共存污染物对三种有机物在土壤/沉积物上吸附行为影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复合化学污染对有机污染物在土壤/沉积物上的环境吸附行为的影响,已经成为环境化学领域关注的热点。越来越多的无机和有机污染物进入环境,使得绝对意义上的单一环境污染已经不存在。共存污染物之间存在的复杂交互作用,使得复合化学污染的环境行为及其影响已经变得越来越明显,一些污染物特别是难降解的有毒有害有机污染物(包括持久性有机污染物、环境激素等)的迁移转化途径及生态效应也变得越来越复杂,甚至污染行为加重。而有关复合化学污染对难降解的有毒有害有机污染物的环境吸附行为及其影响机制、控制方法,则缺乏深入、系统的研究。本文以三种典型的有毒有机污染物,环境激素物质双酚A、多环芳烃萘和可离子化的对硝基苯酚为代表,研究了重金属、表面活性剂等复合化学污染对其环境吸附行为的影响及其作用规律,表明复合化学污染能明显影响有毒有机污染物的环境吸附/解吸等环境迁移行为:
     (1)重金属、表面活性剂等污染物以及环境因素(pH值,离子强度)等能够影响双酚A在沉积物上的静态吸附行为。单一重金属Pb2+或Cd2+均增强了双酚A在沉积物上的吸附;阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)和氯代十六烷基吡啶(CPC)增强了双酚A在沉积物上的吸附,而阴离子表面活性剂十二烷基苯磺酸钠(SDBS)则轻微的抑制了双酚A在沉积物上的吸附;阳离子复合表面活性剂对双酚A在沉积物上的吸附具有协同效应,其促进作用强于同浓度下CTAB或CPC单独存在时的吸附促进作用;而阳离子表面活性剂和重金属的复合体系也增大了双酚A的吸附,并且随着表面活性剂浓度的增大,重金属的吸附促进作用相对于表面活性剂的吸附促进作用而言,影响力逐渐减弱,此时,主要表现为表面活性剂的吸附促进作用。pH值的降低和离子强度增大,双酚A的吸附量也随之增大。
     (2)重金属、表面活性剂等污染物以及环境因素pH值,离子强度等也能够影响双酚A在土壤上的动态吸附/解吸行为。离子强度和重金属均促进了双酚A在土壤上的吸附,并且对解吸有抑制作用;阳离子表面活性剂CTAB和CPC对双酚A在土壤上的吸附有促进作用,存在明显的“拖尾”现象,相应的解吸量也增加。因此,在对被有机污染物污染的土壤进行修复的过程中,有机物对地下水可能造成的影响必须要予以考虑。
     (3)小分子有机酸在低浓度时,对萘的吸附影响不显著,而高浓度时,对萘在沉积物上的吸附有较为明显的抑制作用,并且随着有机酸浓度的增大和碳链的增长抑制作用变得越来越明显。这主要是有机酸对萘的溶解和吸附竞争作用,以及有机酸对沉积物结构影响等几种作用竞争的结果。
     (4)环境激素类物质双酚A、2, 4-二氯苯酚、2, 4-滴对对硝基苯酚在沉积物上的吸附有不同程度的竞争作用。2, 4-二氯苯酚对其的吸附竞争作用强于双酚A、2, 4-滴。竞争能力的大小与有机化合物的吸附能力的大小,以及苯环上的取代官能团不同有关。吸附等温线的非线性程度越强,其竞争能力越强;而吸附能力较弱以及在实验条件下可离子化的有机污染物对对硝基苯酚的吸附竞争能力则较弱。
Combind pollution has become one of the important directions of environmental chemistry at present. Sorption of organic pollutants by soils/sediments plays an important role in their transport, fate and bioavailability in natural environment. In response to the serious combind pollution of soils and groundwater, it is interested to understand and evaluate the sorption behaviors of organic pollutants on soils/sediments, and to control the sorption behaviors. In this dissertation, the sorption behaviors and mechanisms of organic pollutants by combind pollution onto soils/sediments were investigated detailedly. The main conclusions of this dissertation are:
     (1)The effects of different heavy metals (Cd2+ Pb2+), cationic surfactants cetyltrimethylammonium bromide (CTAB), anionic surfactant sodium dodecylbenzenesulfonate (SDBS)) and the chemistry of the solution (pH and ionic strength) on the sorption of bisphenol A (BPA) to sediment were studied. Results showed that the presence of Cd2+ and Pb2+ caused a significant increase on the sorption of BPA to sediment. The effect of surfactants on the adsorption of BPA onto sediment was found to strongly depend on the type of the surfactants. The presence of CTAB promoted BPA sorption and the amount of BPA adsorbed onto sediments increased linearly with concentration of CTAB. In contrast, the presence of anionic surfactant (SDBS) caused a slight reduction on the sorption of BPA. In complex system, the compounding effect of heavy metals and surfactants on BPA sorption was significant. Moreover, with the increase of the surfactant concentration, the increase on BPA sorption caused by surfactants was predominat than that of heavy metals. It was also found that the sorption behavior of BPA was affected by solution pH and ionic strength. The larger amount of BPA was absorbed with higher ionic strength and lower pH.
     (2)The effects of different heavy metals (Cd2+, Pb2+), surfactants ((CTAB), (CPC)) and the ionic strength (Ca2+, NH4+) on sorption and desorption of BPA were studied using soil column experiment. Results showed that the presence of heavy metals and cationic surfactants caused a significant increase on the BPA sorption. In addition, a clear difference between these sorption curves is the“tailing”in the presence of CTAB and CPC (slow approach to Ce/C0=1), that is characteristics of nonequilibrium sorption during BPA transport. It was also found that the larger amount of BPA was absorbed with higher ionic strength. The cationic surfactants enhanced the desorption ability of BPA form the soil. However, the Cd2+, Pb2+ and Ca2+, NH4+ decrease the sorption of BPA. The results provided a better understanding of BPA behavior in environment and facilitated more accurate assessment of its ecological risk and identification of appropriate management strategies.
     (3)The sorption behavior of naphthalene in the presence of dissolved organic acid was studied. The presence of dissolved organic acids at lower concentrations had only a little effect on naphthalene sorption. However, when the concentration exceeds a certain concentration, a significant inhibition was observed. Moreover, the inhibition enhanced with the increasing concentrations of dissolved organic acids. In addition, the change of structure of sediment is an important factor that can affect the naphthalene sorption. This suggests the change of solubility of naphthalene and the change of structure of sediment in dissolved organic acids solution both exert effect on naphthalene sorption。
     (4)Sorption behavior of four chemicals BPA, 2, 4-dicholrophenoxyacetic acid (2, 4-D), 2, 4-dichlorophenol (2, 4-DCP) and p-nitrophenol (PNP) to sediment was investigated by means of batch sorption experiments. Results showed that all the isotherms for each single chemical were in good agreement with Freundlich equation. The influence of BPA, 2, 4-D and 2, 4-DCP as cosolutes on the sorption of PNP as target solute was studied by determining the single isotherm of PNP. Little or no competitive phenomenon was observed in the presence of BPA and 2, 4-D. In contrast, the competitive inhibition occured when 2, 4-DCP were introduced to the solution. In addition, the competitive power enhanced with the increasing of cosolute concentration. The competitive degree depends on the hydrophobicity, concentration and the functional group of cosolute, and can be interpreted by dual-mode model.
引文
[1] 郑振华, 周培疆, 吴振斌. 复合污染研究的新进展. 应用生态学报. 2001, 12(3): 469-473.
    [2] 金相灿. 沉积物污染化学. 北京: 中国环境科学出版社. 1992, 9.
    [3] B1om, G., Winkels, H.J. Modeling sediment accumulation and dispersion of contaminants in lake. Wat. Sci. Tech. 1998, 37(6): 17-24.
    [4] 陈怀满, 郑春荣. 复合染污的交互作用研究-农业环境保护研究中的热点与难点. 农业环境保护. 2002, 4: 192.
    [5] Lange, J.H., Thomullea, K.W. Use of the vibrio harvegi toxicity test for evaluating mixture interactions of nitrobenzene and dinitrioben-zene. Ecotoxicol. Environ. Safe. 1997, 38(6): 2-12.
    [6] Xiu, R.Q., Xu, Y.X., Gao, S.R. Joint toxicity test of arsenic with cadmium and zinc ions to zebrafish, brachy-nanio rerio. Chin. Environ. Sci. 1998, 18(8): 349-352.
    [7] 占伟, 吴文忠, 徐盈. 有机有毒污染物在土壤/底泥系统中的吸附/解吸行为研究进展. 环境科学进展. 1998, 6(3): 1-13.
    [8] Weber, W.J.Jr., McGinley, P.M., Kars, L.E. Sorption phenomena in subsurface systems: concept model and effects on contaminant fate and transport. Wat. Res. 1991, 25(5): 499-528.
    [9] Swindell, A.L., Reid, B.J. The influence of a NAPL on the loss and biodegradation of 14C-phenanthrene residues in two dissimilar soils. Chemosphere. 2007, 66(2): 332-339
    [10] Chiou, C.T., Daniel E.K. Derivations from sorption linearity on soils polar and nonpolar organic compounds at low relative concentrations. Environ. Sci. Technol. 1998, 32(3): 338-343.
    [11] Hamaker, J.W., Thompson , J.M. Adsorption of organic chemicals in the environment Dedder. New York. 1972, 1:28-36.
    [12] Kozak, J., Weber, J.B., Sheets, T.J. Adsorption of prometryn and metolachlor byselected soil organic matter fractions. Soil. Sci. 1983, 136(2): 94-101.
    [13] Means, J.C. Influence of salinity upon sediment-water partitioning of aromatic hydrocarbons. Mar. Chem. 1995, 51(1): 3-16.
    [14] Chiou, C.T., Peters, L.J., Fried, V.H. Partition equilibrium of nonionic organic matter and mater. Environ. Sci. Technol. 1983, 17(4): 227-231.
    [15] Chiou, C.T., Malcolm, R.L., Briton, T.I. Water solubility enhancement of some organic pollutants and pesticides by dissolves humic and fluvic acids. Environ. Sci. Technol. 1986, 20(5): 502-508.
    [16] Giannakopoulou, F., Haidouti, C., Chronopoulou, A. Sorption behavior of cesium on various soils under different pH levels. J. Hazard. Mater. 2007, 149(3): 553-556.
    [17] Young, T.M., Huang, W.A., Schalutman, M.A., Weber W.J.Jr. A distributed reactivity model for by soils and sediments. 3. Efects of diagenetic processes on sorption energetics sorption. Environ Sci.Techno1.1995, 29(1): 92-97.
    [18] Weber, W.J.Jr., Huang, W.A. A distributed reactivity model for sorption soils and sediments. 1. Conceptual basis and equilibrium aeeseements. Environ. Sci. Technol. 1992, 26(10): 1955-1962.
    [19] Weber, W.J.Jr., Huang, W.A. A distributed reactivity model for sorption soils and sediments. 4. Intrapartical heterogeneity and phase-distribution relationships under nonequilibrium conditions. Environ. Sci. Technol. 1996, 30(3): 881-888.
    [20] Hatzinger, P.B., Alexander, M. Effect of aging of chemicals in soil on their biogegradability and exractability. Environ.Sci.Technol. 1995, 29(2): 537-545.
    [21] McGroddy, S.E., Farrington, J.W., Gschwend, P.M. Comparison of the in Situ and desorption sediment-water partitioning of polycyclic aromatic hydrocarbons and polychlorinated biphenyls. Environ.Sci.Technol. 1996, 30(1):172-177.
    [22] Xing, B., Pignatello, J.J. Competitive sorption between 1, 3-dichlorobenzene or 2, 4-dichlorophenol and natural aromatic acids in soil organic matter. Environ. Sci. Technol. 1998, 32(5): 614-619.
    [23] Huang, W.A., Weber, W.J.Jr., Schalutman, M. A. A distributed reactivity modelfor sorption by soils and sediments. 1. Slow concentration-dependent sorption rates. Environ. Sci.Tehnol. 1998, 32(22): 3549-3555.
    [24] Xing, B., Pignatello, J.J. Time-dependent isotherm shape of organic compounds in soil organic matter: implications for sorption mechanism. Environ. Sci.Tehnol. 1996, 15(11): 1282-1288.
    [25] Xing, B., Pignatello, J.J., Gigioti, B. Competitive sorption between atrazine and other organic compounds in soils and model sorbents. Environ.Sci.Technol. 1996, 30(8): 2432-2440.
    [26] Pignatello, J.J. Organic substances and sedments in water humics and soils (Edited by Baker, R.A) .Chelsea, Michi-gan: Lewis Publishers. 1991, 2: 291-307.
    [27] Xing, B., Pignatello, J.J. Dual-mode sorption of flow-polarity compounds in glassy poly (vinylchl oride) and soil organic matter. Environ.Sci.Techno1. 1997, 31(3): 792-799.
    [28] Kleineidam, S., Rugner, H., Ligouis, B. Organic matter facies and equilibrium sorption of phenanthrene. Environ. Sci. Technol. 1999, 33(10): 1637-1644.
    [29] Karapanagioti, H.K., Kleineidam, S., Rugner, H. Impacts of heterogeneous organic matter on phenanthrene sorption: equilibrium and kinetic studies with aquifer material. Environ. Sci. Technol. 2000, 34(3): 406-414.
    [30] Karapanagioti, H.K., Kleineidam, S., Rugner, H. Impacts of heterogeneous organic matter on phenanthrene sorption: different soil and sediment samples. Environ. Sci. Technol. 2001, 35(23): 4684-4690.
    [31] Chiou, C.T., Kile, D.E., Rutherford, D.W., Shenf, G.B. Sorption of selected organic compounds from water to a peat soil and its humic-acid and humin fractions. Environ. Sci. Technol. 2000, 34(7): 1254-1258.
    [32] Crittenden, J.C., Luf, P., Hand, D.W., Oravitz, J.L., Loper, S.W., Arl, M. Prediction of multicomponent adsorption equilibrium using ideal adsorbed solution theory. Environ Sci.Technol. 1985, 19(11): 1037-1043.
    [33] Pei, Z.G., Shan, X.Q., Wen, B. Effect of copper on the adsorption of p-nitrophenol onto soils. Environ. Pollut. 2006, 139(3): 541-549.
    [34] 王果. Cu2+对 3 种农药在 Ca-蒙脱石和 δ-Al2O3 上吸附的影响. 环境科学学报. 1996, 16(1): 23-29.
    [35] 王慎强, 王玉军, 周东美. 铜和邻苯二胺在水相和矿物上交互作用的研究. 农业环境科学学报. 2003, 22(6): 656-659.
    [36] 沈学优, 卢瑛莹, 吴双双, 孙俊杰, 朱利中. 有机膨润土在 Pb2+ 和 p-硝基苯酚复合污染中的吸附及机理. 环境科学. 2004, 25(3): 168-170.
    [37] Daniel, E.K., Chiou, C.T. Water solubility enhancement of DDT and trichlorobenze by some surfactant below and above the micelle concentration. Environ Sci. Technol. 1989, 23(7): 832-838.
    [38] 曹罡, 莫汉宏, 安凤春. 阴离子表面活性剂对 2, 4-D 在土壤中吸附的影响. 环境化学. 2002, 21(4): 356-359.
    [39] Sanchez-Camazano, M.A., Sanchez-Martin, M.J., Rodriguez-Cruz, M.S. Sodium dodecyl sulphate- enhanced desorption of atrazine: Effect of surfactant concentration and of organic matter content of soils. Chemosphere. 2000, 41(8): 1301-1305.
    [40] Shen, X.Y., Sun, Y.L., Ma, Z.Y., Zhang, P. Effects of mixed surfactants on the volatilization of napthalene from aqueous solutions. J. Hazard. Mater. 2007, 140(1): 187-193.
    [41] David, M., Kinson, S.L. Laboratory studies to investigate short-term oxidation and sorption behaviour of neptunium in artificial and natural seawater solutions. Mar. Chem. 1997, 56(1): 107-121
    [42] Yongkoo, S., Linda, S.L. Effect of dissolved organic matters in treated effluents on sorption of atrazine and prometryn by soils. Soil. Sci. Soc. 2000, 64: 1976-1983.
    [43] Maxin, C.R., K?gel-Knanber, I. Partition of polycyclic aromatic hydrocarbons (PAH) to water-soluble soil organic matter. Eur. J. Soil. Sci. 1995, 46(2): 193-204.
    [44] Thornton, S.F. Attenuation of landfill leachate by U.K Triassic sand stone aquifer materials 2. Sorption and degradation of organic pollutants in laboratory columns. J. Contam. Hydrol. 2000, 43(3): 355-383.
    [45] Celis, R., Barriuso, E., Houot, S. Effect of liquid sewage sludge addition on atrazine sorption and desorption by soil. Chemosphere. 1998, 37(6): 1091-1107.
    [46] Willams, C.F., Agassi, M., Letey, J. Facilitated transport of napropamide by dissolved organic matter through soil columns. Soil. Sci. Soc. Am. J. 2000, 64: 590-594.
    [47] Totsche, K.U., Danzer, J., K?gel-Knanber, I. Dissolved organic matter-enhanced retention of polycyclic aromatic hydrocarbons in soil miscible displacement experiments. J. Environ. Qual. 1997, 26: 1090-1100.
    [48] Zhu, L.Z., Lou, B.F., Yang, K., Chen, B.L. Effects of ionizable organic compounds in different species on the sorption of p-nitroanline to sediment. Water. Res. 2005, 39(2): 281-288.
    [49] Yu, Z.Q., Huang, W.L. Competitive sorption between 17α-ethinyl estradiol and naphthalene/phenanthrene by sediments. Environ. Sci. Technol. 2005, 37(12): 2646-2657.
    [50] Farenhorst, A., Bowman, B.T. Competitive sorption of atrazine and metolachlor in soil. J.Environ .Sci. Health. I998, B33(6): 671-682.
    [51] Barriuso, E., Feller, C.H., Calvet, R. Sorption of atrazine, terbutym, and 2, 4-D herbicides in two brazilian oxisols. Geoderma. 1992, 53: 155-167.
    [52] McCarthy, P.M., Katz, L.E., Weber, W.J.Jr. A distributed reactivity model for sorption by soils and sediments. 2. multicomponent systems and competitive effects. Environ. Sci. Technol. 1993, 27(8): 1524-1531.
    [53] 戴树桂. 环境化学. 北京: 高等教育出版社, 1996.
    [54] Wang, Z.D., Gamble, D.S., Langford, C.H. Interaction of atrazine with Laurentian soil. Environ. Sci. Technol. 1992, 26(3): 560-56
    [55] Houch, M. Assessment of salinity variations in TBT adsorption onto kaolinitie and montmorillonite different pH levels. Water. Air. Soil. Pollut. 2004, 152(1): 349-362.
    [56] 雷志芳, 叶常明. 苯胺在水体悬浮颗粒物上吸附特征. 环境科学. 1998, 11: 70-72.
    [57] Stapleton, M.G., Sparks, D.L., Dental, S.K. Sorption of pentachlorophenol to HDTMA-Clay as a function of ionic strength and pH. Environ.Sci.Technol. 1994,28(13): 2330-2335.
    [58] Erin, C.D., Mark, R.W. Dialysis investigations of atrazine-organic matter interaction sand the role of a divalent metal. Environ. Sci.Technol. 1998, 32(2): 232-237.
    [59] Snyder, S.A., Villeneuve, D.L., Snyder, E.M., Giesy, J.P. Identification and quantification of estrogen receptor agonists in wastewater effluents. Environ. Sci. Technol. 2001, 35(18): 3620-3625.
    [60] Stapher, C.A.,Dorn, P.B.,Kleka, G.M. A review of the environmental fate, effect and exposures of bisphenol A. Chemospher. 1998, 36(10): 2149-2173
    [61] Ramos, J.G., Varahyoud, J., Sonneschein, C. Prenatal exposure at low doses of bisphenolA alters the periductal stroma and glandular cell function in the rat ventral prostate. Biol. Reprod. 2001, 65: 1271-1277.
    [62] Wynnel, G. Bisphenol A: a known endocrine disruptor[R]. A WWW European Toxics Programme Report. 2000.
    [63] Oehlmann, J., Schulte, O.U., Tillmann, M. Effects of endocrine disruptors on prosobranch snails (Molluscs: Gastropods) in the laboratory. Part 1: bisphenol A and octylphenol as xenoestrogens. Ecotoxicology. 2000, 9(6): 383-397.
    [64] Dessi-Fulgheri, F., Porrini, S., Farabollini, F. Effects of perinatal exposure to bisphenol A. Environ. Health. Persp. 2002, 110: 409-414.
    [65] Kolpin, D.W., Furlong, E.T., Meyer, M.T., Thurman, E. M., Zaugg, S. D., Barber, L. B., Buxton, H.T. Pharmaceuticals, Hormones, and other organic wastewater contaminants in U. S. streams, 1999-2000: A national reconnaissance. Environ. Sci. Technol. 2002, 36(6): 1202-1211.
    [66] Lai, K.M., Johnson, K.L., Scrimshaw, M.D., Lester, J.N. Binding of waterborne steroid estrogens to solid in river and estuarine systems. Environ. Sci. Technol. 2000, 34(18): 3890-3894.
    [67] Akio, N., Motoharu, T., Naohito, K. Adsorption characteristics of bisphenol A onto carbonaceous material produced from wood chips as organic waste. J. Colloid. Interf. Sci. 2002, 252: 393-396.
    [68] Bautista-Toledo, I., Ferro-Garcia, M.A., Rivera-Utrilla, J., Moreno-Castilla, C., Vegas Fernandez, F.J. Bisphenol A removal from water carbon. Effects of carbon characteristics and solution chemistry. Environ. Sci. Technol. 2005, 39(16): 6246-6250.
    [69] Fent, G., Hein, J.W., Moendel, J.M. Fate of 14C-bisphenol A in soils. Chemosphere. 2003, 51(8): 735-746.
    [70]Ying, G.G., Kookana, S.R., Dillon, P. Sorption and degradation of selected five endocrine disrupting chemicals in aquifer material. Water. Res. 2003, 37(15): 3785-3791.
    [71] Lai, K.M., OhsonK, L.J., Scrimshaw, M.D., Lester, J.N. Binding of waterborne steroid estrogens to solid in river and esturine systems. Environ. Sci. Technol. 2000, 34(18): 3890-3894.
    [72] 杨毅, 刘敏, 侯立军, 许世远. 海岸带水环境中多环芳烃的归宿研究. 海洋环境科学. 2003, 22(1): 69-74.
    [73] 赵云英, 马永安. 天然环境中多环芳烃的迁移转化及其对生态环境的影响. 海洋环境科学. 1998, 17(2): 68-72.
    [74] 朱利中, 陈宝梁. 多环芳烃在水/有机膨润土间的分配行为. 中国环境科学. 2000, 20(2): 19-23.
    [75] Xia, G.S., Ball, W.P. Polanyi-based models for the competitive sorption of low-polarity organic contaminants on a natural sorbent. Environ. Sci. Technol. 2000, 34(7): 1246-1253.
    [76] Lee, Y., Farmer, W.J., Aochi, Y. Sorption of naropamide on clay and soil in the presence of dissolved organic matter. J. Environ. Qual. 1990, 15: 567-573.
    [77] Ding, J.Y., Wu, S.C. Transport of organochlorine pesticides in soil columns enhanced by dissolved organic carbon. Wat. Sci. Tech. 1997, 35(7): 139-145.
    [78] Lassen, P., Carlsen, L. Solubilization of phenanthrene by humic acids. Chemosphere. 1997, 34(4): 817-825.
    [79] Thiele-Bruhn, S., Aust, M.O. Effect of pig slurry on the sorption of sulfonamide antibiotics in soil. Arch. Environ. Contam. Toxicol. 2004, 47(1): 31-39.
    [80] K?gel-Knabner, I., Totsche, K., Raber, B. Desorption of polycyclic aromatic hydrocarbons from soil in the presence of dissolved organic matter: effect of Solution Composition and Aging. J. Environ. Qual. 2000, 29: 906-916.
    [81] Isam, S., Menahem, R., Zev, Gerstl. An independent prediction of the effect of dissolved organic matter on the transport of polycyclic aromatic hydrocarbons. J. Contamn. Hydrology. 2004, 75(1): 55-70.
    [82] 鲁如坤. 土壤农业化学分析方法. 北京: 中国农业科技出版社. 2000, 4.
    [83] Ochs, M., Pointeau, I., Giffaut, E. Caesium sorption by hydrated cement as a function of degradation state: Experiments and modeling. Waste. Manage. 2006, 26(7): 725-732
    [84] 陈华林. 沉积物对有机污染物的不可逆吸附行为. 浙江大学. 2003.
    [85] 奚旦立. 环境监测. 北京: 高等教育出版社. 1996.
    [86] Baek, K.W., Sang H.S., Seok, H.K., Young, W.R., Chang, S.L., Bum, J.L., Sam, H and Taek, S.H. Adsorption kinetics of boron by anion exchange resin in packed column bed. J. Ind. Eng. Chem. 2007, 13(3): 452-456.
    [87] Campbell, C., Garrido, G., F., Illera, V., Garca-Gonzalez, M.T. Transport of Cd, Cu and Pb in an acid soil amended with phosphogypsum, sugar from foam and phosphoric rock. Appl. Geochem. 2006, 21(10): 1030-1043.
    [88] Sabbah, I., Rebhun, M., Gerstl, Z. An independent prediction of the effect of dissolved organic matter on the transport of polycyclic aromatic hydrocarbons. J. Contam. Hydrol. 2004, 75(1): 55-70.
    [89] 李鱼, 张华鹏, 王晓丽, 李青山, 王月, 路永正. pH 值和流速对向海盐碱湿地土壤草根层吸附铅、镉规律的影响. 吉林大学学报. 2004, 4: 628-632.
    [90] Bautista-Toledo, I., Ferro-Garcia, M.A., Rivera-Utrilla, J., Moreno-Castilla, C., Vegas-Fernandez, F.J. Bisphenol A removal from water carbon. Effects of carbon characteristics and solution chemistry. Environ. Sci. Technol. 2005, 39(16): 6246-6250.
    [91] Pura, S., Atun, G. Enhancement of nitrophenol adsorption in the presence of anionic surfactant and the effect of the substituent position. Colloid. Surface. A. ,2005, 253(1): 137-144.
    [92] 沈学优, 马战宇, 陈平, 竺立峰, 方婧. 表面活性剂对极性有机物在沉积物上吸附的影响. 环境科学. 2003, 24(5): 132-135.
    [93] 秦宗会. 氨基黑 10B 褪色光度法测定两种阳离子表面活性剂及其作用机理. 理化检验-化学分册. 2006, 42(6): 426-429.
    [94] Astrid, R.J., Murray, B.M., Philippe, B., Tammo, S.S. Environmental factors determining the trace-level sorption of silver and thallium to soils. Sci. Total. Environ. 2005, 345(1): 191-205.
    [95] Poliandri, A.H., Cabilla, J.P., Velardez, M.O. Cadmium induce sapoptosis in anterior pituitary cells that can be reversed by treatment with antioxidants. Toxicol. Appl. Pharm. 2003, 190: 17-24.
    [96] 陈宝梁,马战宇,朱利中. 表面活性剂对苊的增溶作用及应用初探. 环境化学. 2003, 22(1): 53-58.
    [97] Liu, J.C., Chang. P.S. Solubility and adsorption behaviors of chlorophenols in the presence of surfactant. Wat. Sci.Tech. 1997, 35(7): 123-130.
    [98] Doong, R.A., Lei, W.G., Chen, T.F., Lee, C. Y. Effect of anionic and nonionic surfactants on sorption and micellar solubilization of monocyclic aromatic compounds. Wat. Sci. Tech. 1996, 34(7): 327-334.
    [99] Song, W. L.; Li, A.; Xi, X. Q. Water solubility enhancement of phthalates by cetyltrimethylammonium bromide andβ-cyclodextrin. Ind. Eng. Chem. Data. 2003, 42(5): 949-955.
    [100] Daniel, E.K.; Chiou, C.T. Water solubility enhancement of DDT and trichlorobenze by some surfactant below and above the micelle concentration. Environ Sci. Technol. 1989, 23(7): 832-838.
    [101] Kohsaku, K.; Naohike, O.; Kyola, M.; Takeshi, F.; Yasuo, I. Solubilization behavior of a poorly soluble drug under combined use of surfactants and cosolvents. Eur. J. Pharm. Sci. 2006, 28(1): 7-14.
    [102] Zhou, B.X., Cai, W.M., Zou, L.Z. Thermodynamic function for transfer of anthracene from water to (water+alcohol) mixtures at 298.15K. J. Chem Eng Data.2003, 48(3): 742–745.
    [103] Zhou, B.X., Cai, W.M., Zou, L.Z. Thermodynamic of transfer of naphthalene and 2-naphthoic acid from water to (water+ethanol) mixtures at T=298.15K. J. Chem hermodynamics. 2003, 35(9): 1413–1424.
    [104] Oster, L.A., Temminghoff, E.J.M., Riemsdijk, W.H. Solid-solution partitioning of organic matter in soils as influenced by an increase in pH or Ca concentration. Environ. Sci. Technol. 2002, 36(2): 208-214.
    [105] Hubert, D.J., Lis-Wollesen, D.J. Influence of pH and solution composition on the sorption of glyphosate and prochioraz to sandy loam soil. Chemosphere. 1999, 39(5): 753-763.
    [106] Burton, E.D., Phillips, I.R., Hawker, D.W. Sorption and desorption behavior of tributyltin with natural sediments. Environ. Sci. Technol. 2004, 38(24): 6694-6700.
    [107] Liu, R.X., Liu, X.M., Tang, H.X., Sorption behavior of dye compounds onto natural sediment of Qinghe River. J. Colloid. Interf. Sci. 2001, 239: 475-482.
    [108] Wu, P., Yang, G.P., Zhao, X.K. Sorption behavior of 2, 4-dichlorophenol on marine sediments. J.colloid. interf. Sci. 2003, 265(2): 251-256.
    [109] Hari, A.C., Paruchuri, R.A., Sabatini, D.A., Kibbey, T.C.G. Effects of pH and Cationic and Nonionic Surfactants on the Adsorption of Pharmaceuticals to a Natural Aquifer Material. Environ. Sci. Technol. 2005, 39(8): 2592-2598.
    [110] Manton, W.I., Angle, C.R. Stanrek, K.L. Release of lead from bone in pregenancy and lactation. Environ. Res. 2003, 92(2): 139-151.
    [111] Chiou, C.T., Kile, D.E. Derivations from sorption linearity on soils polar and nonpolar organic compounds at low relative concentrations. Environ. Sci. Technol. 1998, 32(3): 338-343.
    [112] Xia, G., Ball, W.P. Polanyi-based models for the competitive sorption of low-polarity organic contaminants on a natural sorbent. Environ. Sci. Technol. 2000, 34(7): 1246-1251.
    [113] Tao, Q.H., Tang, H.X. Study on the sorption behavior of atrazine by natural aquatic sedeiment. Environmental chemistry. 2004, 24(2): 3890-3894.
    [114] 应珊婷, 黄文飞, 田莉媛 ,沈学优. Pb( NO3)2 与 CPC 共存对沉积物吸附对硝基苯酚的影响. 环境科学. 2006, 27(7): 1373-1376.
    [115] Jia, L.Q., Ou, Z.Q., Ouyang, Z.Y. Ecological behavior of linear alkylbenzene sulfonate (LAS) in soil-plant systems. Pedosphere. 2005, 15(2): 216-224.
    [116] Wang, N., Besser, J.M., Buckler, D.R., Honegger, J.L., Ingersoll, C.G., Johnson, B.T. Influence of sediment on the fate and toxicity of a polyethoxylated tallowamine surfactant system in aquatic microcosms. Chemosphere. 2005, 59(4): 545-551.
    [117] Bao, B., Wang, X.R., Zhao, J.C., Shen, G.Y.. Sorption and cosorption of organic contaminatant on surfactant-modified soils. Chemosphere. 2001, 43(8): 1095-1102.
    [118] Haigh, S.D. A review of the interaction of surfactants with organic contaminants in soil. Sci. Total. Environ. 1996, 185(1): 161-170.
    [119] Sánchez-Martín, M.J., Rodríguez-cruz, M.S., Sánchez-Camazano, M. Study of the desorption of linuron from soils to water enhanced by the addition of an anionic surfactant to soil-water system. Water. Res. 2003, 37(13): 3110-3117.
    [120] 王郁, 李咏梅, 林逢凯. 黄浦江底泥对多环芳烃吸附机理的研究. 环境化学, 1997, 16(3): 15-21.
    [121] 陈华林, 陈英旭, 沈梦蔚. 西湖底泥对多环芳烃(菲)的吸附性能. 农业环境科学学报. 2003, 22(5): 585-589.
    [122] Juang R.S., Lin, S.H., Tsao, K.H. Sorption of phenols from water in column systems using surfactants-modified monymorillonite. J. Colloid. Interf. Sci. 2004, 269(1): 46-52.
    [123] 孙晓峰, 高乃云, 徐斌, 刘遂庆, 赵建夫, 宁冉. 邻苯二甲酸二甲酯在颗粒活性炭中的穿透特性. 环境科学. 2007, 28(8): 1938-1745.
    [124] Chen, A.M., Chien, Y.W. Adsorption of nitrophenol onto activated carbon: isotherms and breakthrough curves. Water. Res. 2002, 36(3): 647-655.
    [125] Chen, H., Yang, R., Zhou, W. Attenuating toluene mobility by loess soil modified with anion-cationic surfactant. J. Hazard. Mater. 2002, 94(21): 191-201.
    [126] 姜梅, 展惠英, 袁建梅, 陈慧. 2, 4-二氯苯酚在黄土中的吸附-解吸行为研究. 安全与环境学报. 2003, 3(4): 73-76.
    [127] Culver, T.B., Brown, R.A., Smith, J.A. Rate-limited sorption and desorption of 1, 2-dichlorobenene to a natural sand soil column. Environ. Sci. Technol. 2001, 34(12): 2446-2452.
    [128] Sannino, F., Filazzla, M.T., Violante, A. Adsorption-desorption of simazine on montmorillonite coated by hrdroxyaluminum species. Environ. Sci. Technol. 1999, 33(23): 4221-4225.
    [129] 陈静, 胡俊栋, 王学军, 陶澍. 表面活性剂对采油区土壤装填土柱中 PAHs迁移渗透的影响. 环境化学. 2005, 24(1): 12-16.
    [130] Bose, K., Kundu, K.K. Thermodynamics of transfer of p-Nitroaniline from water to alcohol + water mixtures at 25℃ and the structure of water in these media. Can. J. Chem. 1977, 55: 3961-3966.
    [131] Chakravorty, S.K., Pal, A., LahiriS, C. Thermodynamics for the ionization of benzoic acid in ethanol+water mixtures. Thermochim. Acta. 1988, 124(18): 43-52.
    [132] Fu. J.K. Aromatic compound solubility and sorption onto soils in solvent water mixtures. The Thesis of Phd. Caregie-mellon University. 1985.
    [133] Dermont, C.B. Cosolvent effects on sorption isotherm linearity. J.Contamn. Hydrology. 2002, 56(3): 159-174.
    [134] Dermont, C.B. Organic cosolvent effects on the sorption and transport of neutral organic chemicals. Chemosphere.1998, 36(8): 1883-1892.
    [135] Nkedi-Kizza, P., Rao, P.S.C., Hornsby, A.G. Influence of organic cosolvents on sorption of hydrophobic organic chemicals by soils. Environ. Sci. Technol. 1985, 19(10): 975-979.
    [136] Linda, S.L., Cheryl, A. Cosolvent effects on sorption of organic acids by soils from mixed solvents. Environ. Sci. Technol. 1993, 27(1): 165-171.
    [137] Smith, E., Smith, J., Naidu, R and Juhasz, A.L. Desorption of DDT from contaminated soil using cosolvent and surfactant washing in batch experiments. Water. Air. Soil. Pollut. 2004, 151(1): 71-86.
    [138] Hiroshi, Y., Howardm, L., Yoshihisa, S and Masatoshi, M. Effects of physical-chemical characteristics on the sorption of selected endocrine disruptors bydissolved organic matter surrogates. Environ. Sci. Technol. 2003, 26(2): 251-256.
    [139] Tao, Q.H, Tang, H.X. Influences of coexisting pollutants on the sorption of atrazine by natural sediment. Acta Scientiae Circumstantiae. 2004, 24(4): 3890-3894.
    [140] Zhu, L.Z., Yang, K., Lou, B.F., Yuan, B.H. A multi-component statistic analysis for the influence of sediment/soil composition on the sorption of a nonionic surfactant (triton x-100) onto natural sediments/soils. Water. Res. 2003, 37(19): 4792-4800
    [141] Zhu, L.Z and Chen, B.L. Sorption behavior of p-Nitrophenol on the interface between anion-cation organobentonite and water. Environ. Sci. Technol. 2000, 34(14): 2997-3002.
    [142] Jason, C.W and Pignatello, J.J. Influence of bisolute competition on the desorption kinetics of polycyclic aromatic hydrocarbons in soil. Environ. Sci. Technol. 1996, 33(23): 4292-4298.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700