Mg-Dy-Nd-(Gd)系合金组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金由于强度低、变形能力弱和耐腐蚀性能差,至今未得到大规模的工业应用。最新研究表明,镁及镁合金中加入一定量的重稀土元素(Gd、Dy和Sm等)后具有显著的时效强化效应,可大幅度提升镁合金常规力学性能和高温耐热性能,应用前景广阔。本文将系统研究一个新的镁合金体系—Mg-Dy-Nd-(Gd)系合金不同加工状态下的组织、结构、力学性能和断裂行为,重点研究清楚合金的相形貌、结构、转变规律及强化机制,为研制高性能镁稀土合金提供实验和理论依据。
     Mg-Dy-Nd-(Gd)系合金铸态组织和性能研究结果表明,DN73K、DN103K、DN103K和DGN443K合金铸态组织均由初生基体相、存在于晶界的骨骼状Mg5RE(f.c.c., a=2.24nm)相、以及位于骨骼状Mg5RE相内部或者边缘的块状相RE17Mg3(f.c.c., a=0.526nm)组成。Mg-Dy-Nd合金中Dy含量增加或者用Gd替换部分Dy后,合金中骨骼状相均有所增加,拉伸强度增加,塑性降低,解理断裂特征更加明显。
     Mg-Dy-Nd-(Gd)系合金固溶态组织和性能研究结果表明,经固溶处理后,DN73K、DN103K、DN123K和DGN443K合金晶粒尺寸增加,晶界骨骼状Mg5RE相基本消失,沿晶界分布的块状RE17Mg3相有长大趋势。同时,合金的强度和塑性均较铸态合金有明显的提高,其断口解理面大部分由撕裂棱连接起来,表现为穿晶断裂。
     Mg-Dy-Nd-(Gd)系合金时效硬化曲线和时效析出行为研究结果表明,该系合金具有明显的时效硬化效应。Mg-Dy-Nd系合金中Dy含量较低的DN73K合金时效析出序列为β″、β1和β相;Dy含量较高的DN103K和DN123K时效析出序列依次为β″、β′、β1和β相;Gd代替部分Dy的DGN443K合金的时效析出序列依次为β″、β1和β相。其中,沿{ 112 0}面形成的β″相(DO19, a=2aMg=0.64nm,c=cMg=0.52nm)和椭球状β′相(b.c.o., a=0.640nm, b=2.223nm, c=0.521nm)均与基体完全共格,它们和基体的取向关系分别为:<0001>β″//<0001>α, { 11 00}β″//{ 11 00}α和<001>β′//<0001>α, {100}β′//{ 112 0}α;沿{ 11 00}面形成的板条状β1相(f.c.c., a=0.74nm)可形核于β′相,也可由β″相直接转变而来,其与基体的取向关系为:<110 >β1//< 0001>α, { 11 1}β1//{ 112 0}α;β1相经共格转变形成稳定的β相(f.c.c., a=2.223nm),β相为面心立方超结构,且与β1相具有相同的形貌及取向关系。
     Mg-Dy-Nd-(Gd)系合金时效态力学性能和强化机制研究结果表明,时效初期,合金的强度随着时效时间而增加,峰时效过后,合金的强度有迅速下降的趋势,高温长时间时效处理后,合金的强度随时效时间的变化不明显。峰时效态合金中的β″相及β′相为主要强化相,强化机制为共格强化;当位错遇到早期过时效态形成的β1相时,位错可穿过该相;当位错遇到过时效态形成的β相时,位错则绕过该相,从而形成Orowan强化。峰时效态合金经室温变形后形成大量的{ 101 2}型和一定的{ 101 1}型形变孪晶。随着拉伸温度的升高,流变应力的降低使得诱发孪晶的能力降低,从而使得合金形变孪晶的数量明显降低。高温变形过程中(高于250℃),β″和β′相的消失及β1和β相的形成使得位错更容易沿基面及非基面滑移,从而使得合金的拉伸强度明显降低,塑性增加。其中,合金峰时效态断口解理面光滑,解理断裂特征明显,早期过时效态和过时效态合金断口均为解理断裂,断口有一定撕裂棱存在;随着实验温度的升高,合金峰时效态断口由解理断裂向韧性断裂转变。
     DN123K合金挤压态组织与性能研究结果表明,未均匀化处理的合金经350℃挤压变形后,粗大的铸态骨骼状相得以破碎,合金的强度和塑性均有所提高;均匀化处理后的合金经350℃和450℃挤压后,发生了动态再结晶,过饱和固溶体内析出球状相,其结构与铸态骨骼状相的完全相同,合金的强度和塑性均得到明显的提高,实验范围内挤压温度对合金组织性能的影响并不明显。挤压态合金的断裂方式为韧性断裂。
Magnesium alloys have not been widely used as a main structural material due to their low tensile strength, low deformation ability and bad corrosion resistance. Recent work has suggested that magnesium alloys with the addition of heavy rare earth elements (Gd, Dy, Sm, etc.) have obvious ageing strengthening response and better mechanical properties at room and elevated temperature than those of conventional magnesium alloys, thus maybe have better future application. In this study, the microstructures, mechanical properties and fracture behaviors of a new series of Mg-Dy-Nd-(Gd) alloys will be systemically researched, of which the morphology, microstructure, transformation law and strengthening mechanism of the precipitation phases are focused on. The aim of the present work is to provide experimental and theoretical results for the development and application of high performance magnesium rare earth alloys.
     Researches on the microstructures and mechanical properties of as cast Mg-Dy-Nd-(Gd) alloys indicate that the cast microstructures of DN73K, DN103K, DN123K and DGN443K alloys consist ofα-Mg phase, skeletal Mg5RE phase (f.c.c., a=2.24nm) along grain boundary and rectangular RE17Mg3 phase (f.c.c., a=0.526nm) at inner and fringe of the skeletal phases. The increasing amounts of eutectic phases in Mg-Dy-Nd alloy, with increasing content of Dy or replacing part of Dy by Gd, result in better tensile strength, lower elongation and obvious cleavage fracture.
     Researches on the microstructures and mechanical properties of solution treated Mg-Dy-Nd-(Gd) alloys indicate that the skeletal phases will be dispersed, and the grain size and rectangular RE17Mg3 phases will both grow up after being solution treated, which result in better mechanical property and toughness. The fracture fractographies are full of tearing ridge, indicating transgranular fracture.
     Researches on the age-hardening curves and ageing precipitation behaviors of Mg-Dy-Nd-(Gd) alloys indicate that these alloys have obvious age-hardening response, the precipitation sequence in DN73K alloy mainly involves formation ofβ″,β1 andβphases, the precipitation sequence in DN103K and DN123K alloys mainly involve formation ofβ″,β′,β1 andβphases, and the precipitation sequence in DGN443K alloy mainly involves formation ofβ″,β1 andβphases. Theβ" phases (DO19, a=2aMg=0.64nm, c=cMg=0.52nm), precipitated in { 112 0} planes, are fully coherent with matrix and the relationship betweenβ" and matrix is < 0001 >β″//< 0001 >αand { 11 00}β″//{ 11 00}α; the globularβ′phases (b.c.o., a=0.640nm, b=2.223nm, c=0.521nm) are fully coherent with matrix and the relationship betweenβ′and matrix is <001>β′//<0001>αand {100}β′//{ 112 0}α; the plane plateβ1 phases (f.c.c., a=0.74nm), precipitated in { 11 00} planes, may nucleate fromβ′andβ" phases, and the relationship betweenβ1 and matrix is <110>β1//<0001>αand { 11 1}β1//{ 112 0}α; the equilibriumβphase (f.c.c., a=2.223nm) can be nucleated fromβ1 phase by coherent transformation, and the relationship betweenβand matrix is identical to that ofβ1 and matrix.
     Researches on the mechanical properties and strengthening mechanisms of aged Mg-Dy-Nd-(Gd) alloys indicate that room temperature tensile strength of alloys increases with the increase of ageing time during earlier aging time, the strength decreases sharply with ageing time elongation after peak ageing time, and the high temperature strength don’t vary obviously after longer ageing time at elevated temperature. Theβ″andβ′, precipitated in peak aged alloys, are the main strengthening phases, which lead to coherent strengthening for their coherence with matrix. The dislocation can extend acrossβ1, however, the movement of dislocation may be hindered byβphases, and then the strengthening mechanism will be Orowan strengthening mechanism. Deformation twins can be formed in peak aged alloys after being deformed at room temperature, and the decreasing numbers of twins with increasing experimental temperature result from decreasing capability of inducing twins by decreasing flow stress. The disappearance ofβ″and/orβ′can accelerate basal and non-basal planes slipping after being deformed at elevated temperature, which result in lower tensile strength and higher plasticity. The peak aged, early over aged and over aged fracture fractographies show cleavage fractures, and the peak aged fracture fractographies transform from cleavage fracture to ductile fracture with increasing experimental temperature.
     Researches on the microstructures and mechanical properties of extruded DN123K alloys indicate that the as-cast coarse skeletal phases has been disintegrated after being extruded at 350℃, and the tensile strength and toughness are improved. After being uniformly heat treated and extruded at 350℃and 450℃, the crystal structures of these elliptical particles, precipitated during extrusion process, are identical to those of skeletal phases, and the strength and plasticity can be improved obviously, but in the range of this experiments the extrusion temperature have less effect on the microstructure and tensile strength of extruded alloys. The fracture fractographies of extruded alloys show ductile fracture.
引文
1. Kitfel C., Introduction to Solid State Physics, 5th ed. New York: WiLeg. 1976.
    2. Mordike B. L. and Ebert T., Magnesium Properties-application-potential, Mater Sci & Eng, 2001, 302, 37-45.
    3. Cottrell, An Introduction to Metallurgy, 2nd.ed. UK: Edward Arnold, 1975.
    4. Robert. S. Buck, Magnesium Products Design, New York: Marcel Dekker, INC., 1987.
    5. Kojima Y., Platform science and technology for advanced magnesium alloy, Materials Science Forum, 2000, 350-351, 3-18.
    6. Polmear I. J., Magnesium alloys and applications, Mater. Sci. and Technol., 1994, 10(1), 1-16.
    7. ASM International, Magnesium and Magnesium Alloy, OH: Metal Patk, 1999.
    8. 肖林, 密排六方金属的塑性变形, 稀有金属材料与工程, 1995, 24(6), 21-28.
    9. 吕宜振, Mg-Al-Zn 合金组织、性能、变形和断裂行为研究, [博士论文], 上海, 上海交通大学, 2000.
    10. Yoo M. H., Slip, twining and fracture in hexagonal close-pacted metals, Trans. A, 1981, 12A, 409-418.
    11. 赫尔 D., 培根 D. J.著, 丁树声, 李齐译, 位错导论, 北京, 科学出版社, 1990, 10, 130.
    12. Partridge P. G., The Crystallography and deformation modes of hexagonal close-pacted metals, Metall. Rev., 1967, 12, 169-194.
    13. Serra A., Bacon D. J. and Pod R. C., Dislocations in interfaces in the h.c.p. metals-I. defects formed by absorption of crystal dislocation, Acta Meter, 1999, 47(5), 1425-1439.
    14. Siethoff H. and Ahlborn K., Steady-state deformation of the hcp metals at high and intermediate temperature, Z. Metallkde, 1985, 76(9), 627-634.
    15. Vitek V. and Igarash M., Care structure of 1/3< 112 0> screw dislocations on vassal and prismatic planes in h.c.p. metals: an atomic study, Phil. Mag. A, 1991, 63(5), 1059-1075.
    16. Couret A., Caillard D., et al., Prismatic glide in divalent h.c.p. metals, Phil. Mag. A, 1991, 63(5), 1045-1057.
    17. 余琨, 稀土变形镁合金组织性能及加工工艺研究, [博士论文], 长沙, 中南大学, 2002.
    18. Bohlen J., Chmelik F., Dobron P., et al., Acoustic emission during tensile deformation of hot rolled magnesium alloy AZ31, J. Alloys Comp., 2004, 378, 214-219.
    19. 陈振华, 夏伟军, 程永奇等, 镁合金织构与各向异性, 中国有色金属学报, 2005, 15(l), l-11.
    20. Jager A., Lukac P., et al., Tensile properties of hot rolled AZ31 Mg alloy sheets at elevated temperatures, J. Alloys Comp., 2004, 378, 184-187.
    21. 钟家湘, 郑秀华, 刘颖, 金属学教程. 北京: 北京理工大学出版社, 1995, 309.
    22. Mathis K., Trojanova Z., Lukac P., et al., Modeling of hardening and softening processes in Mg alloys, J. Alloys Comp., 2004, 378, 176-179.
    23. Klimanek P. and Potzsch A., Microstructure evolution under compressive plastic deformation of magnesium at different temperatures and strain rates, Mater. Sci. Eng. A, 2002, 324, 145-150.
    24. Perex - Prado M. T., Valle J. A. and Ruano O. A., Effect of sheet thickness on the microstructural evolution of an Mg AZ61 alloy during larger hot rolling, Scripta Mater, 2004, 50(5), 667-671.
    25. Caceres C. H., Sumitomo T. and Veidt M., Pseudoelastic behavior of cast magnesium AZ91 alloy under cyclic loading-unloading, Acta Materialia, 2003, 51, 6211-6218.
    26. 吕宜振, 翟春泉, 王渠东等, 压铸镁合金的应用现状及发展趋势, 铸造, 1998, 12, 50-13.
    27. 孙伯勤, 镁合金压铸件在汽车行业中的巨大应用潜力, 特种铸造及有色合金, 1998, 3, 40-41.
    28. 钟皓, 刘培英, 周铁涛, 镁及镁合金在航空航天中的应用及前景, 航空工程与维修, 2002, 4, 41-42.
    29. 邓玉勇, 朱江, 李立, 新型金属材料镁合金的发展前景分析, 化工技术经济, 2002, 20(4), 9-13.
    30. 曾荣昌, 柯伟, 徐永波等, Mg 合金的最新发展及应用前景, 金属学报, 2001, 37(7), 673-685.
    31. 曾小勤, 王渠东, 吕宜振等, 镁合金应用新进展,铸造, 1998, 11, 39-43.
    32. Robert V. F., Magnesium for automotive application, Advanced Materials & Proceedings, 1996, 5, 33-34.
    33. 许小忠, 刘强, 程强, 镁合金在工业及国防中的应用, 华北工学院学报, 2002, 23(3), 190-192.
    34. Aghion E. and Bronfin B., Magnesium Alloys Development towards the 21st Century, Mater Sci Form, 2000, 350-351, 19-28.
    35. Avedesian M. M. and Baker H., Magnesium and Magnesium Alloys. ASM International, OH: Metal Park, 1999.
    36. 刘满平, Mg-Al-Ca 合金微观组织、力学性能和蠕变行为的研究, [博士论文], 上海, 上海交通大学, 2003.
    37. Kocks U. F., Kinetics of solution hardening, Metall. Trans. A, 1985, 16A, 2109-2129.
    38. 冯端, 金属物理学, 第三卷: 金属力学性质, 北京, 科学出版社, 1999, 561-595.
    39. Miller W. K., Creep of die cast AZ91 magnesium at room temperature and low stress, Metall. Trans. A, 1991, 22A, 873-877.
    40. Hume-rothery W., The structure of metals and alloys, 2edn, 1944, London, The Institute of Metal.
    41. Polmear I. J., In: Mordike B. L. and Hehman F., Magnesium Alloys and Their Applications, DGM Informations Gesellschaft, Verlag, 1992, 201-212.
    42. 余琨, 黎文献, 王日初等, 变形镁合金的研究、开发及应用, 中国有色金属学报, 2003, 13(2), 277-288.
    43. Ardell A. J., Precipitation hardening, Metall Trans, 1985, 16A, 2131-2165.
    44. Luo A. and Pekguleryuz M. O., Cast magnesium alloys for elevated temperature applications, Journal of Materials Science, 1994, 29, 5259-5271.
    45. Raghunathan N. and Sheppard T., Influence of billet processing on properties of extruded aluminium alloy, Materials Science and Technology, 1991, 7(4), 341-352.
    46. 哈宽富,《金属力学性质的微观理论》, 北京: 科学出版社, 1983, 429.
    47. Nussbaum G., Sainfort P., Regazzoni G. et al., Strengthening mechanisms in the rapidly solidified AZ91 magnesium alloy, Scripta Metallurgica, 1989, 23, 1079-1084.
    48. Han B. Q. and Dunand D. C., Microstructure and mechanical properties of magnesium containing high volume fractions of yttria dispersoids, Mater. Sci. Eng., 2000, A277, 297-304.
    49. Zelin M. G., Yang H. S. and Valiev R. Z. et al., Interaction of high-temperature deformation mechanisms in a magnesium alloy with mixed fine and coarse grains, Metall. Trans. A, 1992, 23A, 3135-3140.
    50. 彭大暑, 金属塑性加工原理, 长沙: 中南大学出版社, 2004.
    51. Lahaie D., Embury J. D., Chadwick M. M. et al, Note on the deformation of fine grained magnesium alloys, Scripta Metallurgica et Materialia, 1992, 27, 139-142.
    52. Das S. K. and Chang C. F., Magnesium Alloys and their Applications, FRG. DGM Information sgesellschaft, 1992: 487.
    53. 徐光宪, 稀土, 北京: 冶金工业出版社, 1987.
    54. Chikatoshi H. L., US Patent 5536466, 1994.
    55. 虞觉奇, 易文质, 二元合金状态图集, 上海, 上海科学技术出版社, 1987.
    56. Ferro R., Saccone A. and Borzone G., Rare earth metals in light alloys, Journal of Rare Earths, 1997, 15(1), 45-61.
    57. Haughton J. L., Magnesium and its alloys, London: HMSO, 1937.
    58. Leontis T. E. and Busk R. S., GBPatent690783, 1953.
    59. Scanders N. T., Mater. Sci. Tech., 1988, 4, 157.
    60. Mizer D. and Peters B. C., A Study of Precipitation at Elevated Temperatures in a Mg-8.7 Pct Y Alloy, Metallurgical Transactions, 1972, 3, 3262-3264
    61. Mordike B. L., Creep-resistant Magnesium Alloys, Materials Science and Engeering. 2002, 324, 103-112.
    60. Payhe R., Journal of the Japan Institute of Metals, 1959, 58, 417.
    61. Buch F. V., Lietzau J. L., Mordike B. L., et al., Development of Mg-Sc-Mn alloys, Materials Science and Engineering A, 1999, 263, 1-7.
    62. Ahmed M., Lorimear G. W., Lyon P., et al., Magnesium Alloys and Their Application(Eds: Mordike L., Hehmann F.), DGM Informationsgesellschaft, Verlag, April 1992, 301-308.
    63. Ahmed M., Lorimear G. W., Lyon P., Pilkington R., Magnesium Alloys and Their Application (Eds: Mordike B. L., Hehmann F.), DGM Informationsgesellschaft, Verlag, April 1992, 251-257.
    64. Apps P. J., Lorimer G. W., Karimzadeh H. and King J. F., Precipitation Processes in Magnesium-Heavy Rare Earth Alloys during Ageing at 300℃, Magnesium Alloys and Their Applications, edited by K. U. Kainer, New York, 2000, 53-58.
    65. Nie J. F. and Muddle B. C., Characterisation of strengthening precipitation phase in a Mg-Y-Nd alloy, Acta Mater, 2000, 48, 1691-1703.
    66. Lorimer G. W., in Proceeding of the London Conference on Magnesium Technology, London, The institute of metals, 1986, 47-53.
    67. Unsworth W. and Kingm J. F., in Proceeding of the London Conference on Magnesium Technology, London, The institute of metals, 1986, 25.
    68. Nie J. F. and Muddle B. C., Precipitation in magnesium alloy WE54 during isothermal ageing at 250°C, Scripta Mater, 1999, 40, 1089-1094.
    69. Nie J. F., Precipitation and Strengthening in Selected Magnesium Alloys, Magnesium Technology 2002, TMS, 2002, 103-110.
    70. Eifert A. J., Thomas J. P. and Rateick R. G., Influence of anodization on the fatigue life of WE43A-T6 magnesium, Scripta. Mater., 1999, 40(8), 929-935.
    71. Lukin V. I., Effect of alloying elements Sc, Mn and Zr on weldability of alloys of the Al-Mg-Sc-Mn-Zr system, Welding International, 1996, 10(12), 987.
    72. 卢志文, 汪凌云, 范永革, 黄光胜, 新型抗蠕变镁合金的研究, 中国镁业, 2002, 40-43
    73. Kevorkov D., Schmid-Fetzer R., Magnesium Alloy Development Guided by Thermodynamic Caculations. In: Hryn J. (ed). Magnesium Technology. TMS. Warrendale: 2001. 105-112.
    74. Stulikova I., Smola B., Buch F. V., et al, Development of Creep Resistant Mg-Gd-Sc Alloys with Low Sc Content, Mat. –Wiss. U. Werkstofftech, 2001, 20-24.
    75. Smola B., Stulikova I., Pelcova J., Mordike B. L., Significance of Stable and Metastable Phase in High Temperature Creep Resistant Magnesium-Rare Earth Base Alloys, Journal of Alloys andCompounds, 2004, 378, 196-201.
    76. Vostry P., Smola B., Stulikova I., et al., Microstructure Evolution in Isochronally Heat Treated Mg-Gd Alloys, Phys. Stat. Sol, (a) 1999, 175, 491-500.
    77. Apps P. J., Karimzadeh H., King J. F., et al., Precipitation Reactions in Magnesium-rare Earth Alloys Containing Yttrium, Gadolinium or Dysprosium. Scripta Materialia, 2003, 48, 1023-1028.
    78. Taniike S., Kitaguchi Y., Kamado S., et al., Forgeability of Mg-Heavy Rare Earth Metal Alloys and Aging Characteristics and Tensile Properties of Their Forged Materials, Journal of Japan Institute of Light Metals, 1997, 47(5), 261-266.
    79. Drits M. E., Rokhlin L. L. and Nikitina N. I., State Diagram of the Mg-Y-Gd System in the Range Rich in Magnesium, Russian Metallurgy, 1983, 5, 178-181.
    80. Negishi Y., Nishimura T., Iwasawa S., et al., Aging Characteristics and Tensile Properties of Mg-Gd-Nd-Zr and Mg-Dy-Nd-Zr Alloys, Journal of Japan Institute of Light Metals, 1994, 44(10), 555-561.
    81. Negishi Y., Nishimura T., Kiryuu M., et al., Phase Diagrams of Magnesium-Rich Portion, Aging Characteristics and Tensile Properties of Mg-Heavy Rare Earth Metal(Gd,Dy)-Nd Alloys, Journal of Japan Institute of Light Metals, 1995, 45(2), 57-63.
    82. Kamado S., Iwasawa S., Kojima Y. and Ninomiya R., Age hardening Characteristics and High Temperature Strength of Mg-Gd and Mg-Tb Alloys, Journal of Japan Institute of Light Metals, 1992, 42(12), 727-733.
    83. Negishi Y., Iwasawa S., Kamado S., Kojima Y. and Ninoniya R., Effect of Yttrium and Neodymium Additions on Aging Characteristics and High Temperature Tensile Properties of Mg-10mass%Gd and Mg-10mass%Dy Alloys, Journal of Japan Institute of Light Metals, 1994, 44(10), 549-554.
    84. Kamado S., Kitaguchi Y., Harima Y., et al., High Temperature Deformation Characteristics and Forgeability of Mg-Heavy Rare Earth Element-Zr Alloys, Journal of Japan Institute of Light Metals, 1998, 48(4), 168-173.
    85. Kamado S., Kojima Y., Nishimura T., et al., Aging Characteristics and Mechanical Properties of Heat-Resistent Magnesium Alloys Containing Heavy Rare Earth Metals, Recent MetallurgicalAdvances in Light Metals Industries, 1995, 229-242.
    86. Iwasawa S., Negishi Y., Kamado S., et al., Age Hardening Characteristics and high Temperature Tensile Properties of Mg-Gd and Mg-Dy Alloys, Journal of Japan Institute of Light Metals, 1994, 44(1), 3-8.
    87. Polmear I. A., Kamado S., Kojima Y., Creep Properties of Mg-Gd-Y-Zr Alloys. Materials Transtractions. 2001, 42(7), 1212-1218.
    88. Drits M. E., Padezhnova E. M., Muratova E. V., Relationship Between Heat Resistance and Composition and Structural State of Alloys of Systems Mg-Y, Mg-Dy, and Mg-Sm. Russian Metallurgy (Metally), 1984, 1, 195-198.
    89. Rokhlin L. L., Nikitina N. I., Study of the recovery in aged Mg-Dy alloys, Metallovedenie i Termicheskaya Obrabotka Metallov, 2001, 5, 34-37.
    90. Rokhlin L. L., Nikitina N. I., Mechanical properties of Mg alloys with dysprosium (Dy), Metallovedenie i Termicheskaya Obrabotka Metallov, 1999, 6, 37-39.
    91. Xu Y., Chumbley L. S., Weigelt G. A., et al., Analysis of interdiffusion of Dy, Nd, and Pr in Mg. Journal of Materials Research, 2001, 16(11), 3287-3292.
    92. Neqishi Y., Nishimura T., Kiryuu M., Phase diagrams of magnesium-rich portion, aging characteristics and tensile properties of Mg-heavy rare earth metal alloy, Light Metal , 1995 , 45(2), 57-63.
    93. 戚正风, 固态金属中的扩散与相变, 北京, 机械工业出版社, 1998.
    94. D. A. 波特, K. E. 伊斯特林等, 金属和合金中的相变, 北京, 冶金工业出版社, 1988.
    95. 黄继华, 金属及合金中的扩散, 北京, 冶金工业出版社, 1996.
    96. 宋余九, 金属材料的设计????? 选用? 预测, 北京: 机械工业出版社, 1998.
    97. B. Smola, I. Stulíková, F. von Buch, B. L. Mordike. Structural aspects of high performance Mg alloys design, Mater. Sci. Eng. A, 2002, 324(1-2), 113-117.
    98. Kamado S., Kojima Y., Ninomiya R. and Kubota K., Aging Characteristics and High Temperature Tensile Properties of Magnesium Alloys Containing Heavy Rare Earth Elements, Proceedings of the Third International magnesium Conference, Institute of Materials, Manchester, UK, 1997, 327-342.
    100. Sanchez C., Nussbaum G., Azavant P., et al., Elevated temperature behaviour of rapidly solidified magnesium alloys containing rare earths, Mater. Sci. Eng. A, 1996, A221, 48-57.
    101. Anthony I., Kamado S. and Kojima Y., Creep properties of Mg-Gd-Y-Zr alloys, Material Transactions, 2001, 42(7), 1212-1218.
    102. Lorimer G., Khosroshahi R. A., Ahmed M., in: Koiwa M., Otsuka K., Miyazaki T. (Eds.), Proceedings of the International Conference on Solid Solid Phase Transformations, The Japan Institute of Metals, 1999, p. 185.
    103. Nie J. F., Xiao X. L., Luo C. P., et al., Characterisation of precipitate phases in magnesium alloys using electron microdiffraction, Micron, 2001, 32, 857-863.
    104. Rokhlin L. L., Dobatkina T. V. and Nikitina N. I., Constitution and Properties of the ternary Magnesium Alloys Containong Two Rare-Earth Metals of Different Subgroups, Materials Science Forum, 2003, 419-422, 291-296.
    105. 里 逹雄, 希土类元素を耐熱マダネツゥム合金の時效析出, Materia Japan まてりめ, 1999, 38(4), 294.
    106. Apps P. J., Karimzadeh H., King J. F., et al., Phase compositions in magnesium-rare earth alloys containing yttrium, gadolinium or dysprosium, Scripta Materialia, 2003, 48, 475–481.
    107. Xu Y., Chumbley L. S., Weigelt G. A., et al., Analysis of interdiffusion of Dy, Nd, and Pr in Mg. Journal of Materials Research, 2001, 16(11), 3287-3292.
    108. Lorimer G. W., Apps P. J., Karimzadeh H. and King J. F., Improving the performance of Mg-rare earth alloys by the use of Gd or Dy additions, Materials Science Forum, 2003, 419-422, 279-284.
    1. Housh S. and Mikucki B., Selection and Application of Magnesium and Magnesium Alloys, Metals Handbook, 10th ed., vol.9, ASM, 1990, 455-479.
    2. 刘满平, Mg-Al-Ca 合金微观组织、力学性能和蠕变行为研究, [博士论文], 上海, 上海交通大学, 2003.
    3. 《轻金属材料加工手册》编写组, 轻金属材料加工手册(上册), 北京, 冶金工业出版社, 1979, 20.
    4. 吕宜振, Mg-Al-Zn 合金组织、性能、变形和断裂行为研究, [博士论文], 上海, 上海交通大学, 2000.
    5. Karimzadeh H., PhD Thesis, University of Manchester, 1985.
    6. M. Ahmed., PhD Thesis, University of Manchester, 1993.
    7. Lorimer G. W., Cliff G., Aaronson H. I. and Kinsman K. R., Analysis of the composition of alpha phases precipitated from beta prime Cu-Zn using analytical electron microscopy, Scripta Metallurgica, 1975, 9(3), 271-280.
    8. Apps P. J., Karimzadeh H., King J. F. and Lorimer G. W., Phase compositions in magnesium-rare earth alloys containing yttrium, gadolinium or dysprosium, Scripta Materialia, 2003, 48, 475-481.
    9. Lorimer G. W., Cliff G., Champness P. E., et al., In: Williams D. B., Joy D. C., editors. Analytical electron microscopy, San Francisco Press, 1984. p. 153.
    1. 杨遇春, 金红, 稀土有色金属材料及其发展前景, 材料工程, 1993, 6, 45-48.
    2. Neqishi Y., Nishimura T., Kiryuu M., Phase diagrams of magnesium-rich portion, aging characteristics and tensile properties of Mg-heavy rare earth metal alloy, Light Metal, 1995, 45(2), 57-63.
    3. Lorimer G.W., Apps P. J., Karimzadeh H., King J. F., Improving the performance of Mg-Rare Earth Alloys by the use of Gd or Dy Additions, Materials Science Forum, 2003, 419-422, 279-284.
    4. Hahn G. T., Rosenfield A. R., Metallurgical factors affecting fracture toughness of aluminum alloys, Metall. Trans. A, 1975, 6, 653.
    5. 唐剑, 黄平等, 铝合金熔铸技术的现状及发展趋势, 铝加工, 2001, 24 (4), 5-9.
    6. 段玉波, 唐剑, 曾苏民, 阶段均匀化处理对 7A04 合金均匀化程度和过烧温度的影响, 合金与热处理, 2003, 3, 75-77.
    7. Apps P. J., Karimzadeh H., King J. F., Lorimer G. W., Phase compositions in magnesium-rare earth alloys containing yttrium, gadolinium or dysprosium, Scripta Materialia, 2003, 48, 475–481.
    8. 余琨, 黎文献, 王日初, 镁合金塑性变形机制, 中国有色金属学报, 2005,15(7), 1081-1086
    9. Lee S., Lee S. H., and Kim D. H., Effect of Y, Sr, and Nd Additions on the Microstructure and Microfracture Mechanism of Squeeze-cast AZ91-X Magnesium Alloys, Metal. Mater. Trans. A, 1998, 29A, 1221-1235.
    10. 朱明华, 李立清, 稀土添加剂在金属电沉积中的应用研究进展, 电镀与涂饰, 2006, 25, 46-48.
    11. 王战宏, 王莉, 王双群, 买学峰, 许德美, 钟景明, 曲旋辉, Ni 对 Be-Al 合金组织和性能的影响, 2006, 26(8), 526-528.
    12. 杨于兴等, X 射线衍射分析, 上海, 上海交通大学出版社, 1989.
    13. 何祟智, 郗秀荣, 孟盂庆等, X 射线衍射实验技术, 上海, 上海科学技术出版社, 1988
    14. 漆睿,戎永华, X 射线衍射与电子显微分析, 上海, 上海交通大学出版社, 1992.
    15. 宋余九, 金属材料的设计 选用 预测, 北京, 机械工业出版社, 1998.
    1. Polmear I. J., Magnesium alloys and applications, Mater Sci and Technol, 1994, 10(1), 1-16.
    2. Anthony I., Kamado S. and Kojima Y., Creep properties of Mg-Gd-Y-Zr alloys, Material Transactions, 2001, 42(7), 1212-1218.
    3. Suzuki M., Kimura T., Koike J. and Maruyama K., Strengthening effect of Zn in heat resistant Mg-Y-Zn solid solution alloys, Scripta Mater., 2003, 48, 997-1002.
    4. Sanchez C., Nussbaum G., Azavant P. and Octor H., Elevated temperature behaviour of rapidly solidified magnesium alloys containing rare earths, Mater. Sci. Eng. A, 1996, A221 48-57.
    5. Apps P. J., Lorimer G. W., Karimzadeh H. and King J. F., Precipitation Processes in Magnesium-Heavy Rare Earth Alloys during Ageing at 300℃, Magnesium Alloys and Their Applications, edited by Kainer K. U., New York, 2000, 53-58.
    6. Lorimer G. W., in Proceedings of the London Conference on Magnesium Technology, ed. Baker C., Lorimer G. W. and Unsworth W., p. 47, The Institute of Metals, London, U. K., 1986.
    7. Unsworth W. and Kingm J. F., in Proceeding of the London Conference on Magnesium Technology, London, The institute of metals, 1986, 25.
    8. Kamado S., Kojima Y., Ninomiya R. and Kubota K., Aging Characteristics and High Temperature Tensile Properties of Magnesium Alloys Containing Heavy Rare Earth Elements,Proceedings of the Third International magnesium Conference, Institute of Materials, Manchester, UK, 1997, 327-342.
    9. Negishi Y., Nishimura T., Iwasawa S., Kamado S., Kojima Y. and Ninoniya R., Aging Characteristics and Tensile Properties of Mg-Gd-Nd-Zr and Mg-Dy-Nd-Zr Alloys, Journal of Japan Institute of Light Metals, 1994, 44(10), 555-561.
    10. Neqishi Y., Nishimura T., Kiryuu M., Phase diagrams of magnesium-rich portion, aging characteristics and tensile properties of Mg-heavy rare earth metal alloy. Light Metal, 1995 , 45(2), 57-63.
    11. Kamado S., Kojima Y., Nishimura T., Ninomiya R. and Kubota K., Aging Characteristics and Mechanical Properties of Heat-Resistent Magnesium Alloys Containing Heavy Rare Earth Metals, Recent Metallurgical Advances in Light Metals Industries, 1995, 229-242.
    12. Polmear I. J., Light alloys/metallurgy of the light metals, metallurgy and materials science, 3rd ed. 1995, 196–206.
    13. Lorimer G., Azari-Khosroshaki R., Ahmed M., In: Proceedings of the International Conference on Solid–Solid Phase Transformations. The Japan Institute of Metals 1999, 185–192.
    14. Hisa M., Barry J. C., Dunlop G. L., In: Proceedings of the Third International Magnesium Conference. London: The Institute of Materials 1997, 369–379.
    15. Ahmed M., Pilkington R., Lyon P., Lorimer G., In: Magnesium alloys and their applications: Proceedings volume. DGM Informationsgesellschaft 1992, 251–257.
    16. Azari-Khosroshashi R., In: Magnesium alloys and their applications: Proceedings volume. DGM Informationsgesellschaft 2000, 711–715.
    17. Hisa M., Barry J. C., Dunlop G. L., In: Proceedings of the Third International Magnesium Conference, London: The Institute of Materials, 1997, 369–79.
    18. Nie J. F. and Muddle B. C., Characterisation of strengthening precipitation phase in a Mg-Y-Nd alloy, Acta. Mater., 2000, 48, 1691-1703.
    19. Nie J. F. and Muddle B. C., Precipitation in magnesium alloy WE54 during isothermal ageing at 250°C, Scripta Mater, 1999, 40, 1089-1094.
    20. He S. M., Zeng X. Q., Peng L. M., Gao X., Nie J. F. and Ding W. J., Precipitation in aMg–10Gd–3Y–0.4Zr (wt.%) alloy during isothermal ageing at 250℃, Journal of Alloys and Compounds, 2006, 421, 309–313.
    21. Apps P. J., Karimzadeh H., King J. F., Lorimer G. W., Precipitation Reactions in Magnesium-rare Earth Alloys Containing Yttrium, Gadolinium or Dysprosium. Scripta Materialia, 2003, 48, 1023-1028.
    22. Apps P. J., Karimzadeh H., King J. F., Lorimer G. W., Phase compositions in magnesium-rare earth alloys containing yttrium, gadolinium or dysprosium, Scripta Materialia, 2003, 48, 475–481.
    23. Lorimer G. W., Apps P. J., Karimzadeh H. and King J. F., Improving the performance of Mg-rare earth alloys by the use of Gd or Dy additions, Materials Science Forum, 2003, 419-422, 279-284.
    24. Antion C., Donnadieu P., Perrard F., Deschamps A., Tassin C., Pisch A., Hardening precipitation in a Mg-4Y-3RE alloy, Acta Materialia, 2003, 51, 5335-5348.
    25. 邓永瑞, 固态相变, 北京: 冶金工业出版社, 1996.
    26. 陈振华, 镁合金, 北京, 化学工业出版社, 2004.
    27. Polmear I. J., Light alloys/metallurgy of the light metals, metallurgy and materials science, 3rd ed. 1995, 96.
    28. Nayeb-Hashemi A. A., Clark J. B., Phase diagrams of binary magnesium alloys. ASM, 1988.
    29. Rokhlin L. L., Magnesium Alloys Containing Rare Earth Metals, Taylor & Francis, London, 2003.
    30. Buxton B. F., Eades J. A., Steeds J. W. and Rackham G. M., The symmetry of electron diffraction zone axis patterns, Phil. Trans. Roy. Soc. A, 1976, 281, 171-194.
    31. Li D. H., Dong J., Zeng X. Q., et al., Characterization of Precipitation Phase in a Mg-Dy-Gd-Nd Alloy, Journal of Alloys and Compounds, 2006, in press.
    32. 何上明, Mg-Gd-Y-Zr(-Ca)合金的微观组织演变、性能和断裂行为研究, [博士论文], 上海, 上海交通大学, 2007.
    33. Honma T., Ohkubo T., Hono K., et al., Chemistry of nanoscale precipitates in Mg–2.1Gd–0.6Y–0.2Zr (at.%) alloy investigated by the atom probe technique, Materials Science and Engineering A 395 (2005) 301–306.
    34. Yoshida H., Investigation of G. P. Zone Formation in Al-Cu Alloys Based on High Resolution Electron Microscopy, Pergamon Press, 1984, 191-197.
    35. Ahmed M., Lorimer G. W., Lyon P. and Pilkington R., in Proceedings Magnesium Alloys and Their Applications, ed. Mordike B. L. and Hehmann F., p. 301, DGM Informationsgesellschaft Verlag, Germany, 1992.
    36. Vostry P., Smola B., Stulikova I., Buch F. V. and Mordike B. L., Microstructure Evolution in Isochronally Heat Treated Mg-Gd Alloys, Phys. Stat. Sol, (a) 1999, 175, 491-500.
    37. Honma T., Ohkubo T. and Hono K. et al., Chemistry of nanoscale precipitates in Mg-2.1Gd-0.6Y-0.2Zr (at.%) alloy investigated by the atom probe technique, Materials Science and Engineering A, 2005, 395, 301-306.
    38. Dahmen U. and Westmacott K. H., Ledge Structure and the Mechanism of θ′ Precipitate Growth in Al-Cu, Physica Status Solidi (A) Applied Research, 1983, 80, 249-262.
    39. Chu K. C. and Liu T. F., Orientation relationship between βMn and L21 matrix in a Cu2MnAl alloy, Metallurgical and Materials Transactions A, 1999, 30, 1705-1716.
    40. Chen C. H., Yang C. C. and Liu T. F., Phase transition in a Cu-14.1Al-9.0Ni alloy, Materials Science and Engineering A, 2003, 354, 377-386.
    41. Pons J. and Cesari E., Effect of γ precipitates on the martensitic transformation in Cu-Al-Mn alloys, Materials Science and Engineering A, 1992, 158, 119-128.
    42. Kozubski R., Solty J., Dutkiewicz J. and Morgiel J., TEM Study of the Decomposition of the Heusler Alloy Cu2MnAl, Journal of Materials Science, 1987, 22, 3843-3846.
    1. Milicka K., Cadek J. and Rys P., High temperature creep mechanisms in magnesium, Acta Metall., 1970, 18, 1071-1082.
    2. Vagarali S. S. and Langdon T. G., Deformation Mechanisms in h.c.p. Metals at Elevated Temperatures - 1. Creep Behavior of Magnesium, Acta Metall., 1981, 29, 1969-1982.
    3. Polmear I. J., Light alloys. 3rd ed, London, Edward Arnold, 1995.
    4. Lorimer G. W., In: Baker C., Lorimer G. W., Unsworth W., editors. Magnesium Technology, London, The Institute of Metals, 1987, 47.
    5. Nie J. F. and Muddle B. C., Characterisation of strengthening precipitation phase in a Mg-Y-Nd alloy, Acta Mater, 2000, 48, 1691-1703.
    6. Celotto S., TEM study of continuous precipitation in Mg-9 wt%Al-1 wt%Zn alloy, Acta Mater., 2000, 48, 1775-1787.
    7. Nie J. F., Xiao X. L., Luo C. P., Muddle B. C., Characterisation of precipitate phases in magnesium alloys using electron microdiffraction, Micron, 2001, 32, 857-863.
    8. Mushovic J. N., Stoloff N. S., Precipitation Processes in Mg-Th-Zr Alloy, Trans Metall Soc AIME, 1969, 245, 1449-1456.
    9. Nie J. F., Muddle B. C., Precipitation hardening of Mg-Ca(-Zn) alloys, Scripta Mater., 1997, 37, 1475-1481.
    10. Smola B., Stulikova I., Von B. F., Mordike B. L., Structural aspects of high performance Mg alloys design, Materials Science and Engineering A, 2002, 324, 113-117.
    11. Nie J. F., Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys, Scripta Materialia, 2003, 48, 1009-1015.
    12. Clark J. B., Age hardening in a Mg-9wt.%Al alloy, Acta Metall, 1968, 16(2), 141-152.
    13. Gao X., He S. M., Zeng X. Q., Peng L. M., Ding W. J., Nie J. F., Microstructure evolution in a Mg–15Gd–0.5Zr (wt.%) alloy during isothermal aging at 250℃, Materials Science and Engineering A 431 (2006) 322-327.
    14. Kamado S., Iwasawa S., Kojima Y. and Ninomiya R., Age hardening Characteristics and High Temperature Strength of Mg-Gd and Mg-Tb Alloys, Journal of Japan Institute of Light Metals,1992, 42(12), 727-733.
    15. Negishi Y., Iwasawa S., Kamado S., Kojima Y. and Ninoniya R., Effect of Yttrium and Neodymium Additions on Aging Characteristics and High Temperature Tensile Properties of Mg-10mass%Gd and Mg-10mass%Dy Alloys, Journal of Japan Institute of Light Metals, 1994, 44(10), 549-554.
    16. Negishi Y., Nishimura T., Iwasawa S., Kamado S., Kojima Y. and Ninoniya R., Aging Characteristics and Tensile Properties of Mg-Gd-Nd-Zr and Mg-Dy-Nd-Zr Alloys, Journal of Japan Institute of Light Metals, 1994, 44(10), 555-561.
    17. Kamado S., Kojima Y., Ninomiya R. and Kubota K., Aging Characteristics and High Temperature Tensile Properties of Magnesium Alloys Containing Heavy Rare Earth Elements, Proceedings of the Third International magnesium Conference, 1997, 327-342.
    18. Regev R., Rosen A. and Bamberger M., Qualitative model for creep of AZ91D magnesium alloy, Metall. Mater. Trans. A, 2001, 32A, 1335-1445.
    19. Link T., Epishin A. and Portella P., Increase of misfit during creep of superalloys and its correlation with deformation, Acta mater., 2000, 48, 1981-1994.
    20. Spigarelli S., Cabibbo M. P., Evaangelista E., et al., Analysis of the creep behavior of thixoformed AZ91 magnesium alloy, Mater. Sci. Eng. A, 2000, A289, 172-181.
    21. Partridge P. G., The crystallography and deformation modes of hexagonal closed-pactd metals, Metall. Rev., 1967, 12, 169-194.
    22. 黄孝瑛, 透射电子显微学, 上海, 上海科学技术出版社, 1987, 146-178.
    23. 刘文西, 黄孝瑛, 陈玉如, 材料结构电子显微分析, 天津, 天津出版社, 1989, 136-415.
    24. 吕宜振, Mg-Al-Zn 合金组织、性能、变形和断裂行为研究, [博士论文], 上海, 上海交通大学, 2000.
    25. 刘满平, Mg-Al-Ca 合金微观组织、力学性能和蠕变行为的研究, 上海, 上海交通大学, 2003.
    26. Chiristian J. W. and Mahajan S., Deformation twinning, Progress in materials Science, 1995, 39, 1-157.
    27. Mahajan S. and Williams D. F., Deformation twinning in metals and alloys, Intl. Met. Rev.,1973, 18, 43-61.
    28. 弗里埃尔德 J. 著, 王煜译, 位错, 北京, 科学出版社, 1984, 103-108.
    29. Wang J. G., Hsiung L. M. and Nieh T. G., Formation of deformation twins in a crept lamellar TiAl alloy, Scripta Mater., 1998, 39(7), 957-962.
    30. 肖林, 密排六方金属的塑性变形, 稀有金属材料与工程, 1995, 24(6), 21-28.
    31. Chiristian J. W. and Mahajan S., Deformation twinning, Progress in materials Science, 1995, 39, 1-157.
    32. 哈富宽, 金属力学性质的微观理论, 北京, 科学出版社, 1987, 122-521.
    33. 杨德庄, 位错与金属强化机制, 哈尔滨, 哈尔滨工业大学出版社, 1991.
    34. 刘平, 康布熙, 曹兴国等, 快速凝固 Cu-Cr 合金时效析出的共格强化效应, 金属学报, 1996, 35(6), 561-564.
    35. Jog C. S., Sankarasubramanian R. and Abinandanan T. A., Symmetry-breaking transition in equilibrium shapes of coherent precipitates, Journal of the Mechanics and Physics of Solids, 2000, 48, 2363-2389.
    36. 张家涛, 高性能 Cu-Cr(Zr、Mg)自生复合材料研究及其应用, 昆明理工大学, 2001, 81.
    37. Gerold V., Haberkovn H., On the Critical Resolved Shear Stress of Solid Solutions Containing Coherent Precipitates, Phys. Status. Solidi., 1966, 16, 675-684.
    38. Hanse N., Polycrystalline Strengthening, Metall. Trans., 1985, 16A, 2167-2190.
    39. Brown L. M., Ham R. K., In: Kelly A., Nicholson R. B., editors. Strengthening methods in crystals, London, Elsevier Publishing Company, 1971, 12.
    40. Ardell A. J., Precioitation Hardening, Metall Trans. A, 1985, 16A, 2131-2165.
    41. Nembach E., Particle strengthening in metals and alloys, New York, John Wiley & Sons, 1997.
    42. Reppich B., In: Cahn R. W., Hassen P., Kramer E. J., editors, Materials science and technology, a comprehensive treatment, Weinheim: VCH, 1993, 6, 311.
    43. Fullman R. L., Measurement of particle sizes in opaque bodies, Trans AIME, 1953, 197,
    447-452.
    1. 陈振华, 变形镁合金, 化学工业出版社, 北京, 2005.
    2. Busk R. S., Magnesium Products Design, Newyork, Marcel Dekker. INC, 1987.
    3. 郑来苏, 铸造合金及其熔炼, 西安, 西北工业大学出版社, 1994.
    4. Nie J. F. and Muddle B. C., Precipitation in magnesium alloy WE54 during isothermal ageing at 250°C, Scripta Mater, 1999, 40, 1089-1094.
    5. Anyanwu A., Kamado S., Aging characteristics and high temperature tensile properties of Mg-Gd-Y-Zr alloys, Mater. Trans, 2001, 42, 1206-1211.
    6. Eifert A. J., Thomas J. P., Influence of anodization on the fatigue life of WE43A-T6 magnesium, Scripta. Mater., 1999, 40(8), 929-935.
    7. Rokhlin L. L., Nikitina N. I., Study of the recovery in aged Mg-Dy alloys. Metallovedenie i Termicheskaya Obrabotka Metallov, 2001, 5, 34-37.
    8. Rokhlin L. L., Nikitina N. I., Mechanical properties of Mg alloys with dysprosium (Dy), Metallovedenie i Termicheskaya Obrabotka Metallov. 1999, 6, 37-39.
    9. Vostry P., Smola B., Stulikova I., Buch F. V. and Mordike B. L., Microstructure Evolution in Isochronally Heat Treated Mg-Gd Alloys, Phys. Stat. Sol, (a) 1999, 175, 491-500.
    10. Iwasawa S., Negishi Y., Kamado S., Kojima Y. and Ninomiya R., Age Hardening Characteristics and high Temperature Tensile Properties of Mg-Gd and Mg-Dy Alloys, Journal of Japan Institute of Light Metals, 1994, 44(1), 3-8.
    11. Negishi Y., Iwasawa S., Kamado S., Kojima Y. and Ninoniya R., Effect of Yttrium and Neodymium Additions on Aging Characteristics and High Temperature Tensile Properties of Mg-10mass%Gd and Mg-10mass%Dy Alloys, Journal of Japan Institute of Light Metals, 1994, 44(10), 549-554.
    12. Xie J. P., Zhu Y. M. and Li Q. C., Observation of medium manganese steel during TEM in-situ tension, Journal of chinese electron microscopy society, 1999, 18, 529-535.
    13. 张娅, Mg-Zn-Y-Zr 变形镁合金组织、性能及变形行为研究, [博士论文],上海, 上海交通大学, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700