2006,54:1843~1849
    119 赵镇南.传热学.高等教育出版社,2002:11~12
    120 M. Monde, Hi. Arima, W. Liu, Y. Mitutake, Jaffar A. Hammad. An analytical solution for two-dimensional inverse heat conduction problems using Laplace transform. International Journal of Heat and Mass Transfer.2003,46:2135~2148
    121 H. C. Liao, Y. Sun, G. X. Sun. Correlation between mechanical properties and amount of dendritic α-Al phase in as-cast near-eutectic Al-11.6%Si alloys modified with strontium. Materials Science and Engineering.2002,A335:62~66
    122 K. Chattopadhyay, R. Goswanmi. Melting and superheating of metals and alloys. Progress in Materials Science.1997,42:287~300
    123 J. Wang, S. X. He, B. D. Sun, Q. X. Guo, M. Nishio. Grain refinement of Al–Si alloy (A356) by melt thermal treatment. Journal of Materials Processing Technology.2003,141:29~34
    124 S. A. Kori, B. S. Murty, M. Chakraborty. Development of an efficient grain refiner for Al-7Si alloy. Materials Science and Engineering.2000,A280: 58~61
    125 T. Sritharan, H. Li. Influence of titanium to boron ratio on the ability to grain refine aluminium-silicon alloys. Journal of Materials Processing Technology.1997,63:585~589
    126 A. K. P. Rao, K. Das, B. S. Murty, M. Chakraborty. Effect of grain refinement on wear properties of Al and Al-7Si alloy. Wear.2004,257:148~153
    127 J. G. Conley, J. Huang, J. Asada, K. Akiba. Modeling the effects ofcooling rate, hydrogen content, grain refiner and modifier on microporosity formation in Al A356 alloys. Materials Science and Engineering.2000,A285:49~55
    128 C. Xu, M. Forukawa, Z. Horita, T. G. Langdon. The evolution of homogeneity and grain refinement during equal-channel angular pressing: A model for grain refinement in ECAP. Materials Science and Engineering.2005,A398:66~76
    129 W. D. Griffiths, D. G. Mccartney. The effect of electromagnetic stirring during solidification on the structure of Al-Si alloys. Materials Science and Engineering.1996,A216:47~60
    130 B. I. Jung, C. H. Jung, T. K. Han, Y. H. Kim. Electromagnetic stirring and Sr modification in A356 alloy. Journal of Materials Processing Technology.2001,111: 69~73
    131 X. Jian, H. Xu, T. T. Meek, Q. Han. Effect of power ultrasound on solidification of aluminum A356 alloy. Materials Letters.2005,59: 190~193
    132 L. H. Lewis, K. Gallagher, K. Wu, D. J. Branagan, C. H. Sellers. Evident for elemental partitioning in gas-atomized Nd2Fe14B modified by alloying additions. Journal of Alloys and Compounds.2000,302(1-2):239~247
    133 M. Lohmann, H. Kirsch, A. Schmidt-Ott. High pressure assited electrostatic atomization of liquid metals. Journal of Aerosol Science.1996,27(1):S185~S186
    134 D. Bergmann, U. Fritsching, K. Bauckhage. A mathematical model for cooling and rapid solidification of molten metal droplets. International Journal of Thermal Sciences.2000,39:53~62
    135 M. Yan, W. Z. Zhu, B. Cantor. The microstructure of as-melt spun Al-7%Si-0.3%Mg alloy and its variation in continuous heat treatment. Materials Science and Engineering.2000,A284:77~83
    136 L. Katgerman, F. Dom. Rapidly solidified aluminium alloys by melt spinning. Materials Science and Engineering.2004,A375-377:1212~1216
    137 Z. K. Zhao, J. C. Li, Q. Jiang. Hypereutectic Al-Si binary alloys prepared by melt spinning method. Advanced Engineering Materials.2004,6(5):303~306
    138 Z. W. Chen, J. S. Li, W. Q. Wan, L. Liu, H. Z. Fu. Solidification behaviour of Al-7%Si-Mg casting alloys. Transactions of Nonferrous Metals Society of China.2005,15(1):41~44
    139 N. Stoichev, K. Petrov, S. Yaneva, P. Kovachev, N. Tzvetanova. Micro-structure development in Al-Si microcrystalline alloys. Materials Science and Engineering.2002,A337:12~16
    140 范雄. X射线金属学. 机械工业出版社,1980:77~85
    141 丘利,胡玉和. X射线衍射技术及设备.冶金工业出版社,1998:269
    142 A. Bendijk, R. Delhez, L. Katgerman, TH. H.Dekeijser, E. J. Mittemeijer, N. M. Vanderpers. Characterization of Al-Si alloys rapidly quenched from the melt. Journal of Materials Science.1980,28:2803~2810
    143 P.A. Rometsch, G.B. Schaffer. An age hardening model for Al-7Si-Mg casting alloys. Materials Science and Engineering.2002,A325:424~434
    144 P. Haasen. 物理金属学. 肖纪美,马如璋,吴兵,杨顺华. 科学出版社,1984:299~309
    145 N. A. Dheir, M. Khraisheh, K. Saito, A. Male. Silicon morphology modification in the eutectic Al-Si alloy using mechanical mold vibration. Materials Science and Engineering.2005,A393:109~117
    146 A. Knuutinen, K. Nogita, S.D. Mcdonald, A. K. Dahle. Modification of Al-Si alloys with Ba, Ca, Y, and Yb. Journal of Light Metals.2001,1:229~240
    147 K. Nogita, A. K. Dahle. Effects of boron on eutectic modification of hypoeutectic Al-Si alloys. Script Materialia.2003,48:307~313
    148 S. A. Kori, B. S. Murty, M. Chakraborty. Development of an efficient grain refiner for Al-7Si alloy and its modification with strontium. Materials Science and Engineering.2000,A283:94~104
    149 王汝耀,鲁薇华. 钛对AlSi7Mg0.3合金力学性能的影响. 特种铸造及有色合金.1999,1:16~17
    150 李伟,范洪远. Ba变质对亚共晶Al-Si合金初生α固溶体的细化作用. 轻合金加工技术.1998,26:9~13
    151 S. Nafisi, O. Lashkari, R. Ghomashchi, F. Ajersch, A. Charette. Microstructure and rheological behavior of grain refined and modified semi-solid A356 Al-Si slurries. Acta Materialia.2006,54(13):3503~3511
    152 S. A. Argyopoulos, G. L. S. Chow. An experimental investigation on the assimilation and recovery of strontium-magnesium alloys in A356 melts. Journal of Light Metals.2002,2(4):253~262
    153 Q. G. Wang, D. Apelian, D. A. Lados. Fatigue behavior of A356/357 aluminum cast alloys. PartⅡ-Effect of microstructural consiituents. Journal of Light Metals.2001,1(1):85~97
    154 J. H. Kim, J. W. Choi, J. P. Choi, C. H. Lee, E. P. Yoon. A study on the variation of solidification contraction of A356 aluminum alloy with Sr addition. Journal of Materials Science Letters.2000,19:1395~1398
    155 L. Lu, K. Nogita, A. K. Dahle. Combining Sr and Na additions in hypoeutectic Al-Si foundry alloys. Materials Science and Engineering.2005,A399:244~253
    156 M.A. Easton, H. Kaufmann and W. Fragner. The effect of chemical grain refinement and low superheat pouring on the structure of NRC castings of aluminium alloy Al–7Si–0.4Mg. Materials Science and Engineering.2006, A420(1-2):135~143
    157 Y. J. Zhang, N. H. Ma, Y. K. Le, S. C. Li, H. W. Wang. Mechnical properties and damping capacity after grain refinement in A356 alloy. Materials Letters.2005,59:2174~2177
    158 X. F. Liu, L. N. Yu, J. W. Liu, Z. Q. Wang, X. F. Bian. A new technique to refine pure aluminum by Al-Ti-C mold. Materials Science and Engineering.2005,399(1-2):267~270
    159 乔进国,刘相法,冯增建,孙晓,边秀房. Al-5%Ti-0.07%B对Al-Si活塞合金组织和性能的影响. 铸造.2003,52(9):679~681
    160 P. S. Mohanty, J. E. Gruzleski. Grain refinement mechanisms of hypoeutectic Al-Si alloys. Acta Metallurgica.1996,44(9):3749~3760
    161 L. F. Mondolfo. 铝合金的组织与性能. 王祝堂,张振录,郑璇. 冶金工业出版社.1988:215~225
    162 郝风昌,孝云祯,温景林. Al-Ti-C晶粒细化剂的实验研究. 轻合金加工技术.2001,29(10):10~13
    163 陈忠伟,何志,介万奇. Al-5Ti细化剂和Al-10Sr变质剂对A357合金微观组织和力学性能的影响. 铸造.2005,54(2):129~133
    164 王平,路贵民,崔建忠. 半固态A356合金触变成形件固溶组织与性能.东北大学学报(自然科学版).2003,24(12):1188~1191
    165 张恒华,许珞萍,邵光杰,余忠土. AlSi7Mg合金半固态压铸件热处理强化机理研究. 材料热处理学报.2003,24(2):62~65
    166 孙敏,杨杰,张豪. 喷射成型A356合金组织及力学性能的研究. 铸造技术.2005,26(7):597~599
    167 D. J. Chakrabarti, D. E. Laughlin. Phase relations and precipitation in Al-Mg-Si alloys with Cu additions. Progress in materials Science.2004,49:389~410
    168 G. Liu, G. J. Zhang, X. D. Ding, J. Sun, K.H. Chen. Modeling the strengthing response to aging process of heat treatable aluminum alloys containing plate/disc-or rod/needle-shaped precipitates. Materials Science and Engineering.2003,A344:113~124
    169 Y. J. Li, S. Brusethaug, A. Olsen. Influence of Cu on the mechanical properties and precipitation behavior of AlSi7Mg0.5 alloy during aging treatment. Scripta Materialia.2006,54:99~103
    170 G. Ran, J. G. Zhou, Q. G. Wang. The effect of hot isostatic pressing on the microstructure and tensile properties of an unmodified A356-T6 cast aluminum alloy. Journal of Alloys and Compounds.2006,421(1-2):80~86
    171 G. A. Edwards, K. Stiller, G. L. Dunlop, M. J. Couper. The precipitation sequence in Al-Mg-Si alloys. Acta Materialia.1998,46(11):3893~3904
    172 D. Y. Louzguine, H. Kato, A. Inoue. Investigation of mechanical properties and devitrification of Cu-based bulk glass formers alloys with noble metals. Science and Technology of Advanced Materials.2003,4(4):327~331
    173 A. Inoue, W. Zhang, T. Zhang, K. Kurosaka. Cu-based bulk glassy alloys with high tensile strength of over 2000Mpa. Journal of Non-Crystalline Solids.2002,304(1-3):200~209
    174 H. Men, S. J. Pang, T. Zhang. Glass-forming ability and mechanical properties of Cu50Zr50-xTix alloys. Materials Science and Engineering.2005,A408(1-2):326~329
    175 E. S. Park, H. J. Chang, D. H. Kim, T. Ohkubo, K. Hono. Effect of the substitution of Ag and Ni for Cu on the glass forming ability and plasticity of Cu60Zr30Ti10 alloy. Scripta Materialia.2006,54(9):1569~1573
    176 H. R. Wang, Y. L. Lai, X. D. Hui, Y. Chen, G. H. Min, Y. F.Ye. Effect of cooling rate on crystallization of metallic Zr-Cu-Ni glass. Journal of Alloys and Compounds.2003,350:178~183
    177 Y. C. Kim, J. C. Lee, P. R. Cha, J. P. Ahn, E. Fleury. Enhanced glass forming ability and mechanical properties of new Cu-based metallic glasses. Materials Science and Engineering.2006,437(2):248~253
    178 H. M. Fu, H. Wang, H. F. Zhang, Z. Q. Hu. The effect of Gd addition on the glass-forming ability of Cu-Zr-Al alloy. Scripta Materialia.2006,55(2):147~150
    179 K. Asami, C. L. Qin, T. Zhang, A. Inoue. Effect of additional elements on the corrosion behavior of a Cu-Zr-Ti bulk metallic glass. Materials Science and Engineering.2004,A375-377:235~239
    180 T. L. Cheung, C. H. Shek. Thermal and mechanical properties of Cu-Zr-Al bulk metallic glasses. Journal of Alloys and Comounds.2006
    181 M. Lasocka, M. Harmelin. The effect of heating rate on the activation energy for glass-to-crystal transition. Scripta Metallurgica.1984,18(10):1095~1098
    182 W. J. Wright, R. B. Schwarz, W. D. Nix. Localized heating during Serrated plastic flow in bulk metallic glasses. Materials Science and Engineering. 2001,A(319-321): 229~232
    183 Y.J.Yang, D. W. Xing, J. Shen, J. F. Sun, S. D. Wei, H. J. He, D. G. Mccartney. Crysrallization kinetics of a bulk amorphous Cu-Ti-Zr-Ni alloy investigated by differential scanning calorimetry. Journal of Alloys and Compounds.2006,415(1-2):106~110
    184 R. Jain, N. S. Saxena, D. Bhandari, S. K. Sharma, K. V. R. Rao. Crystallization kinetics of CuxTi100-x(x=43, 50 and 53) glasses. Physica B: Condensed Matter.2001,301(3-4):341~348
    185 A. Molinari. Collective Behavior and spacing of adiabatic shear bands. Journal of Mechanics and Physics of Solids.1997,45(9):1551~1575

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700