纳米尺度羟基磷灰石的制备技术及其纳米特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羟基磷灰石(HAP)的化学成分和晶体结构与人体骨骼中的无机盐十分相似,具有良好的生物相容性和骨传导性,在临床上得到了广泛的应用。但是,人工合成的HAP骨缺损修复材料与自然骨相比存在力学性能差、无法达到生物学磷灰石所具有的溶解性和再结晶产生的连续骨再生性的水平,这大大限制了其在承重部位骨缺损的应用以及修复质量的提高。纳米尺度HAP表现出的不同于非纳米尺度HAP的独特性能,对于解决HAP目前存在的问题有望提供可行的方法。目前有多种方法可以用于纳米尺度HAP的制备,但是,对于稳定的HAP纳米粒子体系和HAP纳米结构的制备还需要进一步的研究。另外,对于纳米尺度HAP所表现出的独特纳米特性也需要深入的分析。因此,本论文主要针对纳米尺度HAP的制备技术及其纳米特性进行研究。
     对于纳米尺度HAP制备技术的研究主要包括两个方面。首先,形成了一种制备稳定的HAP纳米粒子体系的超声辅助GAGs调控沉淀法。研究了该工艺两个重要的影响因素GAGs浓度和超声时间对HAP纳米粒子体系形成和性能的影响,并探讨了超声辅助GAGs调控沉淀法的机理。其次,形成了一种制备纳米尺度HAP长棒状晶体以及束状纳米结构的BSA前驱体热分解法。研究了BSA浓度对胶态前驱体形成和性能的影响以及前驱体在热处理过程中产物的相组成和微观形貌等的变化,并探讨了BSA胶态前驱体热分解法的机理。
     对于纳米尺度HAP的纳米特性主要从对生物大分子的吸附和与红细胞的作用两个方面进行研究。首先,以肝素和BSA为吸附对象,与非纳米尺度HAP粒子对比,通过吸附等温线和吸附量的变化研究了HAP纳米粒子对肝素和BSA的吸附纳米特性。其次,选择四种不同特性的HAP粒子:HAP纳米粒子、非纳米尺度HAP粒子、GAG改性纳米粒子和BSA改性纳米粒子,与红细胞进行作用,在微米尺度和纳米尺度研究了HAP纳米粒子对红细胞聚集和膜变形的影响,初步分析了其对红细胞影响的纳米特性。从与红细胞膜表面唾液酸的作用入手,结合红细胞聚集模型,对HAP纳米粒子所表现出的引起红细胞变化的机理进行探讨,为纳米材料的血液相容性评价提供一定的参考和帮助。
Hydroxyapatite has been widely used in clinic due to its good biocompatibility and osteoconductivity derived from the most similar composition and crystal structure with mineral in bone. However, the artificially synthesized HAP materials for the repairing of bone defects are greatly restricted to apply in the load-bearing situation because of its lower mechanical properties compared with natural bone. Moreover, the artificially synthesized HAP materials can't reach the solubility of biological apatites and realize the continuous bone regeneration with constant dissolution-crystallisation cycles resulted from the smaller size below 50nm of biological apatite crystals, which will influence the repaired results. Nanoscaled HAP has specific physical or chemical properties differing substantially from those bulk HAP materials, which is hopeful to provide feasible means to resolve the above problems. Now there are many methods for the preparing of nanoscaled HAP. Nevertheless, it is required to study the preparation methodology of stable HAP nanoparticles system and HAP nanostructure further. In addition, the unique nano characteristics of nanoscaled HAP should also be deeply analyzed. Therefore, the main content of this paper is to study the preparation technology and nano characteristics of nanoscaled HAP.
     The study of preparation technology of nanoscaled HAP included two aspects. Firstly, ultrasound assisting and GAGs controlling precipitation method was provided for the preparation of stable HAP nanoparticles. The effects of two important impact factors of GAGs concentration and ultrasound time on the formation and properties of HAP nanoparticles were researched, and the mechanism of this method was also discussed. Secondly, BSA precursor thermolysis method was also provided to fabricate nanoscaled HAP rod-like crystals and bundle-like nanostructure. The impact factors such as BSA concentration and thermal treatment procedure were studied, and the mechanism of this method was also discussed.
     The study of nano characteristics of nanoscaled HAP was carried out in two aspects. One was the adsorption to biomacromolecule, the other was the interaction with red blood cells (RBCs). Firstly, the adsorbing characteristics of HAP nanoparticles to heparin and BSA were studied by the adsorption isotherms and adsorption rate of heparin and BSA on different size HAP particles. Secondly, four kinds HAP particles such as HAP nanoparticles, non-nano HAP particles, heparin modified nanoparticles and BSA modified nanoparticles were selected to interact with RBCs. The effects of HAP nanoparticles on the aggregation and membrane morphology change of RBCs were studied at micrometer scale and nanometer scale respectively in order to analyze the nano characteristics of nanoparticles to RBCs. Combined with the aggregation models of RBCs, the nano characteristics of HAP nanoparticles inducing the change of RBCs was discussed by the research of interaction between HAP nanoparticles and sialic acid on the membrane surface of RBCs. This can provide some experimental references for the evaluation of blood compatibility of nanomaterials.
引文
[1]李世普.生物医用材料导论.武汉:武汉工业大学出版社,2000.8,p72-126
    [2]Murugan R,Ramakrishna S.Development of nanocomposites for bone grafting.Compos.Sci.Technol.,2005,65(15-16):2385-2406.
    [3]Praemer A,Furner S,Rice DP.In:Musculoskeletal conditions in the United States.Rosemont:American Academy of Orthopaedic Surgeons;1999.
    [4]Shors EC.Coralline bone graft substitutes.Orthop.Clin.North Am.,1999,30(4):599-613.
    [5]Greenwald AS,Boden SD,Goldberg VM,Khan Y,Laurencin CT,Rosier RN.Bone-graft substitutes:facts,fictions,and applications.J.Bone Joint Surg.Am.,2001,83A(Suppl 2):98-103.
    [6]Webster TJ.Nanophase ceramics as improved bone tissue engineering materials.Am.Ceram.Soc.Bull.,2003,82(6):23-28.
    [7]Carlisle E,Fischgrund JS.Bone morphogenetic proteins for spinal fusion.Spine,2005,5(6):240S-249S.
    [8]崔福斋,李艳.发展我国具有自主知识产权的外科植入物.中国医疗器械信息,2006,12(7):4-7
    [9]李欣.以开放的心态迎接更大的机遇和挑战.中国医疗器械信息,2005,11(5):56-57
    [10]Hench LL,Polak JM.Third generation biomedical materials.Science,2002,295(5557):1014-1017.
    [11]LeGeros RZ.Calcium Phosphates in Oral Biology and Medicine.Karger:Basel,Switzerland,1991.
    [12]Oguchi H,Ishikawa K,Mizoue K,et al.Long-term histological evaluation of hydroxyapatite ceramics in humans.Biomaterials,1995,16(1):33-38.
    [13]Ratner BD,Hoffman AS,Schoen FJ,et al.Biomaterials Science:An Introduction to Materials in Medicine.CA:Academic Press,1996.
    [14]胡德峰.羟基磷灰石微粒人工骨植入术治疗萎缩性鼻炎45例观察.临床耳鼻咽喉科杂志,1999,13(5):233
    [15]陈晓隆,高殿文,尹树国等.羟基磷灰石义眼胎眶内植入的临床应用.中国医科大学学报,1999,28(6):464-465
    [16]王文波,陈中伟,陈统一.自固化磷酸钙人工骨的最新研究进展.生物医学工程学杂志,2000,17(1):80-83
    [17]Vallet-Regi M.Ceramics for medical applications.J.Chem.Soc,Dalton Trans.,2001,2:97-108.
    [18]郭晓东,郑启新,杜靖远等.可吸收羟基磷灰石/聚DL-乳酸骨折内固定材料机械强度和生物降解性研究.中国生物医学工程学报,2001,20(1):23-27
    [19]翁祖勋.生物陶瓷人工听骨的临床应用(附40耳报告).中国耳鼻咽喉颅底外科杂志,2001,7(1):61
    [20]Dorozhkin SV,Epple M.Biological and Medical Significance of Calcium Phosphates.Angew.Chem.Int.Ed.,2002,41(17):3130-3146.
    [21]Vallet-Reg(?)M,Gonz(?)lez-Calbet JM.Calcium phosphates as substitution of bone tissues.Prog.Solid State Chem.,2004,32:1-31.
    [22]Thamaraiselvi TV,Rajeswari S.Biological Evaluation of Bioceramic Materials - A Review.Trends Biomater.Artif.Organs,2004,18(1):9-17.
    [23]Schnettler R,Stahl JP,Alt V,et al.Calcium Phosphate-Based Bone Substitutes.Eur.J.Trauma,2004,30(4):219-229.
    [24]Bergman RM.Innovations in Biomaterials:Achievements and Opportunities.MRS Bulletin,2005,30(7):540-544.
    [25]Zablotsky MH.Hydroxyapatite coating in implant dentistry.Implant Dent.,1992,1(4):253-257.
    [26]Magyar G,Toksvig-Larsen S,Moroni A.Hydroxyapatite coating of threaded pins enhances fixation.J.Bone Joint Surg.Br.,1997,79(3):487-489.
    [27]Palm L,Jacobsson S-A,Ivarsson I.Hydroxyapatite coating improves 8- to 10-year performance of the link RS cementless femoral stem.J.Arthroplasty,2002,17(2):172-175.
    [28]Nogueras-Bayona J,Gil FJ,Salsench J,et al.Roughness and Bonding Strength of Bioactive Apatite Layer on Dental Implants.Implant Dent.,2004,13(2):185-189.
    [29]Ono I,Yamashita T,Jin HY,ET AL.Combination of porous hydroxyapatite and cationic liposomes as a vector for BMP-2 gene therapy.Biomaterials,2004,25(19):4709-4718.
    [30]Matsumoto T,Okazaki M,Inoue M,et al.Hydroxyapatite particles as a controlled release carrier of protein.Biomaterials,2004,25(17):3807-3812.
    [31]Otsuka M,Matsuda Y,Suwa Y,et al.A novel skeletal drug delivery system using a self-setting calcium phosphate cement 5.Drug release behavior from a heterogeneous drug-loaded cement containing an anticancer drug,J.Pharm.Sci.,1994,83(11):1565-1568.
    [32]Dash AK,Cudworth GC.Therapeutic applications of implantable drug delivery systems,J.Pharm.Tox.Methods,1998,41(1):1-12.
    [33]Szymura-Oleksiaka J,Slosarczyk A,Cios A,et al.The kinetics of pentoxifylline release in vivo from drug-loaded hydroxyapatite implants.Ceram.Int.,2001,27(7):767-772.
    [34]Palazzo B,Sidoti MC,Roveri N,et al.Controlled drug delivery from porous hydroxyapatite grafts:An experimental and theoretical approach.Mater.Sci.Eng.C,2005,25(2):207-213.
    [35]Ribeiro CC,Barrias CC,Barbosa MA.Preparation and characterisation of calcium-phosphate porous microspheres with a uniform size for biomedical applications.J.Mater.Sci.:Mater.Med.,2006,17(5):455-463.
    [36] Mavropoulos E, Rossi AM, Costa AM, et al. Studies on the Mechanisms of Lead Immobilization by Hydroxyapatite. Environ. Sci. Technol., 2002,36(7): 1625-1629.
    
    [37] Peld M, Tonsuaadu K, Bender V. Sorption and Desorption of Cd~(2+) and Zn~(2+) Ions in Apatite-Aqueous Systems. Environ. Sci. Technol., 2004,38(21): 5626-5631.
    
    [38] Silva OG, Silva Filho EC, Fonseca MG, et al. Hydroxyapatite organofunctionalized with silylating agents to heavy cation removal. J. Colloid Interface Sci., 2006,302(2): 485-491.
    
    [39] Yamaguchi K, Mori K, Mizugaki T, et al. Creation of a Monomeric Ru Species on the Surface of Hydroxyapatite as an Efficient Heterogeneous Catalyst for Aerobic Alcohol Oxidation. J. Am.Chem. Soc, 2000,122(29): 7144-7145.
    
    [40] Mori K, Yamaguchi K, Mizugaki T, et al. Catalysis of a hydroxyapatite-bound Ru complex: efficient heterogeneous oxidation of primary amines to nitriles in the presence of molecular oxygen. Chem. Commun., 2001, 5:461-462.
    
    [41] Hara T, Mori K, Oshiba M, et al. Highly efficient dehalogenation using hydroxyapatite-supported palladium nanocluster catalyst with molecular hydrogen. Green Chem., 2004, 6(10): 507-509.
    
    [42] Nishikawa H, Omamiuda K. Photocatalytic activity of hydroxyapatite for methyl mercaptane. J. Mol. Catal. A: Chem., 2002,179(1): 193-200.
    
    [43] Nishikawa H. A high active type of hydroxyapatite for photocatalytic decomposition of dimethyl sulfide under UV irradiation. J. Mol. Catal. A: Chem., 2004,207(2): 147-151.
    
    [44] Knott L, Bailey AJ. Collagen cross-links in mineralizing tissues: A review of their chemistry, function, and clinical relevance. Bone, 1998,22(3): 181-187.
    
    [45] Nalla RK, Kruzic JJ, Kinney JH, et al. Mechanistic aspects of fracture and R-curve behavior in human cortical bone. Biomaterials, 2005, 26(2): 217-231.
    
    [46] Ager III JW, Balooch G, Ritchie RO. Fracture, aging, and disease in bone. J. Mater. Res., 2006,21(8): 1878-1892.
    
    [47] Nalla RK, Kruzic JJ, Kinney JH, et al. Role of microstructure in the aging-related deterioration of the toughness of human cortical bone. Mater. Sci. Eng. C, 2006, 26(8): 1251-1260.
    
    [48] Leventouri T. Synthetic and biological hydroxyapatites: Crystal structure questions. Biomaterials, 2006, 27(18): 3339-3342.
    
    [49] Elliott JC. Structure and Chemistry of the Apatites and Other Calcium Orthophosphates. Elsevier, London, 1994.
    
    [50] Yeong KCB, Wang J, Ng SC. Fabricating densified hydroxyapatite ceramics from a precipitated precursor. Mater. Lett., 1999, 38(3): 208-213.
    
    [51] Landi E, Tampieri A, Celotti G, et al. Densification behaviour and mechanisms of synthetic hydroxyapatites. J. Eur. Ceram. Soc., 2000, 20(14): 2377-2387.
    [52]Sung YM,Lee JC,Yang JW.Crystallization and sintering characteristics of chemically precipitated hydroxyapatite nanopowder.J.Cryst.Growth,2004,262(1-4):467-472.
    [53]Ramesh S,Tan CY,Sopyan I,et al.Consolidation of nanocrystalline hydroxyapatite powder.Sci.Technol.Adv.Mater.,2007,8(1-2):124-130
    [54]Li H,Khor KA,Chow V,et al.Nanostructural characteristics,mechanical properties,and osteoblast response of spark plasma sintered hydroxyapatite.J.Biomed.Mater.Res.Part A,2007,82(2):296-303.
    [55]Ramesh S,Tan CY,Bhaduri SB,Teng WD.Rapid densification of nanocrystalline hydroxyapatite for biomedical applications.Ceram.Int.,2007,33(7):1363-1367
    [56]Kalita SJ,Bhardwaj A,Bhatt HA.Nanocrystalline calcium phosphate ceramics in biomedical engineering.Mater.Sci.Eng.C,2007,27(3):441-449.
    [57]Webster TJ,Siegel RW,Bizios R.Osteoblast adhesion on nanophase ceramics.Biomaterials,1999,20(13):1221-1227.
    [58]Webster TJ,Ergun C,Doremus RH,et al.Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics.J.Biomed.Mater.Res.,2000,51(3):475-483.
    [59]Webster TJ,Ergun C,Doremus RH,et al.Enhanced functions of osteoblasts on nanophase ceramics.Biomaterials,2000,21(17):1803-1810
    [60]Webster TJ,Ergun C,Doremus RH,et al.Enhanced osteoclast-like cell functions on nanophase ceramics.Biomaterials,2001,22(11):1327-1333
    [61]Sato M,Sambito MA,Aslani A,et al.Increased osteoblast functions on undoped and yttrium-doped nanocrystalline hydroxyapatite coatings on titanium.Biomaterials,2006,27(11):2358-2369.
    [62]Balasundaram G,Sato M,Webster TJ.Using hydroxyapatite nanoparticles and decreased crystallinity to promote osteoblast adhesion similar to functionalizing with RGD.Biomaterials,2006,27(14):2798-2805.
    [63]Sun JS,Liu HC,Chang WHS,et al.Influence of hydroxyapatite particle size on bone cell activities:An in vitro study.J.Biomed.Mater.Res.,1998,39(3):390-397.
    [64]Sun JS,Lin FH,Hung TY,et al.The influence of hydroxyapatite particles on osteoclast cell activities.J.Biomed.Mater.Res.,1999,45(4):311-321.
    [65]Pezzatini S,Solito R,Morbidelli L,et al.The effect of hydroxyapatite nanocrystals on microvascular endothelial cell viability and functions.J.Biomed.Mater.Res.Part A,2006,76(3):656-663.
    [66]张士成,李世普,陈芳.磷灰石超微粉对癌细胞作用的初步研究.武汉工业大学学报,1996,18(1):5-8
    [67]Li SP,Zhang SC,Chen WJ,Wen Q.Effects of Hydroxyapatite Ultrafine Powder on Colony Formation and Cytoskeletons of MGC-803Cell.Bioceramics,1996,9:225-227.
    [68]冯凌云,阎玉华,陈闻杰等.羟基磷灰石溶胶对W-256癌肉瘤细胞内钙离子浓度及细胞形态结构的影响.中国生物医学工程学报,1998,17(4):374-377
    [69]夏清华,陈道达,林华等.HASM对W-256细胞系DNA含量及细胞周期的影响.武工业大学学报,1999,21(2):5-6
    [70]冯凌云,李世普,陈闻杰等.羟基磷灰石溶胶及其对瘤细胞增殖的影响.中国有色金属学报,1999,9(3):651-654
    [71]陈筠,曹献英,韩颖超等.纳米磷灰石对肝癌癌基因表达的影响.武汉理工大学学报,2005,27(9):29-31
    [72]Han YC,Li SP,Wang XY,et al.Influence of apatite nanoparticles on cancer cells.Nanoscience,2006,11(2):102-106.
    [73]Yin MZ,Han YC,Bauer I,et al.Effect of hydroxyapatite nanoparticles on the ultrastructure and function of hepatocellular carcinoma cells in vitro.Biomed.Mater.,2006,1(1):38-41.
    [74]Deng XM,Hao JY,Wang CS.Preparation and mechanical properties of nanocomposites of poly(D,L-lactide)with Ca-deficient hydroxyapatite nanocrystals.Biomaterials,2001,22(21):2867-2873.
    [75]Du C,Cui FZ,Feng QL,et al.Tissue response to nano-hydroxyapatite /collagen composite implants in marrow cavity.J.Biomed.Mater.Res.,1998,42(4):540-548.
    [76]Wei J,Li YB,Chen WQ,et al.A study on nano-composite of hydroxyapatite and polyamide.J.Mater.Sci.,2003,38(15):3303-3306.
    [77]Chen F,Wang ZC,Lin CJ.Preparation and characterization of nano-sized hydroxyapatite particles and hydroxyapatite/chitosan nano-composite for use in biomedical materials.Mater.Lett.,2002,57(4):858-861.
    [78]Hu QL,Li BQ,Wang M,et al.Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization:a potential material as internal fixation of bone fracture.Biomaterials,2004,25(5):779-785.
    [79]Fang LM,Leng Y,Gao P.Processing and mechanical properties of HA/UHMWPE nanocomposites.Biomaterials,2006,27(20):3701-3707.
    [80]Fang LM,Gao P,Leng Y.High strength and bioactive hydroxyapatite nano-particles reinforced ultrahigh molecular weight polyethylene.Compos.B:Eng.,2007,38(3):345-351.
    [81]Zakharov NA,Ezhova ZA,Koval EM,et al.Hydroxyapatite-Carboxymethyl Cellulose Nanocomposite Biomaterial.Inorganic Mater.,2005,41(5):509-515.
    [82]Changa MC,Ko CC,Douglas WH.Preparation of hydroxyapatite-gelatin nanocomposite.Biomaterials,2003,24(17):2853-2862.
    [83]Pramanik N,Mohapatra S,Pramanikw P.Processing and Properties of Nano-Hydroxyapatite(n-HAp)/Poly(Ethylene-Co-Acrylic Acid)(EAA)Composite Using a Phosphonic Acid Coupling Agent for Orthopedic Applications.J.Am.Ceram.Soc.,2007,90(2):369-375.
    [84]Tanaka T,Hirose M,Kotobuki N,et al.Nano-scaled hydroxyapatite/silk fibroin sheets support osteogenic differentiation of rat bone marrow mesenchymal cells.Mater.Sci.Eng.C,2007,27(4):817-823.
    [85]郭晓东,郑启新,杜靖远等.可吸收羟基磷灰石/聚DL—乳酸骨折内固定材料机械强度和生物降解性研究.中国生物医学工程学报,2001,20(1):23-27
    [86]胡图强,李祖兵,万涛等.混旋聚乳酸-纳米羟基磷灰石复合板固定下颌骨骨折的实验研究.中华口腔医学杂志,2003,38(6):452-454
    [87]Chris Arts JJ,Verdonschot N,Schreurs BW,et al.The use of a bioresorbable nano-crystalline hydroxyapatite paste in acetabular bone impaction grafting.Biomaterials,2006,27(7):1110-1118.
    [88]Huber FX,McArthur N,Hillmeier J,et al.Void filling of tibia compression fracture zones using a novel resorbable nanocrystalline hydroxyapatite paste in combination with a hydroxyapatite ceramic core:first clinical results.Arch.Orthop.Trauma Surg,2006,126(8):533-540.
    [89]Huber FX,Hillmeier J,Herzog L,et al.Meeder.Open reduction and palmar plate-osteosynthesis in combination with a nanocrystalline hydroxyapatite spacer in the treatment of comminuted fractures of the distal radius.J Hand Surg[Br].,2006,31(3):298-303.
    [90]Laschke MW,Witt K,Pohlemann T,et al.Injectable nanocrystalline hydroxyapatite paste for bone substitution:In vivo analysis of biocompatibility and vascularization.J.Biomed.Mater.Res.B,2007,82(2):494-505.
    [91]Huber FX,Belyaev O,Hillmeier J,et al.First histological observations on the incorporation of a novel nanocrystalline hydroxyapatite paste OSTIM~(?)in human cancellous bone.BMC Musculoskel.Dis.2006,7(50):1-14.
    [92]Lilley KJ,Gbureck U,Wright AJ,et al.Cement from nanocrystalline hydroxyapatite:Effect of calcium phosphate ratio.J.Mater.Sci.:Mater.Med.,2005,16(12):1185-1190.
    [93]Doat A,Pell(?)F,Gardant N,et al.Synthesis of luminescent bioapatite nanoparticles for utilization as a biological probe.J.Solid State Chem.,2004,177(4-5):1179-1187.
    [94]Lebugle A,Pell(?)F,Charvillat C,et al.Colloidal and monocrystalline Ln~(3+)doped apatite calcium phosphate as biocompatible fluorescent probes.Chem.Commun.,2006,1:606-608.
    [95]Roy I,Mitra S,Maitra A,et al.Calcium phosphate nanoparticles as novel non-viral vectors for targeted gene delivery.Int.J.Pharm.,2003,250(1):25-33.
    [96]Sokolova V,Kovtun A,Prymak O,et al.Functionalisation of calcium phosphate nanoparticles by oligonucleotides and their application for gene silencing.J.Mater.Chem.,2007,17(8):721-727
    [97]Ferraz MP,Mateus AY,Sousa JC,et al.Nanohydroxyapatite microspheres as delivery system for antibiotics:Release kinetics,antimicrobial activity,and interaction with osteoblasts.J.Biomed.Mater.Res.A,2007,81(4):994-1004
    [98]Rauschmann MA,Wichelhaus TA,Stirnal V,et al.Nanocrystalline hydroxyapatite and calcium sulphate as biodegradable composite carrier material for local delivery of antibiotics in bone infections.Biomaterials,2005,26(15):2677-2684.
    [99]Pang YX,Bao X.Influence of temperature,ripening time and calcination on the morphology and crystallinity of hydroxyapatite nanoparticles.J.Eur.Ceram.Soc.,2003(10),23:1697-1704.
    [100]Kumar R,Prakash KH,Cheang P,et al.Temperature Driven Morphological Changes of Chemically Precipitated Hydroxyapatite Nanoparticles.Langmuir,2004,20(13):5196-5200.
    [101]Choi D,Kumtaw PN.An Alternative Chemical Route for the Synthesis and Thermal Stability of Chemically Enriched Hydroxyapatite.J.Am.Ceram.Soc.,2006,89(2):444-449.
    [102]Rodr(?)guez-Lorenzo LM,Vallet-Regi M.Controlled Crystallization of Calcium Phosphate Apatites.Chem.Mater.,2000,12(2):2460-2465.
    [103]Zhai Y,Cui FZ,Wang Y.Formation of nano-hydroxyapatite on recombinant human-like collagen fibrils.Curr.Appl.Phys.,2005,5(5):429-432.
    [104]Zhai Y,Cui FZ.Recombinant human-like collagen directed growth of hydroxyapatite nanocrystals.J.Cryst.Growth,2006,291(1):202-206.
    [105]Kong XD,Cui FZ,Wang XM,et al.Silk fibroin regulated mineralization of hydroxyapatite nanocrystals.J.Cryst.Growth,2004,270(1-2):197-202.
    [106]Cai S,Yu XZ,Xiao ZY,et al.Synthesis and sintering of nanocrystalline hydroxyapatite powders by gelatin-based precipitation method.Ceram.Int.,2007,33(2):193-196.
    [107]Gonzalez-McQuire R,Chane-Ching JY,Vignaud E,et al.Synthesis and characterization of amino acid-functionalized hydroxyapatite nanorods.J.Mater.Chem.,2004,14(14):2277-2281.
    [108]Rusu VM,Ng CH,Wilke M,et al.Size-controlled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials.Biomaterials,2005,26(26):5414-5426.
    [109]Lim GK,Wang J,Ng SC,et al.Nanosized hydroxyapatite powders from microemulsions and emulsions stabilized by a biodegradable surfactant.J.Mater.Chem.,1999,9:1635-1639.
    [110]Bose S,Saha SK.Synthesis and Characterization of Hydroxyapatite Nanopowders by Emulsion Technique.Chem.Mater.,2003,15(23):4464-4469.
    [111]Guo GS,Sun YX,Wang ZH,et al.Preparation of hydroxyapatite nanoparticles by reverse microemulsion.Ceram.Int.,2005,31(6):869-872.
    [112]Sun YX,Guo GS,Wang ZH,et al.Synthesis of single-crystal HAP nanorods.Ceram.Int.,2006,32(8):951-954.
    [113]Sato K,Hotta Y,Nagaoka T,et al.Agglomeration control of hydroxyapatite nano-crystals grown in phase-separated microenvironments.J.Mater.Sci.,2006,41(17):5424-5428.
    [114]Zhang YJ,Zhou LH,Li D,et al.Oriented nano-structured hydroxyapatite from the template.Chem.Phys.Lett.,2003,376(3-4):493-497.
    [115] Yang Z, Huang Y, Chen ST, et al. Template synthesis of highly ordered hydroxyapatite nanowire arrays. J. Mater. Sci., 2005,40(5): 1121-1125.
    
    [116] Yao J, Tjandra W, Chen YZ, et al. Hydroxyapatite nanostructure material derived using cationic surfactant as a template. J. Mater. Chem., 2003,13(12): 3053-3057.
    
    [117] Wu YJ, Bose S. Nanocrystalline Hydroxyapatite: Micelle Templated Synthesis and Characterization. Langmuir 2005,21(8): 3232-3234.
    
    [118] Zhao YF, Ma J, Tan GEB. Synthesis of Mesoporous Hydroxyapatite through Neutral Templating. Int. J. Nanoscience, 2006, 5(4-5): 499-503.
    
    [119] He QJ, Huang ZL, Liu Y, et al. Template-directed one-step synthesis of flowerlike porous carbonated hydroxyapatite spheres. Mater. Lett., 2007,61 (1): 141-143.
    
    [120] Zhang SH, Wang YJ, Wei K, et al. Template-assisted synthesis of lamellar mesostructured hydroxyapatites. Mater. Lett., 2007,61 (6): 1341-1345.
    
    [121] Liu C, Ji XJ, Cheng GX. Template synthesis and characterization of highly ordered lamellar hydroxyapatite. Appl. Surf. Sci., 2007,253(16): 6840-6843.
    
    [122] Liu HS, Chin TS, Lai LS, et al. Hydroxyapatite Synthesized by a Simplified Hydrothermal Method. Ceram. Int., 1997, 23(1): 19-25.
    
    [123] Riman RE, Suchanek WL, Byrappa K, et al. Solution synthesis of hydroxyapatite designer particulates. Solid State Ionics, 2002,151(1-4): 393-402.
    
    [124] Guo XY, Xiao P, Liu J, et al. Fabrication of Nanostructured Hydroxyapatite via Hydrothermal Synthesis and Spark Plasma Sintering. J. Am. Ceram. Soc, 2005, 88(4): 1026-1029.
    
    [125] Lemos AF, Rocha JHG, Quaresma SSF, et al. Hydroxyapatite nano-powders produced hydrothermally from nacreous material. J. Eur. Ceram. Soc, 2006, 26(16): 3639-3646.
    
    [126] Jokanovi6 V, Izvonar D, Dramicanin MD, et al. Hydrothermal synthesis and nanostructure of carbonated calcium hydroxyapatite. J. Mater. Sci.: Mater. Med., 2006,17(6): 539-546.
    
    [127] Chaudhry AA, Haque S, Kellici S, et al. Instant nano-hydroxyapatite: a continuous and rapid hydrothermal synthesis. Chem. Commun., 2006, 21: 2286-2288.
    
    [128] Wang YJ, Chen JD, Wei K, et al. Surfactant-assisted synthesis of hydroxyapatite particles. Mater. Lett., 2006, 60(27): 3227-3231.
    
    [129] Zhou ZH, Zhou PL, Yang SP, et al. Controllable synthesis of hydroxyapatite nanocrystals via a dendrimer-assisted hydrothermal process. Mater. Res. Bull., 2007, 42(9): 1611-1618.
    
    [130] Wang AL, Yin HB, Liu D, et al. Size-controlled synthesis of hydroxyapatite nanorods in the presence of organic modifiers. Mater. Lett., 2007, 61(10): 2084-2088.
    
    [131] Siddharthan A, Seshadri SK, Kumar TSS. Rapid Synthesis of Calcium Deficient Hydroxyapatite Nanoparticles by Microwave Irradiation. Trends Biomater. Artif. Organs, 2005, 18(2): 110-113.
    [132]Liu JB,Li KW,Wang H,et al.Rapid formation of hydroxyapatite nanostructures by microwave irradiation.Chem.Phys.Lett.,2004,396(4-6):429-432.
    [133]Suslick KS.Sonochemistry.Science,1990,247(4949):1439-1445.
    [134]Flint EB,Suslick KS.The Temperature of Cavitation.Science,1991,253(5026):1397-1399.
    [135]Suslick KS,Price GJ.Applications of ultrasound to materials chemistry.Annu.Rev.Mater.Sci.,1999,29:295-326.
    [136]Fang Y,Agrawal DK,Roy DM,et al.Ultrasonically Accelerated Synthesis of Hydroxyapatite.J.Mater.Res.,1992,7(8):2294-2298.
    [137]Kim W,Saito F.Sonochemical synthesis of hydroxyapatite from H3PO4 solution with Ca(OH)_2.Ultrason.Sonochem.,2001,8(2):85-88.
    [138]Cao LY,Zhang CB,Huang JF.Synthesis of hydroxyapatite nanoparticles in ultrasonic precipitation.Ceram.Int.,2005,31(8):1041-1044.
    [139]Jillavenkatesa A,Hoelzer DT,Condrate RA.An electron microscopy study of the formation of hydroxyapatite through sol-gel processing.J.Mater.Sci.,1999,34(19):4821-4830.
    [140]Kim S,Kumta PN.Sol-gel synthesis and characterization of nanostructured hydroxyapatite powder.Mater.Sci.Eng.B,2004,111(2-3):232-236.
    [141]Kuriakose TA,Kalkura SN,Palanichamy M,et al.Synthesis of stoichiometric nano crystalline hydroxyapatite by ethanol-based sol - gel technique at low temperature.J.Cryst.Growth,2004,263(1-4):517-523.
    [142]Wang F,Li MS,Lu YP,et al.A simple sol-gel technique for preparing hydroxyapatite nanopowders.Mater.Lett.,2005,59(8-9):916-919.
    [143]Liu DM,Yang QZ,Troczynski T,et al.Structural evolution of sol - gel-derived hydroxyapatite.Biomaterials,2002,23(7):1679-1687.
    [144]Bigi A,Boanini E,Rubini K.Hydroxyapatite gels and nanocrystals prepared through a sol-gel process.J.Solid State Chem.,2004,177(9):3092-3098.
    [145]Cao M,Wang YH,Guo CX,et al.Preparation of Ultrahigh-Aspect-Ratio Hydroxyapatite Nanofibers in Reverse Micelles under Hydrothermal Conditions.Langmuir,2004,20(11):4784-4786.
    [146]Wang YJ,Lai C,Wei K,et al.Influence of temperature,ripening time,and cosurfactant on solvothermal synthesis of calcium phosphate nanobelts.Mater.Lett.,2005,59(8-9):1098-1104.
    [147]Lin KL,Chang J,Cheng RM,et al.Hydrothermal microemulsion synthesis of stoichiometric single crystal hydroxyapatite nanorods with mono-dispersion and narrow-size distribution.Mater.Lett.,2007,61(8-9):1683-1687.
    [148] Sun YX, Guo GS, Tao DL, et al. Reverse microemulsion-directed synthesis of hydroxyapatite nanoparticles under hydrothermal conditions. J. Phys. Chem, of Solids, 2007, 68(3): 373-377.
    
    [149] Han JK, Song HY, Saito F, et al. Synthesis of high purity nano-sized hydroxyapatite powder by microwave-hydrothermal method. Mater. Chem. Phys., 2006,99(2-3): 235-239.
    
    [150] Cai S, Wang YW, Lv H, et al. Synthesis of carbonated hydroxyapatite nanofibers by mechanochemical methods. Ceram. Int., 2005, 31(1): 135-138.
    
    [151] Yeong KCB, Wang J, Ng SC. Mechanochemical synthesis of nanocrystalline hydroxyapatite from CaO and CaHPO_4. Biomaterials, 2001,22(20): 2705-2712.
    
    [152] Coreno AJ, Coreno AO, Cruz RJJ, et al. Mechanochemical synthesis of nanocrystalline carbonate-substituted hydroxyapatite. Opt. Mater., 2005,27(7): 1281-1285.
    
    [153] Nakamura S, Isobe T, Senna M. Hydroxyapatite nano sol prepared via a mechanochemical route. J. Nanopart. Res., 2001,3(1): 57-61.
    
    [154] Fritz H, Maier M, Bayer E. Cationic polystyrene nanoparticles: preparation and characterization of a model drug carrier system for antisense oligonucleotides. J. Colloid Interf. Sci., 1997, 195(2): 272-288.
    
    [155] Pang SW, Park HY, Jang YS, et al. Effects of charge density and particle size of poly(styrene/(dimethylamino) ethyl methacrylate) nanoparticle for gene delivery in 293 cells. Colloids Surf. B: Biointerfaces, 2002,26(3): 213-222.
    
    [156] Service RF. Nanomaterials Show Signs of Toxicity. Science, 2003, 300(5617): 243.
    
    [157] Brumfiel G Nanotechnology: A little knowledge... Nature, 2003,424(17): 246-248.
    
    [158] Kipen L. Smaller is not always better: nanotechnology yields nanotoxicology. Am. J. Physiol. Lung Cell. Mol. Physiol., 2005, 289(5): 696-697.
    
    [159] Oberdorster G, Oberdorster E, Oberdorster J. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environ. Health Perspect., 2005,113(7): 823-839.
    
    [160] Nel A, Xia T, Madler L, et al. Toxic Potential of Materials at the Nanolevel. Science, 2006, 311(5761): 622-627.
    
    [161] Zhu PX, Masuda Y, Koumoto K. The effect of surface charge on hydroxyapatite nucleation. Biomaterials, 2004, 25(17): 3915-3921.
    
    [162] Jiang HD, Liu XY, Zhang G, et al. Kinetics and Template Nucleation of Self-Assembled Hydroxyapatite Nanocrystallites by Chondroitin Sulfate. J. Biol. Chem., 2005, 280(51): 42061-42066.
    
    [163] Habelitz S, Pascual L, Duran A. Nitrogen-containing apatite. J. Eur. Ceram. Soc, 1999, 19(15): 2685-2694.
    
    [164] Rehman I, Bonfield W. Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy. J. Mater. Sci.: Mater. Med., 1997, 8(1): 1-4.
    [165] Acharya G, Kunitake T. A general method for fabrication of biocompatible surfaces by modification with titania layer. Langmuir, 2003,19(6): 2260-2266.
    
    [166] Favia P, Palumbo F, Agostino R, et al. Immobilization of heparin and highly-sulphated hyaluronic acid onto low-pressure plasma-processed polyethylene. Plasmas Polym., 1998, 3(2): 77-96.
    
    [167] Harada NS, Oyama HT, Bartoli JR, et al. Quantifying adsorption of heparin on a PVC substrate using ATR-FTIR. Polym. Int., 2005,54(1): 209-214.
    
    [168] Durucan C, Brown PW. a-Tricalcium phosphate hydrolysis to hydroxyapatite at and near physiological temperature. J. Mater. Sci.: Mater. Med., 2000,11(6): 365-371.
    
    [169] Zhou J, Zhang X, Chen J, et al. High temperature characteristics of synthetic hydroxyapatite. J. Mater. Sci.: Mater. Med., 1993,4(1): 83-85.
    
    [170] Rees SQ Hughes Wassell DT, Embery G Interaction of glucuronic acid and iduronic acid-rich glycosaminoglycans and their modified forms with hydroxyapatite. Biomaterials, 2002, 23(2): 481-489.
    
    [171] Suslick KS. Advances in Sonochemistry. Science, 1990,247(4949): 1439-1445.
    
    [172] Ishan C, Robert JL. Heparin-protein interactions. Angew. Chem. Int. Ed., 2002, 41(3): 390-412.
    
    [173] Hyeon T, Fang M, Suslick KS. Nano-structural molybdenum carbide: sonochemical synthesis and catalytic properties. J. Am. Chem. Soc, 1996, 118(23): 5492-5493.
    
    [174] Kristl M, Drofenik M. Preparation of Au_2S_3 and nanocrystalline gold by sonochemical method. Inorg. Chem. Commun., 2003, 6(12): 1419-1422.
    
    [175] Mann S, Hannington JP, Williams RJP. Phospholipid vesicles as a model system for biomineralization. Nature, 1986, 324(6097): 565-567.
    
    [176] Archibald DD, Mann S. Template mineralization of self-assembled anisotropic lipid microstructure. Nature, 1993, 364(29): 430-433.
    
    [177] Belcher AM, Wu XH, Christensen RJ, et al. Control of crystal phase switching and orientation by soluble molluscshell proteins. Nature, 1996,381(2): 56-58.
    
    [178] Walsh D, Arcelli L, Ikoma T, et al. Dextran templating for the synthesis of metallic and metal oxide sponges. Nat. Mater., 2003,2(6): 386-390.
    
    [179] Traub W, Arad T, Weiner S. 3 Dimensional Ordered Distribution of Crystals in Turkey Tendon Collagen-fibers. Proc. Natl. Acad. Sci. USA, 1989, 86(24): 9822-9826.
    
    [180] Hartgerink JD, Beniash E, Stupp SI, Self-assembly and mineralization of peptide-amphiphile nanofibers. Science, 2001, 294(5547): 1684-1688.
    
    [181] Long JR, Dindot JL, Zebroski H, et al. A peptide that inhibits hydroxyapatite growth is in an extended conformation on the crystal surface. Proc. Natl. Acad. Sci. USA, 1998, 95(21): 12083-12087.
    [182] Stupp SI, Braun PV. Molecular Manipulation of Microstructures: Biomaterials, Ceramics, and Semiconductors. Science, 1997,277(29): 1242-1248.
    
    [183] Hartgerink JD, Beniash E, Stupp SL Self-assembly and mineralization of peptide-amphiphile nanofibers. Science, 2001,23: 294(5547): 1684-1688.
    
    [184] Wassell DTH, Hall RC, Embery G Adsorption of bovine serum albumin onto hydroxyapatite. Biomaterials, 1995,16(9): 697-702.
    
    [185] Kandori K, Shimizu T, Yasukawa A, et al. Adsorption of bovine serum albumin onto synthetic calcium hydroxyapatite: influence of particle texture. Colloids Surf., B: Biointerfaces, 1995, 5(1-2): 81-87.
    
    [186] Luo QL, Andrade JD. Cooperative Adsorption of Proteins onto Hydroxyapatite. J. Coll. Interf. Sci., 1998,200(1): 104-113.
    
    [187] Marques PAAP, Serro AP, Saramago BJ, et al. Mineralisation of two phosphate ceramics in HBSS: role of albumin. Biomaterials, 2003,24(3): 451-460.
    
    [188] Ninham BW. On progress in forces since the DLVO theory. Adv. Colloid Interface Sci., 1999, 83(1): 1-17.
    
    [189] Sedev R, Exerowa D. DLVO and non-DLVO surface forces in foam films from amphiphilic block copolymers. Adv. Colloid Interface Sci., 1999, 83(1): 111-136.
    
    [190] Gosal WS, Ross-Murphy SB. Globular protein gelation. Curr. Opin. Colloid Interface Sci., 2000, 5(3-4): 188-194.
    
    [191] Ando C, Kishi H, Oguchi H, et al. Effects of bovine serum albumin on the low. temperature synthesis of barium titanate microparticles via a solid state route. J. Am. Ceram. Soc, 2006, 89 (5): 1709-1712.
    
    [192] He G, Dahl T, Veis A, et al. Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1. Nat. Mater., 2003,2(8): 552-558.
    
    [193] Fitzpatrick H, Luckham PF, Eriksen S, et al. Bovine serum albumin adsorption to mica surfaces. Colloids Surf., 1992, 65(1):43-49.
    
    [194] Norde W, Giacomelli CE. BSA structural changes during homomolecular exchange between the adsorbed and the dissolved states. J. Biotechnol., 2000, 79(3): 259-268.
    
    [195] Suslick KS, Grinstaff MW, Kolbeck KJ, et al. Characterization of sonochemically prepared proteinaceous microspheres. Ultrason. Sonochem., 1994, 1(1): S65-S68.
    
    [196] Okitsu K, Mizukoshi Y, Bandow H, et al. Formation of noble metal particles by ultrasonic irradiation. Ultrason. Sonochem., 1996, 3(3): S249-S251.
    
    [197] Suslik KS. Ultrasound: Its Chemical, Physical and Biological Effects. VCH Publishers Weinheim, 1998.
    [198]Brinkous KM,Smith HP,Warner ED,et al.The inhibition of blood clotting:an unidentified substance which acts in conjunction with heparin to prevent the conversion of prothrombin into thrombin.Am.J.Physiol.,1939,125:683-687.
    [199]Hirsh J.Heparin.N.Engl.J.Med.,1991,324(22):1565-1574.
    [200]徐红,刘绍璞,罗红群.结晶紫分光光度法测定肝素.西南师范大学学报(自然科学版),2002,27(5):735-738
    [201]Diana T,Hughes W,Graham E.Adsorption of chondroitin-4-sulphate and heparin onto hydroxyapatite-effect of bovine serum albumin.Biomaterials,1997,18(14):1001-1007.
    [202]汪家政,范明.蛋白质技术手册.北京:科学出版社,2000
    [203]Yang Y,Kim KH,Agrawal CM,et al.Influence of Post-deposition Heating Time and the Presence of Water Vapor on Sputter-coated Calcium Phosphate Crystallinity.J.Dent.Res.,2003,82(10):833-837.
    [204]Kawasaki T,Niikura M,Kobayashi Y.Fundamental study of hydroxyaptatite high-performance liquid chromatography.Ⅱ Experimental analysis on the basis of the general theory of gradient chromatography.J.Chromatogr.,1990,515:91-123.
    [205]Akazawa T,Kobayashi M,Kanno T,et al.Characterization of albumin- and lysozyme-adsorption evaluated on two differently prepared apatites.J.Mater.Sci.,1998,33(7):1927-1931.
    [206]Moulton SE,Barisci JN,McQuillan AJ,et al.ATR-IR spectroscopic studies of the influence of phosphate buffer on adsorption of immunoglobulin G to TiO2.Colloids Surf.A,2003,220(1):159-167.
    [207]Chen YL,Zhang XF,Gong YD,et al.Conformational changes of fibrinogen adsorption onto hydroxyapatite and titanium oxide nanoparticles.J.Colloid Interface Sci.,1999,214(1):38-45.
    [208]Barroug A,Lemaitre J,Rouxhet PG.Lysozyme on apatites:A model of protein adsorption controlled by electrostatic interactions.Colloids Surf.,1989,37:39-355.
    [209]秦德安,钮晓达,陈跃春.用Bialsche试剂直接测定红细胞膜上唾液酸量.生物化学与生物物理进展,1987,14(4):63-65
    [210]Koziara JM,Oh JJ,Akers WS,et al.Blood Compatibility of Cetyl Alcohol/Polysorbate-Based Nanoparticles.Pharm.Res.,2005,22(11):1821-1828
    [211]Kim D,El-Shall H,Dennis D,et al.Interaction of PLGA nanoparticles with human blood constituents.Colloids Surf.B,2005,40(2):83-91.
    [212]Chambers E,Mitragotri S.Prolonged circulation of large polymeric nanoparticles by non-covalent adsorption on erythrocytes.J.Control.Release,2004,100(1):111-119.
    [213]Rothen-Rutishauser BM,Sch(u|¨)rch S,Haenni B,et al.Interaction of Fine Particles and Nanoparticles with Red Blood Cells Visualized with Advanced Microscopic Techniques.Environ.Sci.Technol.,2006,40(14):4353-4359.
    [214]Jovanovic AV,Flint JA,Varshney M,et al.Surface Modification of Silica Core-Shell Nanocapsules:Biomedical Implications.Biomacromolecules,2006,7(3):945-949.
    [215]Kemp RB.Effect of neuraminidase(3-2-1-18)on aggregation of cells dissociated frim embryonic chick muscle tissue.J.Cell Sci.,1970,6(3):751-766.
    [216]李涤生.临床检验基础.人民卫生出版社,1989,p35
    [217]Brooks DE.The effect of neutral polymers on the electrokinetic potential of cells and other charged particles:Ⅲ.Experimental studies on the dextran/erythrocyte system.J.Colloid Interface Sci.,1973,43(3):700-713.
    [218]Chien S,Jan KM.Ultrastructural basis of the mechanism of rouleaux formation.Microvasc.Res.,1973,5(2):155-166.
    [219]Chien S,Simchon S,Abbot RE,et al.Surface adsorption of dextrans on human red cell membrane.J.Colloid Interface Sci.,1977,62(3):461-470.
    [220]Chien S,Lang LA.Physicochemical basis and clinical implications of red cell aggregation.Clin.Hemorheol.,1987,7:71-91.
    [221]Van Oss CJ,Arnold K,Coakley WT.Depletion flocculation and depletion stabilization of erythrocytes.Cell Biophys.,1990,17(1):1-10.
    [222]B(a|¨)umler H,Neu B,Donath E,et al.Basic phenomena of red blood cell rouleaux formation.Biorheology.,1999,36(5-6):439-442.
    [223]B(a|¨)umler H,Neu B,Mitlohner R,et al.Electrophoretic and aggregation behavior of bovine,horse and human red blood cells in plasma and in polymer solutions.Biorheology.,2001,38(1):39-51.
    [224]McMillan DE,Utterback NG,Lee MM.Red cells slide as they form doublets and deform in rouleaux.Biorheology.,1989,26(5):899-906.
    [225]Armstrong JK,Meiselman HJ,Fisher TC.Evidence against macromolecular "bridging" as the mechanism of red blood cell aggregation induced by nonionic polymers.Biorheology.,1999,36(5-6):433-437.
    [226]Burton WDR,Harding SE.Crystallohydrodynamics for solving the hydration problem for multi-domain proteins:open physiological conformations for human IgG.Biophys.Chem.,2001,93(2):181-196.
    [227]Neu B,Meiselman HJ.Depletion-mediated red blood cell aggregation in polymer solutions.Biophys.J.,2002,83(5):2482-2490.
    [228]Armstrong JK,Wenby RB,Meiselman HJ,et al.The Hydrodynamic Radii of Macromolecules and Their Effect on Red Blood Cell Aggregation.Biophys J.,2004,87(6):4259-4270.
    [229]Neu B,Armstrong JK,Fisher TC,et al.Aggregation of human RBC in binary dextran-PEG polymer mixtures.Biorheology.,2001,38(1):53-68.
    [230]Singer SJ,Nicolson GL.The Fluid Mosaic Model of the Structure of Cell Membranes.Science,1972,175(23):720-731
    [231]Tien HT,Ottova AL.Thelipid bilayer concept and its experimental realization:from soap bubbles,kitchen sink,to bilayer lipid membranes.J.Membrane Sci.,2001,189:83-117.
    [232]Sung LA,Vera C.Protofilament and hexagon:a three-dimensional mechanical model for the junctional complex in the erythrocyte membrane skeleton.Annu.Rev.Biomed.Eng.,2003,31(11):1314-1326.
    [233]Vera C,Skelton R,Bossens F,et al.3-D Nano-mechanics of an Erythrocyte Junctional Comples in Equibiaxial and Anisotropic Deformations.Annu.Rev.Biomed.Eng.,2005,33(10):1387-1404
    [234]Mills JP,Qie L,Dao M,et al.Continuous force-displacement relationships for the human red blood cell at different erythrocytic developmental stages of Plasmodium falciparum malaria parasite.Mater.Res.Soc.Symp.Proc,2005,844:Y7.8.1-Y7.8.1
    [235]Telen MJ,Chasis JA.Relationship of the human erythrocyte Wrb antigen to an interaction between glycophorin A and band 3.Blood,1990,76(4):842-848.
    [236]Demehin AA,Abugo OO,Jayakumar R,et al.Binding of hemoglobin to red cell membranes with eosin-5-maleimide-labeled band 3:Analysis of centrifugation and fluorescence lifetime data.Biochemistry,2002,41(27):8630-8637.
    [237]Anderson RA,Lovrien RE.Erythrocyte membrane sideness in lectin control of the Ca~(2+)-A23187-mediated discocyte-echinocyte conversion.Nature,1981,292(5819):158-161.
    [238]Shiga T,Sekiya M,Maeda N,et al.Cell age-dependent changes in deformability and calcium accumulation of human erythrocytes.Biochem.Biophys.Acta,1985,814(2):289-299.
    [239]Chandra R,Joshi PC,Bajpai VK,et al.Membrane phospholipid organization in calcium-loaded human erythrocytes.Biochem.Biochim.Biophys.Acta,1987,902(2):253-262.
    [240]Croll DE,Morrow JS,DeMartino GN.Limited proteolysis of the erythrocyte membrane skeleton by calcium-dependent proteinases.BiochemBiophysActa,1986,882(3):287-296.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700