核反应堆用17-4PH不锈钢的性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
17-4PH沉淀硬化不锈钢作为反应堆用结构材料,被西方大国如美国和法国广泛应用于PWR等核电站的阀杆等部件。这主要是由于其具有良好的机械性能、杰出的高温性能,简单的热处理工艺和对一回路高温水的良好耐腐蚀性。但是随着服役时间的延长,高强度的17-4PH不锈钢将可能产生热时效脆化。稳压器顶部的安全阀阀杆因处于较高的工作温度区(350℃左右),17-4PH不锈钢阀杆热时效脆化损伤就更加严重。所以,研究17-4PH不锈钢的热时效脆化是必要的。
     基于17-4PH不锈钢在核反应堆中的服役条件,本文采用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、电子探针(EPMA)、差热分析(DTA)等测试分析手段,借助固态金属中的扩散与相变,热力学等理论对17-4PH不锈钢回火处理、时效处理过程中的固态相变、硬化行为及其对耐磨性的影响进行了系统深入的研究。
     对17-4PH不锈钢在1040℃固溶处理后进行了350-595℃的回火处理,该钢在一定的温度和时间会达到不锈钢的峰值硬度,在随后的保温过程中,不锈钢的硬度下降。通过XRD和TEM观测分析了17-4PH不锈钢在595℃保温过程中的相变,在保温过程中,板条状马氏体基体变化不大,但在马氏体内部析出大量的和基体有取向关系的ε-Cu颗粒,其取向关系为:(101)_M∥(111)_(Cu),[111]_M∥[110]_(Cu).并且由马氏体基体内部析出和马氏体有(101)_M∥(511)_c,[111]_M∥[149]_C.取向的纤维状的二次碳化物M_(23)C_6。由热力学计算出17-4PH不锈钢中ε-Cu形核驱动力△G_m=-13226.2J/mol。并求出不锈钢在中温回火处理过程中ε-Cu颗粒析出的激活能为137.8KJ/mol。细小共格的ε-Cu相的弥散析出和少量和基体有取向关系的M_(23)C_6在马氏体内析出,使其达到峰值硬度。在随后的保温过程中,主要的硬化相ε-Cu相发生Ostwald熟化,颗粒体积长大,由于碳化物的析出,马氏体基体的含碳量下降,导致了马氏体基体的硬度的下降。
     17-4PH不锈钢在350℃时效6个月后,spinodal分解开始沿晶界进行,其形貌为黑白相间的层片状组织,其方向为平行于晶界的法线方向还有少量的逆变奥氏体产生。在350℃时效15个月后,spinodal分解进行较充分,逐渐由晶界发生转向晶内;基体中析出有严格取向的细小的G相,它和ε-Cu的取向关系为:(111)_G∥(111)_(ε-Cu),[011]_G∥[011]_(ε-Cu),,此外基体中还析出层片状的σ相并有17%的逆变奥氏体产生。
     17-4PH不锈钢在中温长期时效过程中,其机械性能会随着时效时间的延长会发生变化:不锈钢的动态断裂韧性随时效时间的延长呈指数衰减形式下降,产生时效脆化;其拉伸强度随时效时间的延长而增加,时效温度越高,强度增量越大;同时,该钢的延伸率和断面收缩率降低。
     17-4PH不锈钢在中温长期时效过程中,其耐蚀性随时效时间的延长而降低。其主要原因是不锈钢在长期时效过程中析出了大量的第二相,这些第二相与基体之间存在电位差,降低了不锈钢的耐蚀性。
     盐浴渗氮处理后,17-4PH不锈钢渗层中主要物相为含扩展(含氮)马氏体、CrN,Fe_4N,以及Fe_3O_4。并且处理温度越高,不锈钢渗氮层中形成的Fe_3O_4以及CrN含量越多。含氮马氏体的晶格常数随氮化处理温度的提高而上升,该钢在盐浴渗氮中的激活能为190.9kJ/mol。
     17-4PH不锈钢进行盐浴渗氮处理后,能得到较厚的渗氮层,处理温度越高,渗氮层越厚。其滑动磨损量大大下降,即由H1100状态时的21.1mg降低到580℃盐浴渗氮处理后的1.0mg,但是试样在0.5MH_2SO_4+1%NaCl介质中的耐蚀性能降低。
     17-4PH不锈钢在350℃和400℃进行离子渗氮处理后,能得到10微米左右的渗氮层,这一渗氮层的硬度较高,可以大大改善耐磨性,其耐磨性和盐浴渗氮后的耐磨性相当。该不锈钢在高于400℃进行离子渗氮处理时会产生CrN。
The type 17-4 precipitation hardening (17-4 PH) stainless steel is widely used asstructural materials for chemical and power plants, such as light water reactors(LWRs) and pressurized water reactors (PWRs) due to its high strength, highfracture toughness, good weldability and ease of machinability. These materials haveto service for a very long period of time during the life span of the power plants.Hence, understanding the microstructure evolution at the service temperature (about350℃) is very important.
     Based on a review of application, development and progress of 17-4PH stainlesssteel, the solid-state phase transition, hardening behavior and their influence onmechanical properties of the stainless steel subjected to long term intermediatetemperature aging treatment were researched systematically, and the salt bathingnitriding and plasma nitriding of 17-4PH stainless steel were researched, too, by thetheories of diffusion and phase transition in solid metal, and by means of variousanalytical techniques such as XRD, SEM, TEM, EPMA and DTA.
     When the 17-4PH stainless steel is tempered treated at 350-595℃for aboutcertain time after solution treating at 1040℃, the bulk hardness of the steel attains itspeak value, and then decreases at all time. When tempering temperature is lower, thepeak hardness will not attain in short aging time.
     TEM and XRD analysis shows that the fine spheroid-shape copper with the f.c.c. crystal structure precipitated after tempering treatment at 595℃for 4 hours,whereorientation relationship between martensite (b.c.c.) and copper (f.c.c.) can bedescribed as follows: (101)_M//(111)_(Cu), [111]_M//[110]_(Cu), which obeyed aNishiyama-Wassermann relationship and K-S relationship.
     Synchronously, the fiber-shape secondary carbide, M_(23)C_6, precipitated frommartensite matrix, where orientation relationship between martensite (b.c.c.) andfiber carbide (f.c.c.) can be described as follows: (101)_M//(511)_C, [111]_M//[149]_C.But, the appearance of lath martensite matrix is unchanged afer tempering at 595℃.
     Calculated by the thermodynamic, the nucleus driving force (△G_m) of precipitateofε-Cu in 17-4PH stainless steel is 13226.2 J/mol. The active energy of precipitationofε-Cu in 17-4PH stainless steel is 137.8KJ/mol by calculated from ageingprecipitation kinetics.
     The precipitationsε-Cu and M_(23)C_6, which both are coherent with martensitematrix, are responsible for strengthening of the alloy. In the following aging, theprecipitationε-Cu grows from the f.c.c structure to a critical dimension, theprecipitate loses the coherent relationship with matrix, which has not theprecipitation hardening effect. The precipitation of secondary carbide, M_(23)C_6,decreases the carbon content of matrix further, which lessens the strength of themartensite matrix, leading the bulk hardness decease.
     When 17-4PH stainless steel was subjected to long-term aging at 350℃, thespinodal decomposition occurred firstly at the grain boundary. The fine scalespinodal decomposition of martensite was Cr-richα′(bright image lamellae) andFe-richα(dark image lamellae), respectively, which have the alternated lamellaeimage of theα′andαphase perpendicular to the grain boundary. With prolongingaging time, the decomposition microstructure expanded from grain boundary tointerior, and its wavelength changed little. When the alloy is aged at 350℃for 9months, some reverted austenite is formed and theε-Cu precipitate ripened. Whenthe alloy is aged from 9 to 12 months, some bulk secondary carbides precipitated.Then the aging time is extended to 11,000hrs, a magnificent amount of reversed austenite transformed and the G-phase, a kind of intermetallic, precipitation occursnearby theε-Cu precipitate in the matrix. The orientation relationship between theG-phase andε-Cu (f.c.c.) can be described as follows: (111)G//(111)ε-Cu, [101]G//[101]ε-Cu. This relation suggests that a Cubic-Cubic relationship is obeyed.
     After the17-4PH stainless steel was subjected to long-term aging at 350℃,itsmechanical properties were changed with the aging time, for example the dynamicfracture toughness of the alloy was decreased in exponential decay form and theaging ebrittlement occurred. The fractography of fracture under different agingconditions is changed from the ductile fracture to brittle fracture with the extensionof isothermal aging time at 350℃. The tensile strength of the alloy increased with thegoing on aging. The higher aging temperature was, the bigger the increment oftensile strength was. But, the elongation and the contraction of area of the alloyreduced after aging.
     After 17-4PH stainless steel was subjected to long-term aging at 350℃, thecorrosion resistance lessened with the aging time increasing. The reason for this isthe various secondary phases precipitated during long term aging. The potentialdifference between the secondary phases and the matrix is responsible for thecorrosion resistance reduction.
     When 17-4PH stainless steel was subjected to the salt bathing nitriding, the mainphase of the nitrided layer was expanded martensite (α′)、Fe_(2-3)(N,C)、CrN、Fe_4N andFe_3O_4. The amount of Fe_3O_4 and CrN was increased with the treatment temperaturegoing up. The lattice constant of expanded martensite has the similar change. Theactivation energy of nitriding in this salt bath was 190.9kJ/mol.The depth of thenitrided layer was increased with the treatment temperature increasing. After thealloy nitriding at 580℃, the mass loss in the slide wear test was reduced from21.1mg for H1100 condition to 1.0mg. But, the corrosion resistance of the alloy in0.5MH_2SO_4+1%NaCl was reduced.
     When the 17-4PH stainless steel was subjected to the plasma nitriding, thenitiding layer with higher micro-hardness was attained. The wear resistance of the alloy after plasma nitriding compared with that for the salt bath nitiding. If theplasma nitriding temperature was above 400℃, the CrN was transformed in thenitrided layer.
引文
[1]. Mats Hattestrand, Jan-Olof Nilsson, Krystyna Stiller, Ping Liu and Marcus Andersson, Acta Materialia, 2004, 52 (4): 1023-1037.
    [2]. G. Atxaga, A. Pelayo and A.M. Irisarri, Engineering Failure Analysis, 2006, 13(2):226-234
    [3].李志,支敏学,刘天琦,赵振业.新型超高强度-高韧性马氏体沉淀硬化不锈钢的组织和力学性能初探[J],航空材料学报,2000,20(03):1-5.
    [4].钟平,夏明赞,王俊丽,黄万胜,杨根林,王丽.时效对0Cr15Ni5Cu2Ti钢微观组织与力学性能的影响[J]航空材料学报,2003,23(04)21-25.
    [5]. M. Niimi, Y. Matsui, S. Jitsukawa, T. Hoshiya, T. Tsukada, M. Ohmi, H. Mimura, N. Ooka and K. Hide, Journal of Nuclear Materials, 1999, 271-272: 92-96.
    [6]. Maruyama, N. a, Sugiyama, M., Hara, T., Tamehiro, H., Materials Transactions, JIM,1999, 40(4): 268-277
    [7].邹红,王均,李聪,左汝林,邱绍宇,沈保罗,17-4PH不锈钢350℃长期时效组织演化的透射电镜观察[J],核动力工程2005,04:397-401.
    [8]. Rack, H.J. a, Kalish, D., Metallurgical Transactions A (Physical Metallurgy and Materials Science), 1974, 5(7): 1595-1605
    [9].徐爱东,2004年全球不锈钢产量约2405.5万吨[J],中国金属通报,2005,02:10.
    [10]. R. M. Davison, T. R. Laurin, J. D. Redmond, H. Watanabe and M. Semchyshen, Materials and Design, 1986, 7(3):111-119
    [11].陆世英,张廷凯,康喜范等,不锈钢[M],北京,原子能出版社,1995.7.
    [12]. L. E. Thomas and D. S. Gelles, Journal of Nuclear Materials, 1982, 108-109:490-503.
    [13]. D. Kaczorowski, P. Combrade, J. Ph. Vernot, A. Beaudouin and C. Crenn, Tribology International, 2006, 39(12): 1503-1508.
    [14]. Chan-Jin Park, Myung-Kyu Alan and Hyuk-Sang Kwon, Materials Science and Engineering: A, 2006, 418(1-2):211-217.
    [15]. L. M. Young, M. R. Eggleston, H. D. Solomon and L. R. Kaisand, Materials Science and Engineering A, 1995, 203(1-2):377-387.
    [16]. J. R. ScullyM. J. Cieslak and J. A. Van Den Avyle, Scripta Metallurgica et Materialia, 1994, 31 (2): 125-130.
    [17].赵振业,合金钢设计[M],北京,国防工业出版社,1999,9.
    [18]. Hsiao C N, Chiou C S, Yong J R. Materials Chemistry and Physics, 2002, 74:132-142.
    [19]. Nakagawa H., Miyazaki T., Yokota H., Journal of Materials Science, 2000, 35: 2245-2253.
    [20]. D. H. Ping, M. Ohnuma, Y. Hirakawa, Y. Kadoya and K. Hono, Materials Science and Engineering A, 2005, 394(1-2): 285-295.
    [21]. J. R. ScullyM. J. Cieslak and J. A. Van Den Avyle, Scripta Metallurgica et Materialia, 1994, 31(2):125-130.
    [22].张松,张春华,文劾忠,吴维,王茂才,2Cr13钢表面激光熔覆Co基合金组织及其性能[J],稀有金属材料与工程,2001,03:220-223.
    [23]. V. SeetharamanM. Sundararaman and R. Krishnan, Materials Science and Engineering, 1981, 47(1):1-11.
    [24]. Ping Liu, A. H. Stigenberg and J.-O. Nilsson, Acta Metallurgica et Materialia, 1995, 43(7):2881-2890.
    [25]. Atsuo Ito, Xulin Sun and Tetsuya Tateishi, Materials Science and Engineering C, 2001, 17(1-2):161-166.
    [26].吴承建,陈国良,强文江,金属材料学[M],北京,冶金工业出版社,2000.10(2003.2重印).
    [27]. Y. Hosoi, N. Wade, T. Urita, M. Tanino and H. Komatsu, Journal of Nuclear Materials, 1985, 133-134: 337-342.
    [28].崔忠圻,金属学与热处理[M],北京,机械工业出版社,1989.11(1992.10,3次印刷).
    [29]. Habibi Bajguirani H R. Materials Science and Engineering A, 2002, 338: 142-159.
    [30]. DhoogeA. Vinckier, International Journal of Pressure Vessels and Piping, 1987, 27(4): 239-269.
    [31]. Mats Hattestrand, Jan-Olof Nilsson, Krystyna Stiller, Acta Materialia, 2004, 52 (4):1023-1037
    [32]. E. Angelini, B. De Benedetti and E Rosalbino, Corrosion Science, 2004, 46(6):1351-1367.
    [33]. Chan-Jin Park, Hyuk-Sang Kwon and M. M. Lohrengel, Materials Science and Engineering A, 2004, 372(1-2): 180-185.
    [34]. T. Nakazawa, H. Kimura, K. Kimura and H. Kaguchi, Journal of Materials Processing Technology, 2003, 143-144: 905-909.
    [35]. S. Wisutmethangoon, T. F.Kelly, J. E. Flinn, P. P. Camus, D. J. Larson and M. K. Miller, Materials Science and Engineering A, 1998,250(1) 43-48.
    [36]. Makoto Kikuchi, Masanori Kajihara and Si-Kyung Choi, Materials Science and Engineering A, 1991, 146(1-2):131-150.
    [37]. J. Erneman, M. Schwind, P. Liu, J. -O. Nilsson, H. -O. Andren and J. Agren, Acta Materialia, 2004, 52(14): 4337-4350.
    [38]. R.D. Knutsen, C. I. Lang and J. A. Basson, Acta Materialia, 2004, 52(8): 2407-2417.
    [39].孟繁茂,付俊岩,现代含铌不锈钢[M],北京,冶金工业出版社,2004.3.
    [40]. Angelo Fernando Padilha, Izabel Femanda Machado and Ronald Lesley Plaut, Journal of Materials Processing Technology, 2005, 170(1-2): 89-96.
    [41]. R. Sandhya, K. Bhanu Sankara Rao and S.L. Mannan, Materials Science and Engineering A, 2005, 392(1-2): 326-334.
    [42]. R. C. Thomson and M. K. Miller, Acta Materialia, 1998, 46(6):2203-2213.
    [43]. F. Ernst, Y. Cao and G. M. Michal, Acta Materialia, 2004, 52,(6): 1469-1477.
    [44]. D. H. Ping, M. Ohnuma, Y. Hirakawa, Y. Kadoya and K. Hono, Materials Science and Engineering A, 2005, 394(1-2): 285-295.
    [45]. A. Ragab, H. Alawi and K. Sorein, Mechanics of Materials, 1994, 18(1):69-77.
    [46]. G. Atxaga, A. Pelayo and A. M. Irisarri, Engineering Failure Analysis, 2006, 13(2): 226-234.
    [47]. R. L. Fleischer, Acta Metallurgica, 1963, 11(3):203-209.
    [48]. Yoshihiro Tomita and Takeshi Iwamoto, International Journal of Mechanical Sciences, 2001, 43(9) 2017-2034.
    [49].哈宽富,金属力学性质的微观理论[M],北京,科学出版社,1983.8.
    [50].李志宏,沉淀硬化不锈钢的热处理及性能[J],国外金属热处理,1998,06:13-16.
    [51].臧鑫士,沉淀硬化不锈钢的组织和性能[J],材料工程,1992,03:51-56.
    [52].孙轩华,王学优,姜子科,贺奇,半奥氏体沉淀硬化不锈钢PH15-7Mo“TH制度”热处理的研究[J],沈阳工业大学学报,1986,01:93-102.
    [53]. Rajeev Kapoor and I. S. Batra, Materials Science and Engineering A, 2004, 371(1-2):324-334.
    [54]. R. N. Wright, Materials Science and Engineering, 1976, 22:223-230.
    [55]. A.S.C.M. D'Oliveira, R.S.C. Paredes and R.L.C. Santos, Journal of Materials Processing Technology, 2006, 171(2): 167-174.
    [56]. Andre Paulo Tschiptschin, Carlos Mario Garz6n and Diana Maria. Lopez,, Tribology International, 2006, 39(2): 167-174.
    [57]. D. Manova, S. Mandl, H. Neumann and B. Rauschenbach, Surface and Coatings Technology, 2005, 200(1-4): 137-140.
    [58]. N. Saklakoglu, I. E. Saklakoglu, K.T. Short and G.A. Collins, Wear, 2006, 261(3-4): 264-268.
    [59]. Eun Pil Song, Byoungchul Hwang, Sunghak Lee, Nack J. Kim and Jeehoon Ahn, Materials Science and Engineering." A, 2006, 429(1-2): 189-195.
    [60]. N. Dingremont, E. Bergmann, M. Hans and P. Collignon, Surface and Coatings Technology, 1995, 76-77(1):218-224.
    [61]. G. Pantazopoulos, T. Papazoglou, P. Psyllaki, G. Sfantos, S. Antoniou, K. Papadimitriou and J. Sideris, Surface and Coatings Technology, 2004, 187(1):77-85.
    [62]. J. Dutta Majumdar, B. Ramesh Chandra and I. Manna, Tribology International, 2007, 40(1): 146-152.
    [63]. P.K. Ajikumar, Ananthi Sankaran, M. Kamruddin, R. Nithya, P. Shankar, S. Dash, A.K. Tyagi and Baldev Raj, Surface and Coatings Technology, 2006, 201 (1-2):102-107.
    [64]. E. Richter, R. Gunzel, S. Parasacandola, T. Telbizova, O. Kruse and W. M611er, Surface and Coatings Technology, 2000, 128-129:21-27.
    [65].李聪,锆合金的低周疲劳行为研究[D],博士论文,成都,四川大学,2003.
    [66].李忠诚,我国核电发展的现状和前景[J],广西电力建设科技信息,2006,02:40-40
    [67].R.W.卡恩,P.哈森,E.J.克雷默主编,材料科学与技术丛书[M],10B卷,核材料,科学出版社,1999,北京,49-51.
    [68]. Hofmann,P. J., Friedrich, B. C.,EPRI NP-5874,Palo Alto, CA: Electric Power Research Institute[C],
    [69].张少棠,钢铁材料手册 第5卷 不锈钢[M],北京,中国标准出版社,2001,8.
    [70].臧鑫士,17—4PH不锈钢的力学性能[J],航空工程与维修,1996,05:21-23.
    [71].赵莉萍,杨慧,李慧琴,固溶处理和时效对17-4PH沉淀硬化不锈钢组织性:能的影响[J],特殊钢,2003,24(7)24-25.
    [72]. Salinas-Bravo, V.M., Gonzalez-Rodriguez, J.G., British Corrosion Journal, 1995, p30(1)77-79.
    [73]. Jui-Hung Wu and Chih-Kuang Lin, Materials Science and Engineering A, 2005, 390(1-2):291-298.
    [74]. Viswanathan, U.K. a, Banerjee, S., Krishnan, R. Materials Science & Engineering A, 1988, 104: 181-189.
    [75]. R. D. K. Misra, C. Y. Prasad, T. V. Balasubramanian and P. Rama Rao, Scripta Metallurgica, 1987, 21(8): 1067-1070.
    [76]. R. D. K. Misra, C. Y. Prasad, T. V. Balasubramanian and P. Rama Rao, Scripta Metallurgica, 1986, 20(5):713-716.
    [77].夏晓玲,李玉清,吴大茂,不同热处理对17-4PH钢过时效组织与性能的影响[J],材料科学与工艺,1997,5(2)106-110.
    [78].黄根良,17-4PH沉淀硬化不锈钢的组织和性能研究[J],钢铁,1998,33(4)44-46.
    [79]. W. C. Clarke,. Transactions of theMetallurgical Society of AIME, 1969, (245): 2135~2140.
    [80]. Wen-Tung Chien, Chung-Shay Tsai, Journal of Materials Processing Technology, 2003, 140: 340-345.
    [81]. Yrieix B, Guttmann M., Materials Science and Technology, 1993, (9): 125-134.
    [82]. Murayama M, Katayama Y, Hono K., Metallurgical and Materials Transactions A,1999, 30A: 345-353.
    [83]. W. D. You, J.H.Lee, S.K.Shin, B.H.Choe, U.Paik, J.H.Lee, Materials Science Forum, 2005, 486-487: 241-244.
    [84]. F. Christien, R. Le Gall, G. Saindrenan,, Scripta Materialia, 2003,48:11-16.
    [85]. Christien, F., Le Gall, R., Saindrenan, G., Metallurgical and Materials Transactions A, 2003, 34A (11): 2483-2491.
    [86]. Christien, F., Le Gall, R., Saindrenan, G., Diffusion and Defect Data. Pt A Defect and Diffusion Forum, 2003, 216-217: 275-284.
    [87]. P. Kochmanski, J. Nowacki, Surface & Coatings Technology, 2006, 2006: 558-6562.
    [88]. Y. Sun and T. Bell, Surface Engineering, 2003, 19:331-336.
    [89]. U.K. Viswanathan, P. K. K. Nayar, and R. Krishnan, Materials Science and Technology, 1989, 5: 346-349
    [90]. Y. Meyzaud and R. Cozar, Proceedings of Topical Conference on Ferritic Alloys for Use in Nuclear Energy Technologies, Snowbird, Utah, 1984.
    [91]. J. J. Shiao, C. H. Tsai, J. J. Kai, et al., Journal of Nuclear materials, 217(1994), p.269.
    [92]. F. Danoix and P. Auger, Materials Characterization, 2000, 44: 177-201
    [93]. Hsu Kuei-Chang and Lin Chih-Kuang, Metallurgical and Materials Transactions A:, 35A(2004), p. 3018.
    [94]. W. C. Chiang, C. C. Pu, B. L. Yu, et al., Materials Letters, 2003, 57: 2485-2488
    [95]. Arisoy, C. Fahir, Basman, Gokhan, Sesen and M. Kelami, Engineering Failure Analysis, 10(2003), p. 711.
    [96]. K. Stiller, M. Hattestrand, and F. Danoix, Acta Materialia, 1998, 46: 6063-6067.
    [97]. K. Stiller, F. Danoix, and M. Hattestrand, Materials Science and Engineering A, 1998, 250: 22-32
    [98].尹桂全,杨才福,吕忆农,任高强,含铜钢的时效硬化[J],钢铁研究学报,2004,16(4):61-63
    [99]. Altpeter, G. Dobmanna, K. -H. Katerbaub, M. Schickb, P. Binkeleb, P. Kizlerb and S. Schmauderb, Nuclear Engineering and Design, 2001, 206: 337-350
    [100]. Hombogen, E. and Glenn, R. C., Trans. Metall. Soc. AIME, 1960,218: 1064-1070.
    [101]. Osamura, K., Okuda, H., Takashima, M., Asano, K., Furusaka, M., Materials Transactions, JIM, 1993, 34(4): 305-311
    [102]. Osamura, Kozo, Okuda, Hiroshi, Asano, Kazuo, Furusaka, Michihiro, Kishida, Koji, Kurosawa, Fumio, Uemor, Ryuji, ISIJ International, 1994, 34(2): 346-354.
    [103]. Othen, P. J., Jenkins, M.L., Smith, G.D.W. and Pythian, W.J., Phil. Mag. Lett. 1991, 64:. 383-391.
    [104]. Othen, P. J., Jenkins, M.L. and Smith, G.D.W., Phil. Mag. 1994, 70:1-14.
    [105]. Habibi, H.R., Atomic structure of the Cu precipitates in two stages hardening in maraging steel, Materials Letters, 2005, 50: 1824-1827
    [106]. Le Bouar, Y, Acta Materialia, 2001, 49(14): 2661-2669
    [107]. A. Caro, P. E. A. Turchi, M. Caro, E. M. Lopasso, Journal of Nuclear Materials, 2005, 336 (2-3): 233-242
    [108]. A. Caro, M. Caro, E. M. Lopasso, P.E.A. Turchi, D. Farkas, Journal of Nuclear Materials, 2006, 349:317-326
    [109]. O. Redlich and A. Kister, Ind. Eng. Chem. 1948, 40:345-355.
    [110]. Kimura, Yuuji, Takaki, Setsuo, ISIJ International, 1997, 37(3): 290-295
    [111]. Lu L, Gupta M, Lai MO. J Thermal Anal 1998,54:825-835
    [112]. Badini C, Marino F, Montorsi M, Guo XB. Mater Sci Eng A 1992, A157: 53-61.
    [113]. Malinov S, Markovsky P, Sha W. J Alloy Compd 2002,333: 122-32
    [114]. Nembach, E., 1997. Particle Strengthening of Metals and Alloys, Wiley, New York.
    [115]. M. E. Fine, D. Isheim, Scripta Materialia, 2005, 53: 115-118
    [116]. Russell, K. C., Brown, L.M., Acta Met, 1972, 20: 969-974
    [117]. P. Kizler, D. Uhlmann, S. Schmauder, Nuclear Engineering and Design, 2000, 196: 175-183
    [118]. Friedel, J., Philosophical Magazine A, 1982, 45: 271-285
    [119].戚正风,固态金属中的扩散与相变[M],北京,1998,机械工业出版社:332-333
    [120]. F. Liu, G.C. Yang and J.N. Liu, Thermochimica Acta, 2005, 438: 83-89
    [121]. W. Sha, Materials and Design, in press, doi: 10.1016/j. matdes.2006.02.018,
    [122].朱玉龙,V对贝氏体球墨铸铁组织与硬度的影响[J],北京科技大学学报,2000,22(1):41-43,
    [123] Wang Jun, Zou Hong, Wu Xiao-yon, et al., Materials Transactions, 2005, 46: 846-851.
    [124] Brown, J. E., Cerezo, A., Godfrey, T. J., Hetherington, M. G., Smith, G.D.W. Materials Science and Technology, 1990, 6(3): 293-300
    [125] Shek, C. H., Shao, Y. Z., Wong, K.W., Lai, J. K. L., Scripta Materialia, 1997, 37(4): 529-533
    [126] Brown, J. E., Smith, G. D. W., Surface Science, 1991, 246(1-3): 285-291
    [127] Danoix, F., Auger, P., Blavette, D., Microscopy and Microanalysis, 10 (2004) 349-354
    [128] K. L. Weng, H. R. Chen, J. R. Yang, Materials Science and Engineering A, 2004, 379: 119-132
    [129] Mateo A., Llanes, L., Anglada, M., Redjaimia, A., Metauer, G., Journal of Materials Science, 1997, 32: 4533-4540.
    [130] Dong-Seok Leem, Yong-Deuk Lee, Joong-Hwan Jun, Chong-Sool Choi, Scripta Materialia, 2001,45:767-72
    [131] Palmer, T.A., Elmer, J.W., Babu, S.S., Materials Science and Engineering A, 2004, 374: 307-321
    [132] Balan K. P., Venugopal Reddy A., Sarma D. S., Scripta Materialia, 1998,39:901-905.
    [133] J. W. Christian, The theory of transfomation in metals and alloys, Part 1 Equilibrium and General Kinetics Theory, Pergamon Press, Oxford (1975).
    [134] Nystrom, M., Karlsson, B. Materials Science & Engineering A, 1996, 215: 26-38.
    [135] Koussy, M. R. E., Mahallawi, I. S. E., Khalifa, W., Dawood, M.M.A., Bueckins, M. Materials Science and Technology, 2004, 20: 375-381
    [136] Seiichi Kawaguehi, Naruo Sakamoto, Genta Takano, Fukuhisa Matsuda, Yasushi Kikuchi, L'ubos Mraz, Nuclear Engineering and Design, 1997, 174: 273-285
    [137] Leax T. R., Brenner S. S., Spitznagel J. A., Metallurgical Transactions A, 1992, 23: 2725-2736.
    [138] H. Ramanarayan and T. A. Abinandanan, Acta Materialia, 2004, 52: 921-930
    [139] Ramanarayan and T. A. Abinandanan, Acta Materialia, 2003, 51:4761-4772 H.
    [140] 任晓兵,王笑天,清水谦一,唯木次男,Fe—1.83C马氏体调幅分解的TEM研究[J],金属学报,1994,30(07),289-295
    [141] 任晓兵,王笑天,清水谦一,唯木次男,Fe—C马氏体室温时效转变的研究Ⅰ—有序化[J],西安交通大学学报,1994,28(07),15-20
    [142] 任晓兵,王笑天,清水谦一,唯木次男,Fe—C马氏体室温时效转变的研究Ⅱ—调幅分解[J],西安交通大学学报,1994,28(07),21-25,
    [143] H.J. Beat-tie, F. L. Ver Snyder, Nature, 178 (1956)208.
    [144] G.L.F.Powell, J.V.Bee, Journal of materials science, 1996, 31:707-711.
    [145] Giridhar Madras, Benjamin J. McCoy, Chemical Engineering Science, 2003, 58(13): 2903-2909
    [146] Chung, H.M., International Journal of Pressure Vessels and Piping, 1992, 50:179-213
    [147] Sreenivasan, P.R. Transactions of the Indian Institute of Metals, 1996, 49: 677-696
    [148] Rossoll, A.; Berdin, C., Prioul, C., International Journal of Fracture, 2002, 115:205-226
    [149] Zhao, Qinxin, Zhu, Lihui, Gu, Haicheng, Lu, Yansun, American Society of Mechanical Engineers, Power Division (Publication)PWR, 1999, 34-2: 657-664
    [150] Sreenivasan, P. R., Ray, S.K., Mannan, S.L., Rodriguez, P., Journal of Nuclear Materials, 1996, 228: 338-345
    [151] 赵双群,张麦仓,董建新,谢锡善,新型高温合金700℃时效组织及力学性能[J],稀有金属材料与工程,2003,32(12)991-993
    [152] 李书江,王艳丽,林均品,林志,陈国良,微量C,B对高铌TiAl合金显微组织与力学性能的影响[J],稀有金属材料与工程,2004,33(02)144-148
    [153] Sreenivasan, P. R., Moitra, A., Ray, S. K., Mannan, S. L., International Journal of Fracture, 2004, 125: 387-403
    [154] Sreenivasan, P. R., Ray, S. K., Mannan, S. L., Rodriguez, P., Journal of Nuclear Materials, 1996, 228: 338-345
    [155] 张新平,史耀武,侯连春,用不同方法评定核压力容器用A508CL3钢动态断裂韧度的比较[J],核动力工程,1995,16(6):507~513
    [156] 冯德诚,评定结构材料临界脆性温度的新方法简介[J],核动力工程,1994,15(3)254-258,
    [157] Rice JR, Paris PC, Merkle JG., ASTM SPT 536, Philadelphia, American Society for Testing and Materials, 1973: 231-263
    [158] Server W L., Journal of Testing and Evaluation, 1978, 6: 29-34
    [159] Kobayashi T., Engineering Fracture Mechanics, 1984, 19: 49-65
    [160] Kobayashi, T., Engineering Fracture Mechanics, 1984 19: 67-79
    [161] Kobayashi, T., Yamamoto, I., Niinomi, M., Engineering Fracture Mechanics, 1986, 24: 773-782
    [162] Zhu L H, Zhao Q X., Gu H C, et al. Engineering Fracture Mechanics, 1999, (64): 327-336.
    [163] 贾学军,徐远超,张长义,宁广胜,李怀林,于庆凯,核压力容器钢辐照后动态断裂韧性测试及研究[J],原子能科学技术,1999,33(3)114-119,
    [164] Sumpter, J.D.G., Fatigue and Fracture of Engineering Materials & Structures, 1987, 10: 479-93
    [165] Roberts, R., Newton, C., Welding Research Council Bulletin,1981,265:18
    [166] Barsom, John M. Engineering Fracture Mechanics, 1975, 7:605-618
    [167] Sumpter, J.D.G., Advanced Performance Materials, 1996, 3: 393-405
    [168] Sorem, William A., Dodds, Robert H. Jr, Rolfe, Stanley T., International Journal of Fracture, 1991, 47: 105-126,
    [169] Sreenivasan, P. R., Moitra, A., Ray, S. K., Mannan, S. L., Chandramohan, R., International Journal of Pressure Vessels and Piping, 1996, 69: 149-159
    [170] Holzmann, M., Dlouhy, I., Brumovsky, M., International Journal of Pressure Vessels and Piping, 1999,76:591-598
    [171] Wallin, K., Planman, T., Valo, M., Rintamaa, R., Engineering Fracture Mechanics, 2001, 68: 1265-1296
    [172] Lautridou, J. C., Pineau, A.,, Engineering Fracture Mechanies, 1981, 15: 55-71
    [173] 刘瑞堂,喻杰奎,姜风春,张铁夫,不同组织下907A钢的动态断裂行为[J],机械工程材料,2002,29(3):9-12
    [174] ESIS TC5 Draft 3, Proposed Standard Method for Instrumented Impact Testing on Sub-Sized Charpy V Specimens of Metallic Materials[S].
    [175] 伍晓勇,冯明全,崔永海,核压力容器钢冲击断口剪切面积百分比的信算方法[J],核动力工程,2001,22(1):57-60
    [176] Mathew, M. D., Lietzan, L.M., Murty, K.L., Shah, V.N. Materials Science & Engineering A, 1999, A269:186-96
    [177] J. T. Eash, C. Upthegrove. Met Soc AIME, 1933, 104(1): 221-249
    [178] M. Hillert. Acta Metall, 1961, 9: 525-535;
    [179] J. W Calm, J. E. Hilliard, E. L. Huston. Acta Metall, 1966, 14(9): 1053-1062.
    [180] J. W. Cahn.,Acta Metall 1962, 10(3): 179-183.
    [181] H. D. Solomon and Lionel M. Levinson, Acta Metallurgica, 1978, 26(3): 429-442.
    [182] C. LaSalle and L.H. Schwartz, Acta Metall, 1986, 24:989-1000.
    [183] J.S. Langer, M. Bar-On and H.D. Miller. N, Phys. Rev. A, 1975, 11: 1417-1429.
    [184] J. E. Brown and G. D. W. Smith, Surface Science Letters, 1990, 246A(1-3): 174-175
    [185] Y. Ustinovshikov and B. Pushkarev, Journal of Alloys and Compounds, 2006, 422(1-2): 116-127.
    [186] 陈景榕,李承基,金属与合金中的固态相变[M],北京:冶金工业出版社,1097,37
    [187] 王艳辉,Cu-15Ni-8Sn-XSi合金和Cu-9Ni-2.5 Sn-1.5Al-0.5 Si合金中的相变及某对合金性能的影响[D],中南大学博士学位论文:2004.
    [188] Nystrom, M., Karlsson, B. Materials Science & Engineering A, 1996, A215: 26-38.
    [189] Koussy, M. R. E., Mahallawi, I. S. E., Khalifa, W., Dawood, M.M.A., Bueckins, M. Materials Science and Technology, 2004, 20:375-381.
    [190] L. Llanes, A. Mateo, L. Iturgoyen and M. Anglada, Acta Materialia, 1996, 44(10): 3967-3978.
    [191] Leax T. R., Brenner S. S., Spitznagel J.A., Metallurgical Transactions A, 1992, 23: 2725-2736.
    [192] 江伯鸿,张美华,魏庆,徐祖耀,三元系调幅分解的热力学判据[J],金属学报,1990,26(05)B303-309.
    [193] 石霖,合金热力学[M],北京,机械工业出版社,1992.10
    [194] 徐祖耀,李麟,材料热力学[M],北京,科学出版社,2005.1 第三版.
    [195] J. W. Cahn. Transactions of the Metallurgical society of AIME, 1968,242(2): 166-180.
    [196] J. W. Cahn. Acta Metall, 1966, 14(12): 1685-1692.
    [197] 郝士明,材料热力学[M],北京,化学工业出版社,2004.1
    [198] Bragg W.L., Williams E.J., Proc Roy Soc, 1934, A145:699.
    [199] C. Zhang and M. Enomoto, Acta Materialia, 2006, 54(16): 4183-4191.
    [200] 卫英慧,王笑天,Al—Li合金早期时效阶段调幅分解的理论分析[J],金属热处理学报,1995,16(03):22-28.
    [201] 张晓中,压力容器用钢辐照脆化评估方法比较[J],核动力工程,2006,27(2)26-29.
    [202] Davies L M, Lyssakov V. Plant Life Management Programmes-Defming the Milestones of NPP Life[C]. Nuclear Engineering International Conference, London, November, 2001: 28-30.
    [203] B. T. Timofeev, Yu. K. Nikolaev, International Journal of Pressure Vessels and Piping, 1999, 76: 849-856.
    [204] Chung HM, Chopra OK. New York: The American Society of Mechanical Engineers, 1987 MPC-26. PVP-132.
    [205] Lai JKL., Materials Science and Engineering A, 1983, 58(2): 195-205.
    [206] Sung-Yull Hong, Changheui Jang, Ill-Seok Jeong, Nuclear Engineering and Design, 2002, 214: 163-172.
    [207] IAEA Technical Report Series. Co-Ordinated Research Program on Irradiation Embrittlement of Pressure Vessel Steels[R]. IAEA-176, Vienna, 1975.
    [208] RCCM.法国900MWt核电厂机械设备建造标准[S].1993.
    [209] EJ/T 322-94.压水堆核电厂反应堆压力容器设计准则[S].1994.
    [210] Wallin K, Saario T, Torronen K.. Metal Science, 1984, 18(1): 13-16.
    [211] E1921-97, ASTM, Annual Book of ASTM Standards, Vol 03.01,2001: 1119-1135.
    [212] Jason P. Petti and Robert H. Dodds, Jr., Engineering Fracture Mechanics, 2005, 72(1): 91-120.
    [213] Xiaosheng Gao and Robert H. Dodds, Jr., Engineering Fracture Mechanics, 2005, 72(15): 2416-2425.
    [214] C. RuggieriR. H. Doods JrK. Wallin, Engineering Fracture Mechanics, Volume 60, 1998, 60(1): 19-36.
    [215] Y. S. Yi and T. Shoji, Journal of Nuclear Materials, 1996, 231(1-2): 20-28.
    [216] Toru Goto, Takeshi Naito b, Takasi Yamaoka, Nuclear Engineering and Design, 1998, 182: 181-192.
    [217] S. S. M. Tavares, J.M. Pardal, J.A. de Souza, J.M. Neto and M.R. da Silva, Journal of Alloys and Compounds, 2006, 416(1-2): 179-182.
    [218] N. I. Shakshin, G. I. Deordiev, V. E. Scherbinin, V. Moorthy, T. Jayakumar, D. K. Bhattacharya, P. Kalyanasundaram and Baldev Raj, NDT & E International, 1996, 29(6): 379-385.
    [219] D.K. Bhattacharya, T. Jayakumar, V. Moorthy, S. Vaidyanathan and Baldev Raj, Nondestr Test Eval. 1993, 26 (3): 141-148.
    [220] Noriyoshi Maeda, Tom Goto, Takeo Kamimura, Takeshi Naito Shintaro Kumano Yoshito Nakao, International Journal of Pressure Vessels and Piping, 1997, 71 (1): 7-12.
    [221] Y. S. Yi and T. Shoji, Journal of Nuclear Materials, 1996, 40 (1): 62-69.
    [222] P. Chellapandi, R. Srinivasan, S. C. Chetal, Baldev Raj, International Journal of Pressure Vessels and Piping, 2006, 83: 556-564.
    [223] Xu Jincheng, Zhao Liang, Deng Xiaoyan, Yu Hui, Materials and Design, 2006, 27: 1152-1156.
    [224] S. Nishikiori, S. Takahashi, S. Satou, T. Tanaka, T. Matsuo, Materials Science and Engineering A, 2002, 329-331: 802-809.
    [225] Joarder A., Metall Trans, 1991, 22A(8): 1811-1820.
    [226] Jie Zhao, Shuang-qi Han, Hong-bo Gao, Lai Wang, International Journal of Pressure Vessels and Piping, 2004, 81: 757-760.
    [227] 师瑞霞,杨瑞成,王晖,12Cr1MoV钢的热强参数[J],钢铁研究学报,2003,15(6)51-53.
    [228] 杨瑞成,傅公维,王凯旋,王晖,15CrMo耐热钢Larson-Miller参数值的确定与应用[J],兰州理工大学学报,2004,30(3):27-30.
    [229] 赵家萍.淬硬钢回火参数表达式和HTT图[J].材料科学与工艺,1998,7(2):82-83.
    [230] 钟土红.钢的回火工艺和回火方程[M].北京:机械工业出版社,1993.
    [231] 石德珂.材料科学基础[M].北京:机械工业出版社,1999.352.
    [232] K.G. Samuel, and S.K. Ray, International Journal of Pressure Vessels and Piping, 2006, 83(6): 405-408.
    [233] Maribel L. Saucedo-Munoz, Yutaka Watanabe, Tetsuo Shoji and Hideaki Takahashi, Cryogenics, 2000, 40(11):693-700.
    [234] H. Xu and S.Fyfitch, 2001, Aging Embrittlement Modeling of Type 17-4PH at LWR Temperatures, 10th international conference on environmental degradation of materials in nuclear power system-water reactor, lake Tahoe, NV, August 5-9, 57-60.
    [235] ASTM E 18-95, Standard Test Methods for Rockwell Hardness and Rockwell Superficial Hardness of Metallic Materials, ASTM, West Conshohocken, PA.
    [236] W.E. Permell, S.N.M. Malik, Nuclear Engineering and Design, 1997, 172: 27-47
    [237] T.Bell,Y.Sun,提高奥氏体不锈钢磨损和腐蚀抗力的氮化[J],表面工程杂志,1996,31(2):38-42
    [238] Garzon, C.M., Tschiptschin, A. P., Materials Science and Technology, 2004, 20:915-18
    [239] Sueyoshi, H., Hamaishi, K., Kadornatsu, S., Skiomizu, T., Ohzono, Y. , Materials Transactions, JIM, 1997, 38: 148-154
    [240] Sueyoshi, Hidekazu, Hamaishi, Kazuto, Shiomizu, Takayuki, Materials Transactions, JIM, 1999, 40: 13-21.
    [241] Tsujimura, H., Goto, T., Ito, Y., Journal of the Electrochemical Society, 2004,151(8):67-71.
    [242] Tsujimura, H., Goto, T., Ito, Y., Journal of New Materials for Electrochemical Systems, 2004, 7: 221-230.
    [243] Shen, Y. Z., Oh, K.H., Lee, D.N., Materials Science and Engineering A, 2006, 434(1-2): 314-318.
    [244] Wang Liang, Xu, Xiaolei, Yu, Zhiwei, Hei, Zukun, Surface and Coatings Technology, 2000, 124: 93-96.
    [245] Tsujikawa, Masato, Yoshida, Daisuke, Yamauchi, Naohiko, Ueda, Nobuhiro, Sone, Takumi, Materials Transactions, 2005, 46: 863-868.
    [246] Richter, E., Gunzel, R., Parasacandola, S., Telbizova, T., Kruse, O., Moiler, W., Surface and Coatings Technology, 2000, 128-129: 21-27.
    [247] Ibrahim, M. M., El-Hossary, F. M., Negm, N. Z., Abed, M., Rickcr, R. E., Applied Surface Science, 1992, 59: 253-60.
    [248] El-Hossary, F. M., Surface Engineering, 2000, 16: 491-494.
    [249] Tsujikawa, M., Yamauchi, No, Ueda, N., Sone, T., Hirose, Y., Surface and Coatings Technology, 2005, 193: 309-313.
    [250] Wang Liang, Applied Surface Science, 2003, 211: 308-314.
    [251] Ji, S. J., Wang, L., Sun, J.C., Hei, Z.K., Surface and Coatings Technology, 2005,195:81-84
    [252] Menthe, E., Rie, K.-T., 1999, 116-119:199-204.
    [253] Collins, G.A., Hutchings, R., Short, K. T., Tendys, J., Li, X., Samandi, M., Surface and Coatings Technology, 1995, 74: 417-424.
    [254] Christiansen, T., Frandsen, R. B., Somers, M.A.J., Surface and Coatings Technology, 2006, 200: 5160-5169.
    [255] Brooks, J. W., Loretto, M.H., Smallman, R.E., Acta Metallurgica, 1979, 27:1829-1838
    [256] Lin, C.-K., Fan, W.-C., Tsai, W.-J., Corrosion, 2002, 58:904-911
    [257] Sun, Y., Bell, T., Wood, G., Wear, 1994, 78:131-138
    [258] D. Manova, S. Mandl, H. Neumarm and B. Rauschenbach, Surface and Coatings Technology, 2006, 200: 6563-6567
    [259] S. K. Kim, J. S. Yoo, J. M. Priest and M. P. Fewell, Surface and Coatings Technology, 2003, 163-164: 380-385
    [260] Li, H. Y., Luo, D. F., Yeung, C. F., Lau, K. H. Journal of Materials Processing Technology, 1997, 69(1-3): 45-49
    [261] Yeung, C. F., Lau, K. H., Li, H. Y., Luo, D. F., Journal of Materials Processing Technology, 1997, 66(1-3): 249-252
    [262] 李惠友,罗德福,林训华等,高耐磨高抗蚀微变形QPQ盐浴复合处理技术[M],北京, 机械工业出版社,1997
    [263] Guillermet, Armando Fernandez, Du, Hong, Zeitschrift fuer Metallkunde, 1994, 85(3): 154-163
    [264] Peter Schaaf, Progress in Materials Science, 2002,47(1): 1-161
    [265] H.A. Wriedt, N.A. Gokcen and R.H. Nafziger. Bulletin of Alloy Phase Diagrams, 1987 8: 355-377
    [266] J. Kunze, Nitrogen and carbon in iron and steel, Akademie Verlag, Berlin (1990).
    [267] Somers, M.A.J., Van der Pers, N.M., Schalkoord, D., Mittemeijer, E.J., Metallurgical Transactions A1989, 20(8): 1533-1539
    [268] 钟厉,纯氮离子渗氮新工艺及离子渗氮机理研究[D],博士论文,重庆大学,重庆,2004,
    [269] 赵品,付瑞东,郑炀曾,双相不锈钢15Cr2715Mn2216Mo的固溶渗氮工艺研究[J],材料热处理学报,2003,24(3):74-79
    [270] Menthe, E., Rie, K.-T., Surface and Coatings Technology, 1999, 116-119:199-204
    [271] M.A.J. Somers, E.J. Mittemeijer, Metallurgical Transactions A, 1990, 21:901-912.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700